

DOI https://doi.org/10.5851/kosfa.2025.e11

Growth Characteristics, Blood Biochemistry, Histology, and Metabolic Profile of Muscle and Different Tissues: Toxicity Study of Deoxynivalenol

Jin Young Jeong^{1,*}, Junsik Kim¹, Minji Kim¹, and Sungkwon Park²

- ¹Precision Animal Nutrition Division, National Institute of Animal Science, Wanju 55365, Korea
- ²Department of Food Science and Biotechnology, Sejong University, Seoul 05006, Korea

Deoxynivalenol (DON) toxicity causes oxidative stress, immunological disorders, and gastrointestinal injury, thereby reducing animal survival and productivity. Pigs are particularly susceptible to DON; therefore, clear standards for DON levels in animal feed are essential. Therefore, we investigated the growth characteristics, biochemistry, histology, and metabolite profiles of growing pigs fed dietary DON levels. Twelve pigs were randomized to one of four diets for 28 d: 1) CON, control group fed conventional diets; 2) T1, 1 mg; 3) T2, 3 mg; and 4) T3, 10 mg DON/kg conventional diet. The results revealed that the final body weight of the growing pigs in the T3 group was the lowest among all DON-treated groups (p<0.05). Additionally, the T3 group demonstrated the highest blood alkaline phosphate levels, whereas the T2 and T3 treatment groups exhibited reduced lipase levels compared to the other groups (p<0.01). Histological analysis showed that fibrosis increased in the muscle, liver, and other tissues, while apoptosis increased in the liver and ileum with increasing DON levels. Metabolomic profiling revealed that several metabolic pathways, such as purine metabolism, were involved in the weight loss induced by DON toxicity. In conclusion, our study suggests that DON levels above the maximum residue limits have adverse effects on growing pigs and that these effects are caused by altered metabolites.

Keywords growing pig, deoxynivalenol, histology, metabolite

Introduction

Mycotoxins are fungal secondary metabolites that frequently contaminate agricultural crops worldwide and adversely affect farm animals (Abdallah et al., 2015; Holanda and Kim, 2021). Deoxynivalenol (DON) is a type B trichothecene. It is produced by Fusarium species and is the most frequently detected mycotoxin in feed samples (Kwon et al., 2023). DON toxicity can lead to impairment of the immune system, oxidative stress, and damage to the gastrointestinal tract, which can affect the

Received December 1, 2024 Revised February 10, 2025 Accepted February 11, 2025

*Corresponding author: Jin Young Jeong Precision Animal Nutrition Division, National Institute of Animal Science, Wanju 55365, Korea Tel: +82-63-238-7487 Fax: +82-63-238-7497 E-mail: jeong73@korea.kr

*ORCID

Jin Young Jeong https://orcid.org/0000-0002-8670-7036 Junsik Kim https://orcid.org/0000-0001-9692-757X Minji Kim https://orcid.org/0000-0003-2106-1921 Sungkwon Park https://orcid.org/0000-0002-7684-9719 survival and productivity of livestock (Chen et al., 2024; Holanda and Kim, 2020). According to the European Food Safety Authority (EFSA), 75.2% of EU feed samples were contaminated with DON (EFSA, 2013). Furthermore, Gruber-Dorninger et al. (2019) reported DON contamination in 64.1% of feed samples from 2008 to 2017. In response, the maximum residue level for DON has been established by the US Food and Drug Administration (FDA) in grain and grain byproducts for swine at <5 mg/kg (FDA, 2018). In contrast, the European Commission has set strict limits for capping DON levels in compound feeds for pigs at 0.9 ppm (European Commission, 2016).

Pigs, followed by mice, rats, poultry, and ruminants, are most susceptible to DON toxicity (Zhao et al., 2016). This is likely because pigs consume cereal-rich diets and lack the rumen microorganisms required to break down mycotoxins (Jia et al., 2023; Pierron et al., 2016). Consequently, pigs exhibit a higher bioavailability of DON and a prolonged elimination period of the toxin from the body compared to other animals (Schelstraete et al., 2020; Sun et al., 2022). A notable consequence of DON toxicity in pigs is growth retardation (Pestka and Smolinski, 2005). Symptoms such as diarrhea, vomiting, and anorexia result from ingestion of feed containing high levels of DON, which reduces feed intake and efficiency (Pestka et al., 2017; Pinton et al., 2009). Furthermore, DON causes oxidative stress through the generation of reactive oxygen species (ROS), further compromising the immune system and causing histological alterations, including fibrosis and apoptosis (Chaytor et al., 2011; Kang et al., 2022). DON toxicity disrupts several metabolic processes, including glycolysis, protein biosynthesis, and cellular metabolism (Dänicke et al., 2006; Saenz et al., 2021; Wang et al., 2019).

Despite extensive research, the effects of DON may be highly variable and depend on several factors: the amount of toxin in the animal, its origin, the animal's age, duration of exposure, and its simultaneous interaction with other substances (Serviento et al., 2018). Weaned piglets are more vulnerable to DON toxicity because their intestines are less adapted to sudden changes in feed. Many studies have focused on DON toxicity in piglets. However, as slow growth in pigs results in reduced profitability, knowledge of the harmful effects of feed to pigs is important to enable farmers to manage their diets effectively (López-Vergé et al., 2018). Determining the amount of DON in the diets of growing pigs is essential to reduce the risk of DON in pig production. However, studies on DON toxicity in growing pigs are limited. The toxicity of DON in this study was evaluated at concentrations higher than the maximum residue level during the growing period. We investigated the effects of different DON levels on histological alterations, growth characteristics, and blood biochemistry of growing pigs. Additionally, this study explored metabolites and their correlation with growth performance.

Materials and Methods

Animals and study design

Castrated pigs were sourced from Taeheung (Yeonggwang, Korea). Twelve pigs (Landrace×Yorkshire) were housed in individual pens measuring 130×240 cm. Housing conditions were maintained throughout the study, including acclimation, according to the following specifications: a light-dark cycle of 12:12 h, a room temperature of 25±2°C, and a relative humidity of 60±5%. The pigs were divided into four groups as follows: the control group received a basal diet, the T1 group received a basal diet with 1 mg/kg added DON, the T2 group with 3 mg/kg, and the T3 group with 10 mg/kg (Table 1). Pigs had *ad libitum* access to water and food for 4 weeks. Diets were supplemented with DON (TripleBond, Guelph, ON, Canada) according to established experimental concentrations. Mycotoxins were dissolved with 1%–5% ethanol in an autoclaved sterilized beaker and stirred until completely dissolved. The solvent amount was tested to ensure no impact on feed fluidity despite moisture content. At the end of the experimental period, blood samples were taken 1 d before tissue sampling. T61

