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Effective Strategies for Understanding Meat Flavor: 
A Review 

Min Kyung Park and Yun-Sang Choi* 

Food Processing Research Group, Korea Food Research Institute, Wanju 55365, 
Korea 

Abstract  This review provides an effective strategy for understanding meat flavor. 
Understanding the taste of meat is essential for improving meat quality, and the taste should 
be analyzed based on complex chemical research to identify various factors that impact the 
composition, formation, and development of meat. To address flavor chemistry in meat, the 
discussion focuses on the major compounds responsible for the characteristic flavors of 
different meats, such as lipids, proteins, and Maillard reaction products. Meat flavor is 
largely based on heat-induced chemical reactions that convert flavor precursors, such as 
sugars, proteins, and lipids, into volatile compounds. The flavor of meat is influenced by 
animal species, sex, age, feed, and processing, and in this respect, flavor is one of the 
representative quality indicators of meat. Research on meat flavor uses omics technology to 
study the molecular mechanisms that affect meat quality, including flavor, tenderness, and 
fat composition. Therefore, this review provides a comprehensive understanding of the 
complex processes governing meat flavor and provides avenues for further research and 
industrial applications to advance the meat industry. 
  
Keywords  meat flavor, flavor chemistry, flavor factor, flavor analysis, omics  

Introduction 

Meat flavor is a multidimensional sensory attribute that substantially influences 

consumer preference and the overall perception of meat quality (de Araújo et al., 2022). 

It is shaped by a complex interplay between various volatile and non-volatile compounds 

formed during meat processing, cooking, and storage (Vilar et al., 2022). Key contributors 

to meat flavor include Maillard reaction products (MRPs), lipid oxidation products, and 

an array of amino acids, peptides, and nucleotides (Ramalingam et al., 2019; Sun et al., 

2022). These compounds interact to create distinct aromas, tastes, and overall flavor 

characteristics that distinguish different types of meat and determine their acceptability 

to consumers (Dashdorj et al., 2015). 

The Maillard reaction, which occurs between reducing sugars and amino acids 

during cooking, is particularly important for the development of characteristic browned  
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flavors in cooked meat (Li et al., 2021). The products of this generate a myriad