Table 1. Composition of the conventional diets in growing pigs

Ingredients	Percentage (%)
Corn	57.30
Soybean meal	25.00
Wheat bran	11.50
Molasses	1.40
Soybean oil	2.00
Limestone	1.00
L-Lysine	0.40
Salt	0.40
Sweet whey	0.50
Tricalcium phosphate	0.50
Total	100

was used to anesthetize all animals. Samples were taken from the feces, ileum, liver, muscle, rectum, and urine immediately after exsanguination. Blood and debris were removed using phosphate-buffered saline (PBS) and sterile disposable wipes. Samples were rapidly frozen in liquid nitrogen for storage at –80°C. Additionally, tissue fixation for histologic analysis was performed with 10% neutral buffered formalin (NBF; Sigma-Aldrich, St. Louis, MO, USA). The average daily feed intake (ADFI), average daily gain (ADG), and feed conversion ratio (FCR) were calculated as follows:

$$ADG = (Final weight - Initial weight) / age (d)$$
 (1)

$$ADFI = Feed supplied - Feed remaining$$
 (2)

$$FCR = Feed consumed / ADG$$
 (3)

Deoxynivalenol content analysis

Ultra-performance liquid chromatography (UPLC) mass spectrometry was used to analyze DON in diets, as described previously (Jeong et al., 2024a). Briefly, a 1 g homogenized DON sample was extracted with water and diluted in PBS, then applied to the appropriate columns. The diets contained 0.73, 2.61, and 9.52 mg/kg DON. The same diet was used as previously described. The control sample had no DON contamination.

Blood biochemical analysis

Pig blood samples were taken in tubes from each growing pig via the jugular vein. Briefly, serum was centrifuged at 700×g for 15 min at 4°C, then stored at –80°C (Jeong et al., 2024b). Blood parameters, including glucose, creatine, blood urea nitrogen, phosphate, calcium, total protein, albumin, globulin, alanine aminotransferase, alkaline phosphatase, total bilirubin, cholesterol, amylase, and lipase levels, were analyzed using a VetTest chemistry analyzer (IDEXX, Westbrook, ME, USA).

Histological analysis

Analysis of DON-induced fibrosis and apoptosis may improve our understanding of tissue damage and repair. Samples (5×5 mm) of liver, muscle, duodenal, ileal, rectal, jejunal, cecal, and colonic (ascending, transverse, and descending) tissues were collected as previously described (Jeong et al., 2024b). Each sample was fixed in 10% NBF, dehydrated, embedded in paraffin, and heated. Slides were deparaffinized, rehydrated, and stained. They were then observed under a microscope at 200× and 400× magnifications.

Metabolite preparation and analysis of blood, liver, cecum, urine, and feces

Ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF MS) was used to analyze changes in pig metabolites following DON-contaminated diets. Experimental pretreatment and analytical methods were carried out as previously described (Jeong et al., 2024a). Briefly, 100 µL serum was mixed with 400 µL acetone, shaken, and the 400 µL supernatant collected, lyophilized, then dissolved in 100 µL 20% methanol containing an internal standard. Urine was treated the same way, while liver, cecum, and feces samples were dissolved in 80% methanol with an internal standard. The resulting solutions were analyzed by UPLC-Q-TOF MS. After metabolomic analysis, samples were pooled. Samples were injected into an Acquity UPLC C18 column with a mobile phase of water and acetonitrile. Blood, liver, cecum, feces, and urine took 12 min; blood and urine at 40°C took 16 min. The eluted compounds were analyzed by MS in ESI mode. TOF-MS data were scanned between 100 and 1,500 m/z with 0.2 s scan time. Capillary and sample cones set at 3 and 40 V, 800 L/h desolvation flow, 300°C desolvation temperature, and 100°C source temperature. Leu-Enk was used as the reference compound due to its low mass and was analyzed every 10 s. QC samples were analyzed every 10 runs. MS/MS spectra were obtained at m/z 50–1,500 using a ramped collision energy. MS data were processed using MarkerLynx 4.1, including m/z, RT, and intensity calculations. LC-MS data were acquired using MarkerLynx. Peak data were identified using various parameters and normalized. Metabolites were identified using multiple databases and relevant literature.

Statistical analysis

Metabolite data were analyzed with SIMCA-P+. Partial least squares discriminant analysis (PLS-DA) was used to visualize the results. PLS-DA using R², Q², and permutation tests. R²X/Y assessed the model fit; Q², future data. The PLS-DA results were validated using a permutation test. One-way analysis of variance (ANOVA) with Duncan test was used to analyze metabolite abundances (p<0.05). Heatmaps of identified compounds were created in R using a color scale based on z-scores. Prism 9.5.1 was used to perform a one-way ANOVA and Tukey's tests. The results are expressed as the mean±SEM. Statistical significance was set at p<0.05.

Results

Growth performance

Table 2 shows the impact of DON intake on 10-week-old pigs over 28 days. The control and DON treatment groups had similar initial body weights (BWs; 34.5±0.53 kg). The T3 group had the lowest final BW (46.4±0.84 kg). ADFI, ADG, and FCR were not significantly different among the four diet groups.

Table 2. Effects of increasing deoxynivalenol intake on growth performance in growing pigs for 4 weeks

Parameters	CTL (n=3)	T1 (n=3)	T2 (n=3)	T3 (n=3)	SEM	p-value
Initial BW (kg)	34.8	34.5	34.4	34.4	0.53	0.995
Final BW (kg)	52.5 ^a	49.3^{ab}	50.0^{ab}	$46.4^{\rm b}$	0.84	0.045
ADFI (kg)	1.30	1.30	1.33	1.27	0.04	0.974
ADG (kg)	0.63	0.53	0.53	0.46	0.03	0.259
FCR	2.06	2.51	2.41	3.17	0.20	0.271

CTL, control (basal diet); T1, basal diet+DON 1 mg/kg feed; T2, basal diet+DON 3 mg/kg feed; T3, basal diet+DON 10 mg/kg feed.

Blood biochemistry

The effects of DON treatment on the biochemical parameters of the blood of growing pigs over a 28-day period are presented in Table 3. Blood parameters that did not differ significantly among dietary treatments were not reported. The levels of alkaline phosphate (ALKP) in the blood of growing pigs in the T3 group were the highest among the diet treatment groups (p=0.003). However, in the T3 group, the level of lipase (LIPA) was significantly lower than that of the other treatments (p=0.007).

Histological analysis

Masson's trichrome staining was used to observe histological changes, including fibrosis, in the liver, muscle, duodenum, ileum, rectum, jejunum, cecum, and colon (ascending, transverse, and descending; Fig. 1). Increased fibrosis was observed in the portal areas of the liver lobules formed by an envelope of fibrous connective tissue. In skeletal muscle, fibrosis was caused by DON in the endomysium and blood vessels. In the duodenum, fibrosis was observed in the muscularis mucosa and the submucosa. Blue staining was observed in the ascending colonic mucosa. Fibrosis was also observed in other tissues. However, these differences were minimal and difficult to detect. The TUNEL staining results, performed to observe apoptosis in the liver and ileum, are shown in Fig. 2. The figures represent 200× and 400× magnified images. The DON group showed more TUNEL-positive staining than the control group, suggesting severe apoptosis. DON increased fibrosis and apoptosis; however, the effects were minimal or insignificant in some tissues.

Metabolomic profiling

To understand the metabolic impact of DON toxicity at different levels, liquid chromatography-mass spectrometry was used to characterize the metabolites in the blood, cecum, feces, liver, and urine of growing pigs. PLS-DA indicated that metabolites in the DON and control groups were significantly separated in the cecum, urine, and feces compared to those in

Table 3. Biochemical effects of increasing deoxynivalenol (DON) intake in growing pigs for 4 weeks

Parameters	CTL (n=3)	T1 (n=3)	T2 (n=3)	T3 (n=3)	SEM	p-value
Alkaline phosphatase (U/L)	150.0^{b}	201.3ª	175.7 ^{ab}	221.3ª	7.94	0.003
Lipase (U/L)	25.7ª	25.2ª	10.5 ^b	11.3 ^b	1.27	0.007

CTL, control (basal diet); T1, basal diet+DON 1 mg/kg feed; T2, basal diet+DON 3 mg/kg feed; T3, basal diet+DON 10 mg/kg feed.

a,b Different superscript letters indicate that the variables within a row are significantly different (p<0.05).

BW, body weight; ADFI, average daily feed intake; ADG, average daily gain; FCR, feed conversion ratio; DON, deoxynivalenol.

a,b Different superscript letters indicate that the variables within a row are significantly different (p<0.05).

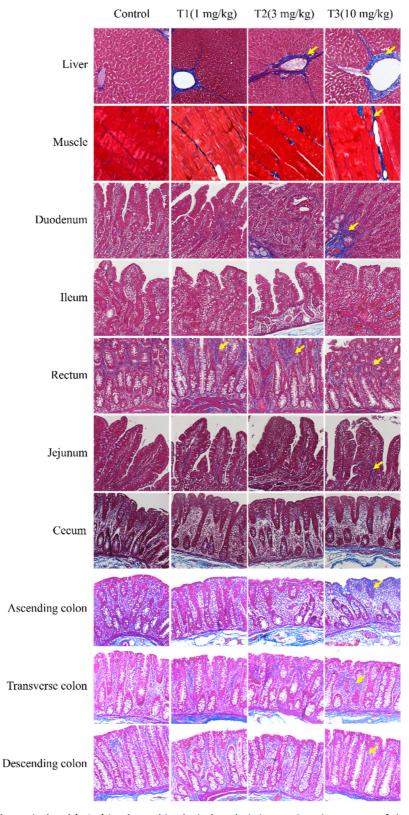


Fig. 1. Effects of increasing deoxynivalenol (DON) intake on histological analysis in growing pigs. Images of the liver, muscle, duodenum, ileum, rectum, jejunum, cecum, and colon (ascending, transverse, descending) of growing pigs treated with different concentrations of DON were obtained after 28 d of the experiment using Masson's trichrome staining (blue). Signs of fibrosis increased as DON concentrations increased in the liver, muscle, ileum, and duodenal tissues. Control, basal diet; T1, basal diet+DON 1 mg/kg feed; T2, basal diet+DON 3 mg/kg feed; T3, basal diet+DON 10 mg/kg feed. The arrows indicate fibrosis. Observations were performed at 200× magnification.

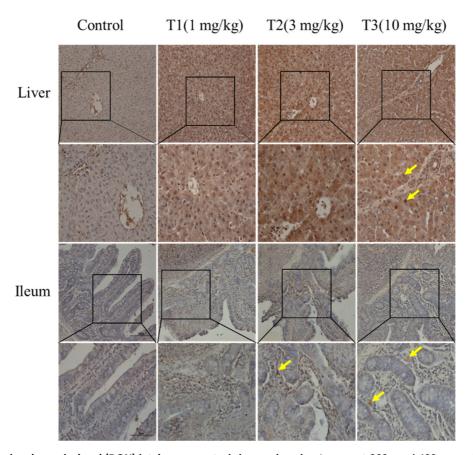


Fig. 2. Effects of increasing deoxynivalenol (DON) intake on apoptosis in growing pigs. Images at 200× and 400× magnification of the liver and ileum from growing pigs treated with increasing concentrations of DON were obtained after 28 d using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. In both organs, TUNEL-positive staining increased with elevated DON concentrations. Control, basal diet; T1, basal diet+DON 1 mg/kg feed; T2, basal diet+DON 3 mg/kg feed; T3, basal diet+DON 10 mg/kg feed. The arrows indicate apoptosis.

the control but not in the blood or liver (Figs. 3A, B, C, D, and E). Additional analyses were performed on DON-contaminated pigs to identify biomarkers. Based on VIP values>1.0 and p<0.05, the metabolites in tissues including blood, liver, cecum, urine, and feces were as follows. In blood, levels of N-Boc-L-2-aminoadipic acid, phenylalanine, N-retinoylleucine, tetracosaheptaenoic acid, nisinic acid, benzoic acid, ethyl docosahexaenoate, LPC(P-18:0), LPC(16:0) 2M, and LPC(17:0) were significantly altered. The levels of several compounds in the liver were also significantly altered. In the cecum, L-alpha-glycerylphosphorylcholine, creatine, 7H-purin-8-ol, tyrosine, phenylalanine, butyrylcarnitine, tryptophan fragment, glycolic acid, glycoursodeoxycholic acid, 3-hydroxy-5-cholenoylglycine, 7-ketoglycolithocholic acid, 5,6-benzoarachidonic acid, ethyl docosahexaenoate, LPC(14:0), LPC(14:1), LPC(15:0), LPC(16:0), LPC(16:0), LPC(17:0), LPC(18:0), and LPC(18:1) were all significantly altered. Urine showed significant changes in 4-aminobenzoic acid, Gly-Pro-Glu, chrysin-7-O-β-D-glucuronide, oroxindin, chrysin-7-O-glucuronide, baicalin, and 5-hydroxy-2-(3-methoxystyryl)-1-benzofuran-3-carbaldehyde. In feces, levels of threonic acid, phenylalanine, N-[{1-(L-alanyl)-4-piperidinyl}carbonyl]-L-isoleucine, and tert-butyl 2-(2-butoxy ginkgolic acid, tetracosaheptaenoic acid, and tetracosapentaenoic acid were significantly changed. Fig. 3G shows changes in purine metabolism, phenylalanine-tyrosine, tryptophan biosynthesis, and phenylalanine metabolism in the DON-treated group. Most candidate metabolites increased at 3 mg/kg (T2) and decreased at higher concentrations (10 mg/kg; T3), but urinary levels only increased at higher concentrations.

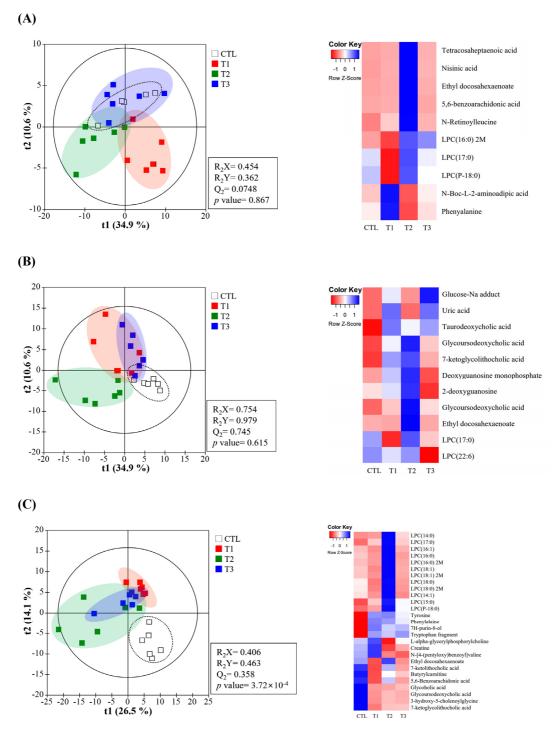


Fig. 3. Metabolite profiling of blood, liver, cecum, urine, and feces from deoxynivalenol (DON)-contaminated growing pigs. Partial least squares discriminant analysis (PLS-DA) scores scatter plot and heatmap of blood (A), liver (B), cecum (C), urine (D), and feces (E). (F) Metabolic pathways from blood and four tissues metabolomics data were obtained using Holm—Bonferroni and FDR correction. The most enriched pathways were identified, including purine metabolism. "Pathway Impact Score" in the x-axis represents the impact of these enriched pathways computed from topology analysis. "—Log p" in the y-axis refers to the negative natural logarithmic value of the original p-value from statistical analysis. Variations in score plots were defined using a 95% confidence interval. Metabolites from the control and DON treatment groups showed distinct cluster separation in the cecum, urine, and feces but not in the blood and liver. The heatmap shows the significantly different data visualization of multiple parameters for the potential indicators of VIPs (VIPs>1, p<0.05). In the PLS-DA and biplots, the colored and white circles represent the metabolites identified in the DON-contaminated piglet tissue groups. CTL, control (basal diet); T1, basal diet+DON 1 mg/kg feed; T2, basal diet+DON 3 mg/kg feed; T3, basal diet+DON 10 mg/kg feed.

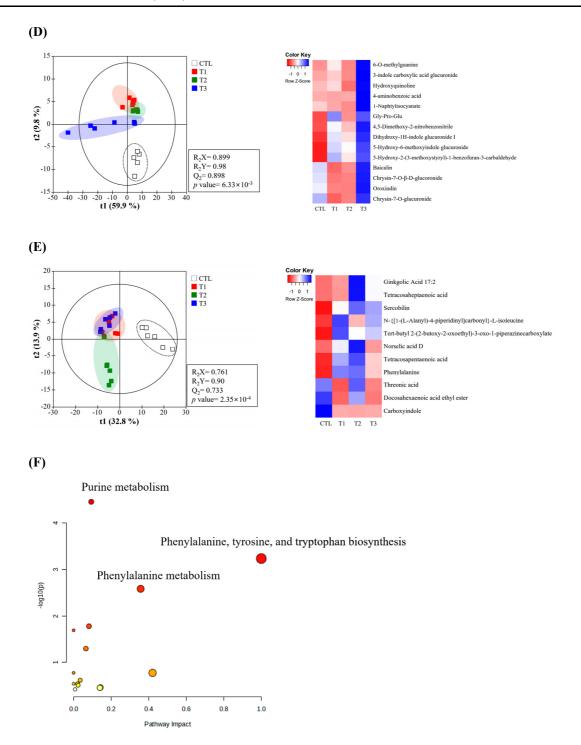


Fig. 3. Metabolite profiling of blood, liver, cecum, urine, and feces from deoxynivalenol (DON)-contaminated growing pigs. Partial least squares discriminant analysis (PLS-DA) scores scatter plot and heatmap of blood (A), liver (B), cecum (C), urine (D), and feces (E). (F) Metabolic pathways from blood and four tissues metabolomics data were obtained using Holm—Bonferroni and FDR correction. The most enriched pathways were identified, including purine metabolism. "Pathway Impact Score" in the x-axis represents the impact of these enriched pathways computed from topology analysis. "—Log p" in the y-axis refers to the negative natural logarithmic value of the original p-value from statistical analysis. Variations in score plots were defined using a 95% confidence interval. Metabolites from the control and DON treatment groups showed distinct cluster separation in the cecum, urine, and feces but not in the blood and liver. The heatmap shows the significantly different data visualization of multiple parameters for the potential indicators of VIPs (VIPs>1, p<0.05). In the PLS-DA and biplots, the colored and white circles represent the metabolites identified in the DON-contaminated piglet tissue groups. CTL, control (basal diet); T1, basal diet+DON 1 mg/kg feed; T2, basal diet+DON 3 mg/kg feed; T3, basal diet+DON 10 mg/kg feed (continued).

Correlation analysis between final body weight and metabolites

A linear regression model was used to analyze the correlation between final BW and blood and tissue metabolites (Fig. 4). Phenylalanine, tyrosine, and creatine levels were significantly correlated with the final BW. Phenylalanine in both cecum (R²=0.4771, p=0.0137) and feces (R²=0.3266, p=0.0428) metabolites, and tyrosine (R²=0.3820, p=0.0322) in cecum metabolites were negatively correlated with the mean final BWs (Figs. 4A, B, and C). Among the cecal metabolites, creatine (R²=0.3509, p=0.0424) was positively correlated with mean final BW (Fig. 4D). However, correlations with blood biochemical variables did not differ.

Discussion

The FDA has recommended a maximum residue level of DON of <5 mg/kg for grain and grain by-products within 20% of the total swine diet, which is equivalent to 1 mg/kg when converted to complete feed (FDA, 2018). The Canadian Food

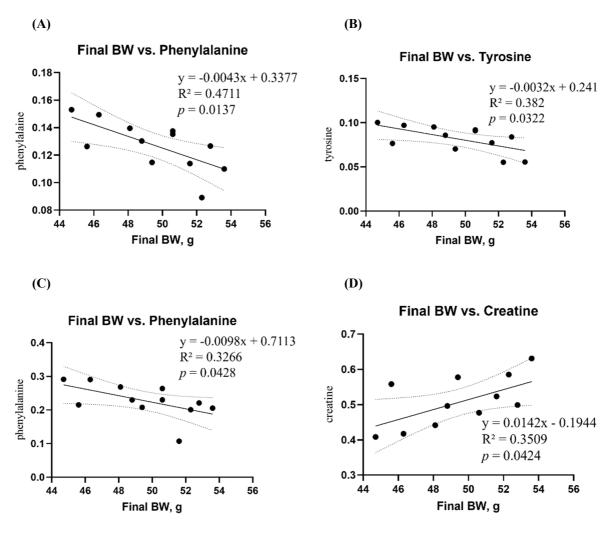


Fig. 4. Simple linear regression analysis showing the association between final body weight (BW) and metabolic parameters. Phenylalanine (A) and tyrosine (B) in cecum metabolites and phenylalanine (C) in feces metabolites were negatively correlated with final BW. (D) Creatine in cecum metabolites was positively correlated with final BW. The correlation coefficient and p-value were calculated using GraphPad Prism software.

Inspection Agency (CFIA) also recommends the same standards as the FDA (CFIA, 2024). European Commission's minimum residue level for DON in pig feed is 0.9 mg/kg (European Commission, 2016). China's Feed Safety Standard sets the standard for DON in complete feed for pigs at 1 ppm (Zhao et al., 2021). The Korean Feed Standards and Specifications recommend a DON management level of 0.9 mg/kg in pig feed. Based on these recommendations and regulatory standards from these different countries, the minimum standard for DON treatment was set at 1 mg/kg in this study. Furthermore, we anticipated that DON levels above 1 mg/kg would adversely affect the health of growing pigs and thus focused on evaluating the effects of graded levels of DON. Although Wu et al. (2015) found that a DON concentration of 3 mg/kg had no significant effects on the health of growing pigs, Wellington et al. (2021) reported serious effects at the same concentration. Therefore, 3 mg/kg was used as the intermediate level to clarify the effects of DON toxicity in growing pigs. Additionally, to assess the effect of high levels of DON toxicity during the growth period, the maximum treatment was set at 10 mg/kg (Jeong et al., 2024b). Thus, the effects of graded levels of DON (1, 3, and 10 mg/kg feed) on the growth performance, blood biochemistry, histology, and metabolite levels were examined in growing pigs over a 4-week period.

DON adversely affects the growth performance of pigs (Reddy et al., 2018; Wu et al., 2015). The main symptoms of DON toxicity include vomiting, diarrhea, and anorexia (Pestka et al., 2017; Pinton et al., 2009), possibly resulting in intestinal damage, reducing overall nutrient absorption and utilization, which leads to decreased growth performance (Ghareeb et al., 2014). In this study, high levels of DON (10 mg/kg) significantly decreased growth performance, with an 11.6% decrease in final BW compared with the control group. However, our results did not show any effect of DON toxicity on ADFI or FCR. Similar to our results, Reddy et al. (2018) reported that the final BW of growing pigs fed 8 mg/kg DON decreased by 17% compared with that of the control group, whereas DON supplementation had no significant effect on the ADFI of growing pigs compared with the control group. Sayyari et al. (2018) also administered high doses of 5 mg/kg DON during the growth phase, but neither ADFI nor FCR showed significant differences compared to the control group. In contrast, Wu et al. (2015) reported that ADFI in growing pigs fed a high level of DON (12 mg/kg) was reduced by 41.6% compared with the control group. Although approximately 85% of weight loss due to mycotoxicosis is attributed to reduced feed intake, various factors, such as the contamination level, pig health status, and feeding period, can also have an effect (Pastorelli et al., 2012; Weaver et al., 2013). Therefore, further research that considers internal and external factors is required to determine the exact causes of weight loss.

In the present study, ALKP and LIPA levels were affected by high DON levels. We observed increased serum ALKP levels in growing pigs in the high-level DON treatment groups, which is consistent with the findings of Wu et al. (2015), who administered 12 mg/kg DON to 60–88-d-old pigs. Serum ALKP is secreted by mucosal cells lining the biliary tract of the liver and can leak into the blood when the liver cells are damaged (Ji et al., 2023; Wu et al., 2013). Therefore, the increase in serum ALKP levels in the high DON treatment groups may indicate liver damage owing to DON-induced systemic toxicity, which may be explained by the abnormal excretion of hepatic metabolites (Chaytor et al., 2011). Our results also showed reduced blood LIPA levels in growing pigs fed 3 mg/kg DON. LIPA is a hydrolytic enzyme secreted by the pancreas that breaks down fatty acids, and its activity is an important indicator of intestinal digestive function (Long et al., 2021; Qin et al., 2023). To date, no study has reported a direct relationship between DON and blood lipid levels in growing pigs. However, DON intake damages the intestinal mucosa and increases intestinal permeability, reducing intestinal absorption and impairing digestive organ function (Pierron et al., 2016). This may result in the suppression of digestive enzyme secretion. Additionally, abnormalities in the biliary tract tissue may impair bile flow from hepatocytes during cholestasis, leading to the accumulation of bile acids in the liver, which may cause abnormal secretion of ALKP (Reyer et al., 2019; Tannergren et al., 2006). In all

mammals, the hepatopancreatic biliary system consists of branching ducts linking the liver and pancreas to the duodenum (Zhang et al., 2023). Thus, abnormalities in these biliary tracts can cause pancreatitis and inhibit the secretion of digestive enzymes, including LIPA, from the pancreas (Tsomidis et al., 2024; Yin et al., 2023). Consequently, our results suggest that DON negatively affects the digestive processes of growing pigs, which may explain the decline in growth performance observed in the DON treatment group.

The liver is the primary organ affected by DON exposure, as it is crucial in detoxifying and metabolizing mycotoxins following the ingestion of DON-contaminated feed (Hasuda et al., 2022). Mycotoxins and their metabolites are primarily absorbed in the small intestine, with 51% of ingested DON absorbed in the small intestine (Lewczuk et al., 2016). Additionally, DON may be more susceptible to break down by microorganisms in the large intestine of pigs than by those residing in the initial segments of the intestine (Kollarczik et al., 1994; Lewczuk et al., 2016). In the present study, histological alterations, including fibrosis and apoptosis, were observed in liver and intestinal tissues in a dose-dependent manner. Our previous studies and several others have also observed fibrosis and apoptosis in porcine liver and intestinal tissues due to DON toxicity (Jeong et al., 2024a; Skiepko et al., 2020). Histological liver and small intestine damage may explain the abnormal secretion of ALKP and LIPA from the blood in this study. These changes may be closely related to DON-induced oxidative stress. Several studies have shown that DON induces oxidative stress by increasing the accumulation of ROS, impairing the function of key antioxidant enzymes such as superoxide dismutase, GSH-Px and catalase, and increasing the levels of malondialdehyde (MDA) and 8-OHdG, a marker of oxidative damage (Ji et al., 2023; Xu et al., 2020). Ji et al. (2023) found that increased levels of ROS, MDA and 8-OHdG were strongly correlated with an increase in the number of apoptotic cells in pig liver, demonstrating that hepatocyte apoptosis is induced by DON-mediated oxidative damage. Furthermore, DON-induced oxidative stress increased the expression of apoptosis-related genes and proteins, such as interleukin-1 beta (IL-1β), cyclooxgenase-2, interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-α), caspase-3, caspase-8 and caspase-9 in porcine intestinal epithelial cells (IPEC-J2 cells; Kang et al., 2019). DON-induced oxidative stress can lead to fibrosis (Lan et al., 2015). Fibrosis refers to the excessive accumulation of fibrous connective tissue in the extracellular matrix of a damaged tissue (Antar et al., 2023). Oxidative stress boosts fibrotic factors like TGF-β1, leading to fibrosis by amassing extracellular matter (Antar et al., 2023; Yao et al., 2021). In addition, oxidative stress can trigger the release of inflammatory cytokines such as TNF-α, monocyte chemoattractant protein, IL-6 and IL-8, which can lead to tissue fibrosis (Antar et al., 2023; Ranneh et al., 2017; Yao et al., 2021). Our results show the risk of increased DON concentrations in pig diets due to tissue damage. However, as this study did not analyse DON-induced oxidative stress, future research investigating histological changes and DON-induced oxidative stress will be necessary.

Metabolomic analysis was conducted to explore the biological processes related to DON toxicity. Metabolites are the final products or intermediates of cellular activities and represent the overall response of organs or biological systems to various pathophysiological conditions (Wishart, 2019). Therefore, our results show the changes in pathways linked to DON toxicity. Metabolites from different tissues showed distinct profiles, indicating differences in metabolic profiles between the control and DON groups. These results are similar to those of our previous study that evaluated DON toxicity in weaned piglets (Jeong et al., 2024b). Additionally, the correlation between the metabolites that contributed to the separation among treatment groups and final BW was analyzed to identify metabolic biomarkers associated with growth in pigs exposed to DON toxicity. In the present study, increases in phenylalanine and tyrosine contributed to weight loss in growing pigs, whereas increases in creatine were associated with weight gain in growing pigs. Phenylalanine is an essential amino acid that is a substrate for protein synthesis and other biochemical pathways (Xian et al., 2018). Phenylalanine suppresses food intake by inducing the

secretion of satiety hormones (Alamshah et al., 2017). Tyrosine is the main metabolite of phenylalanine and is converted into other compounds, including dopamine, serotonin, and epinephrine. These are involved in biological processes such as stress response, appetite control, and behavioral regulation (Jeong et al., 2024a). Creatine is endogenously synthesized from glycine, arginine, and methionine, primarily in the kidneys and pancreas (McBreairty et al., 2015; Wallimann et al., 2011). It is crucial in energy metabolism by providing the adenosine triphosphate required for cellular functions (Li et al., 2015). Additionally, creatine transporter mRNA expression is associated with the regulation of food intake, suggesting that creatine is closely related to feed intake and BW gain (Li et al., 2015). Therefore, this suggests the possibility that creatine supplementation may improve growth performance in pigs impaired by DON toxicity. Indeed, several studies have shown that creatine monohydrate supplementation improves growth performance in pigs by stimulating muscle energy metabolism and increasing protein synthesis (Li et al., 2015; Young et al., 2007). However, few studies have directly linked DON toxicity to creatine supplementation. Therefore, further studies are needed to elucidate the effect of creatine supplementation on DON toxicity. Consequently, our findings suggest that DON toxicity affects the imbalance of various metabolic pathways in the body of growing pigs, which affected the weight loss of growing pigs in the high DON group. In this study, phenylalanine, tyrosine, and creatine synthesis were considered as potential biomarkers of DON toxicity affecting growth performance.

Conclusion

In conclusion, we demonstrated that there are no significant health effects at low DON levels for growing pigs, whereas high DON levels decreased growth performance and altered blood biochemical characteristics. Furthermore, our results showed that DON toxicity caused significant dose-related histological changes, including fibrosis and apoptosis, in specific organs of growing pigs. Additionally, DON toxicity induced metabolic changes in growing pigs, which were linked to their final BWs. Therefore, our findings suggest that DON levels above the maximum residue limits cause adverse health effects in growing pigs, with these effects intensifying as DON levels increase. However, because DON toxicity can manifest differently in chronic versus acute exposure, we will conduct future studies to clarify its effects throughout the lifespan of pigs (Pestka and Smolinski, 2005). In addition, a substantial proportion of feed is contaminated with multiple mycotoxins. DON toxicity may be exacerbated by interactions with other mycotoxins—such as zearalenone, fumonisin, and aflatoxin B1—that are frequently detected in animal feeds (Holanda and Kim, 2021; Lei et al., 2013; Weaver et al., 2013). In this context, several studies have reported that mitigation strategies, including inorganic compounds, adsorption, antioxidants, yeast, and bacteria, can help alleviate the toxic effects of these mycotoxins (Holanda and Kim, 2021; Zhu et al., 2016). In particular, biological detoxifiers such as probiotics and yeast are considered a promising approach to reduce toxic effects without compromising the nutritional value of feed, compared to physical and chemical methods (Recharla et al., 2022). Therefore, we will conduct further research to elucidate how DON interacts with other major mycotoxins commonly found in feed, while additional investigations are also needed to develop the most effective biological detoxifiers for application in conventional farming systems. Although further research is needed, this study can be used as a basis for toxicity studies and as a criterion for DON-contaminated diets for growing pigs.

Conflicts of Interest

The authors declare no potential conflicts of interest.

Acknowledgements

This research was funded by the Cooperative Research Program for Agriculture, Science, and Technology Development (Project No. PJ015002), Rural Development Administration, Republic of Korea, and the 2024 RDA fellowship program of the National Institute of Animal Sciences, Rural Development Administration, Republic of Korea.

Author Contributions

Conceptualization: Jeong JY. Data curation: Kim M. Formal analysis: Jeong JY. Methodology: Kim J. Software: Jeong JY. Validation: Park S. Investigation: Jeong JY. Writing - original draft: Jeong JY, Kim J. Writing - review & editing: Jeong JY, Kim J, Kim M, Park S.

Ethics Approval

All the experimental procedures were reviewed and approved by the Institutional Animal Care and Use Committee of the National Institute of Animal Science, Korea (No. NIAS-2020-0479).

References

- Abdallah MF, Girgin G, Baydar T. 2015. Occurrence, prevention and limitation of mycotoxins in feeds. Anim Nutr Feed Technol 15:471-490.
- Alamshah A, Spreckley E, Norton M, Kinsey-Jones JS, Amin A, Ramgulam A, Cao Y, Johnson R, Saleh K, Akalestou E, Malik Z, Gonzalez-Abuin N, Jomard A, Amarsi R, Moolla A, Sargent PR, Gray GW, Bloom SR, Murphy KG. 2017. L-phenylalanine modulates gut hormone release and glucose tolerance, and suppresses food intake through the calciumsensing receptor in rodents. Int J Obes 41:1693-1701.
- Antar SA, Ashour NA, Marawan ME, Al-Karmalawy AA. 2023. Fibrosis: Types, effects, markers, mechanisms for disease progression, and its relation with oxidative stress, immunity, and inflammation. Int J Mol Sci 24:4004.
- Chaytor AC, See MT, Hansen JA, de Souza ALP, Middleton TF, Kim SW. 2011. Effects of chronic exposure of diets with reduced concentrations of aflatoxin and deoxynivalenol on growth and immune status of pigs. J Anim Sci 89:124-135.
- Chen J, Zhang X, He Z, Xiong D, Long M. 2024. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review. J Integr Agric 23:2507-2524.
- Dänicke S, Goyarts T, Döll S, Grove N, Spolders M, Flachowsky G. 2006. Effects of the *Fusarium* toxin deoxynivalenol on tissue protein synthesis in pigs. Toxicol Lett 165:297-311.
- European Commission. 2016. Commission recommendation (EU) 2016/1319 of 29 July 2016 amending recommendation 2006/576/EC as regards deoxynivalenol, zearalenone and ochratoxin A in pet food. Off J Eur Union 208:58-60.
- European Food Safety Authority [EFSA]. 2013. Deoxynivalenol in food and feed: Occurrence and exposure. EFSA J 11:3379.
- Food and Drug Administration [FDA]. 2018. Guidance for industry and FDA: Advisory levels for deoxynivalenol (DON) in finished wheat products for human consumption and grains and grain by-products used for animal feed. FDA, Silver Spring, MD, USA.

- Ghareeb K, Awad WA, Böhm J, Zebeli Q. 2014. Impacts of the feed contaminant deoxynivalenol on the intestine of monogastric animals: Poultry and swine. J Appl Toxicol 35:327-337.
- Government of Canada, Canadian Food Inspection Agency [CFIA]. 2024. RG-8 regulatory guidance: Contaminants in feed (formerly RG-1, chapter 7). Government of Canada, Ottawa, ON, Canada.
- Gruber-Dorninger C, Jenkins T, Schatzmayr G. 2019. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 11:375.
- Hasuda AL, Person E, Khoshal AK, Bruel S, Puel S, Oswald IP, Bracarense APFRL, Pinton P. 2022. Deoxynivalenol induces apoptosis and inflammation in the liver: Analysis using precision-cut liver slices. Food Chem Toxicol 163:112930.
- Holanda DM, Kim SW. 2020. Efficacy of mycotoxin detoxifiers on health and growth of newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins 12:311.
- Holanda DM, Kim SW. 2021. Mycotoxin occurrence, toxicity, and detoxifying agents in pig production with an emphasis on deoxynivalenol. Toxins 13:171.
- Jeong JY, Kim J, Kim M, Park S. 2024a. Efficacy of high-dose synbiotic additives for deoxynivalenol detoxification: Effects on blood biochemistry, histology, and intestinal microbiome in weaned piglets. Biology 13:889.
- Jeong JY, Kim J, Kim M, Shim SH, Park C, Jung S, Jung H. 2024b. Effects of increasing oral deoxynivalenol gavage on growth performance, blood biochemistry, metabolism, histology, and microbiome in rats. Biology 13:836.
- Ji X, Tang Z, Zhang F, Zhou F, Wu Y, Wu D. 2023. Dietary taurine supplementation counteracts deoxynivalenol-induced liver injury via alleviating oxidative stress, mitochondrial dysfunction, apoptosis, and inflammation in piglets. Ecotoxicol Environ Saf 253:114705.
- Jia B, Lin H, Yu S, Liu N, Yu D, Wu A. 2023. Mycotoxin deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. J Hazard Mater 451:131172.
- Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environ Pollut 251:689-698.
- Kang TH, Kang KS, Lee SI. 2022. Deoxynivalenol induces apoptosis via FOXO3a-signaling pathway in small-intestinal cells in pig. Toxics 10:535.
- Kollarczik B, Gareis M, Hanelt M. 1994. *In vitro* transformation of the *Fusarium* mycotoxins deoxynivalenol and zearalenone by the normal gut microflora of pigs. Nat Toxins 2:105-110.
- Kwon WB, Shin SY, Song YS, Kong C, Kim BG. 2023. Effects of mycotoxin-sequestering agents on growth performance and nutrient utilization of growing pigs fed deoxynivalenol-contaminated diets. Life 13:1953.
- Lan T, Kisseleva T, Brenner DA. 2015. Deficiency of NOX1 or NOX4 prevents liver inflammation and fibrosis in mice through inhibition of hepatic stellate cell activation. PLOS ONE 10:e0129743.
- Lei M, Zhang N, Qi D. 2013. *In vitro* investigation of individual and combined cytotoxic effects of aflatoxin B1 and other selected mycotoxins on the cell line porcine kidney 15. Exp Toxicol Pathol 65:1149-1157.
- Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik M, Gajęcki M. 2016. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed. Exp Toxicol Pathol 68:157-166.
- Li JL, Guo ZY, Li YJ, Zhang L, Gao F, Zhou GH. 2015. Effect of creatine monohydrate supplementation on carcass traits, meat quality and postmortem energy metabolism of finishing pigs. Anim Prod Sci 56:48-54.
- Long S, Liu S, Wang J, Mahfuz S, Piao X. 2021. Natural capsicum extract replacing chlortetracycline enhances performance

- via improving digestive enzyme activities, antioxidant capacity, anti-inflammatory function, and gut health in weaned pigs. Anim Nutr 7:305-314.
- López-Vergé S, Gasa J, Temple D, Bonet J, Coma J, Solà-Oriol D. 2018. Strategies to improve the growth and homogeneity of growing-finishing pigs: Feeder space and feeding management. Porcine Health Manag 4:14.
- McBreairty LE, Robinson JL, Furlong KR, Brunton JA, Bertolo RF. 2015. Guanidinoacetate is more effective than creatine at enhancing tissue creatine stores while consequently limiting methionine availability in Yucatan miniature pigs. PLOS ONE 10:e0131563.
- Pastorelli H, van Milgen J, Lovatto P, Montagne L. 2012. Meta-analysis of feed intake and growth responses of growing pigs after a sanitary challenge. Animal 6:952-961.
- Pestka JJ, Clark ES, Schwartz-Zimmermann HE, Berthiller F. 2017. Sex is a determinant for deoxynivalenol metabolism and elimination in the mouse. Toxins 9:240.
- Pestka JJ, Smolinski AT. 2005. Deoxynivalenol: Toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8:39-69.
- Pierron A, Alassane-Kpembi I, Oswald IP. 2016. Impact of two mycotoxins deoxynivalenol and fumonisin on pig intestinal health. Porcine Health Manag 2:21.
- Pinton P, Nougayrède JP, Del Rio JC, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP. 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol Appl Pharmacol 237:41-48.
- Qin S, Peng Y, She F, Zhang J, Li L, Chen F. 2023. Positive effects of selenized-oligochitosan on zearalenone-induced intestinal dysfunction in piglets. Front Vet Sci 10:1184969.
- Ranneh Y, Ali F, Akim AM, Hamid HA, Khazaai H, Fadel A. 2017. Crosstalk between reactive oxygen species and proinflammatory markers in developing various chronic diseases: A review. Appl Biol Chem 60:327-338.
- Recharla N, Park S, Kim M, Kim B, Jeong JY. 2022. Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: A review. J Anim Sci Technol 64:640-653.
- Reddy KE, Song J, Lee HJ, Kim M, Kim DW, Jung HJ, Kim B, Lee Y, Yu D, Kim DW, Oh YK, Lee SD. 2018. Effects of high levels of deoxynivalenol and zearalenone on growth performance, and hematological and immunological parameters in pigs. Toxins 10:114.
- Reyer H, Oster M, Wittenburg D, Murani E, Ponsuksili S, Wimmers K. 2019. Genetic contribution to variation in blood calcium, phosphorus, and alkaline phosphatase activity in pigs. Front Genet 10:590.
- Saenz JS, Kurz A, Ruczizka U, Bünger M, Dippel M, Nagl V, Grenier B, Ladinig A, Seifert J, Selberherr E. 2021. Metaproteomics reveals alteration of the gut microbiome in weaned piglets due to the ingestion of the mycotoxins deoxynivalenol and zearalenone. Toxins 13:583.
- Sayyari A, Fæste CK, Hansen U, Uhlig S, Framstad T, Schatzmayr D, Sivertsen T. 2018. Effects and biotransformation of the mycotoxin deoxynivalenol in growing pigs fed with naturally contaminated pelleted grains with and without the addition of *Coriobacteriaceum* DSM 11798. Food Addit Contam A 35:1394-1409.
- Schelstraete W, Devreese M, Croubels S. 2020. Comparative toxicokinetics of *Fusarium* mycotoxins in pigs and humans. Food Chem Toxicol 137:111140.
- Serviento AM, Brossard L, Renaudeau D. 2018. An acute challenge with a deoxynivalenol-contaminated diet has short- and long-term effects on performance and feeding behavior in finishing pigs. J Anim Sci 96:5209-5221.

- Skiepko N, Przybylska-Gornowicz B, Gajęcka M, Gajęcki M, Lewczuk B. 2020. Effects of deoxynivalenol and zearalenone on the histology and ultrastructure of pig liver. Toxins 12:463.
- Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. 2022. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Arch Toxicol 96:2639-2654.
- Tannergren C, Evilevitch L, Pierzynowski S, Piedra JV, Weström B, Erlwanger K, Tatara M, Lennernäs H. 2006. The effect of pancreatic and biliary depletion on the *in vivo* pharmacokinetics of digoxin in pigs. Eur J Pharm Sci 29:198-204.
- Tsomidis I, Voumvouraki A, Kouroumalis E. 2024. The pathogenesis of pancreatitis and the role of autophagy. Gastroenterol Insights 15:303-341.
- Wallimann T, Tokarska-Schlattner M, Schlattner U. 2011. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271-1296.
- Wang XC, Zhang YF, Cao L, Zhu L, Huang YY, Chen XF, Chu XY, Zhu DF, Ur Rahman S, Feng SB, Li Y, Wu JJ. 2019. Deoxynivalenol induces intestinal damage and inflammatory response through the nuclear factor-κB signaling pathway in piglets. Toxins 11:663.
- Weaver AC, See MT, Hansen JA, Kim YB, De Souza ALP, Middleton TF, Kim SW. 2013. The use of feed additives to reduce the effects of aflatoxin and deoxynivalenol on pig growth, organ health and immune status during chronic exposure. Toxins 5:1261-1281.
- Wellington MO, Bosompem MA, Rodrigues LA, Columbus DA. 2021. Effect of long-term feeding of graded levels of deoxynivalenol on performance, nutrient utilization, and organ health of grower-finisher pigs (35 to 120 kg). J Anim Sci 99:skab109.
- Wishart DS. 2019. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev 99:1819-1875.
- Wu L, Liao P, He L, Ren W, Yin J, Duan J, Li T. 2015. Growth performance, serum biochemical profile, jejunal morphology, and the expression of nutrients transporter genes in deoxynivalenol (DON)- challenged growing pigs. BMC Vet Res 11:144.
- Wu L, Wang W, Yao K, Zhou T, Yin J, Li T, Yang L, He L, Yang X, Zhang H, Wang Q, Huang R, Yin Y. 2013. Effects of dietary arginine and glutamine on alleviating the impairment induced by deoxynivalenol stress and immune relevant cytokines in growing pigs. PLOS ONE 8:e69502.
- Xian Y, Zhao X, Wang C, Kang C, Ding L, Zhu W, Hang S. 2018. Phenylalanine and tryptophan stimulate gastrin and somatostatin secretion and H⁺-K⁺-ATPase activity in pigs through calcium-sensing receptor. Gen Comp Endocrinol 267:1-8.
- Xu X, Yan G, Chang J, Wang P, Yin Q, Liu C, Liu S, Zhu Q, Lu F. 2020. Astilbin ameliorates deoxynivalenol-induced oxidative stress and apoptosis in intestinal porcine epithelial cells (IPEC-J2). J Appl Toxicol 40:1362-1372.
- Yao Y, Zhao X, Zheng S, Wang S, Liu H, Xu S. 2021. Subacute cadmium exposure promotes M1 macrophage polarization through oxidative stress-evoked inflammatory response and induces porcine adrenal fibrosis. Toxicology 461:152899.
- Yin J, Cui T, Yang Y, Ren TL. 2023. Sensing of digestive enzymes: Diagnosis and monitoring of pancreatitis. Chemosensors 11:469.
- Young JF, Bertram HC, Theil PK, Petersen AGD, Poulsen KA, Rasmussen M, Malmendal A, Nielsen NC, Vestergaard M, Oksbjerg N. 2007. *In vitro* and *in vivo* studies of creatine monohydrate supplementation to Duroc and Landrace pigs. Meat Sci 76:342-351.

- Zhang W, Wang X, Lanzoni G, Wauthier E, Simpson S, Ezzell JA, Allen A, Suitt C, Krolik J, Jhirad A, Dominguez-Bendala J, Cardinale V, Alvaro D, Overi D, Gaudio E, Sethupathy P, Carpino G, Adin C, Piedrahita JA, Mathews K, He Z, Reid LM. 2023. A postnatal network of co-hepato/pancreatic stem/progenitors in the biliary trees of pigs and humans. npj Regen Med 8:40.
- Zhao L, Li X, Ji C, Rong X, Liu S, Zhang J, Ma Q. 2016. Protective effect of *Devosia* sp. ANSB714 on growth performance, serum chemistry, immunity function and residues in kidneys of mice exposed to deoxynivalenol. Food Chem Toxicol 92:143-149.
- Zhao L, Zhang L, Xu Z, Liu X, Chen L, Dai J, Karrow NA, Sun L. 2021. Occurrence of Aflatoxin B₁, deoxynivalenol and zearalenone in feeds in China during 2018–2020. J Anim Sci Biotechnol 12:74.
- Zhu Y, Hassan YI, Watts C, Zhou T. 2016. Innovative technologies for the mitigation of mycotoxins in animal feed and ingredients: A review of recent patents. Anim Feed Sci Technol 216:19-29.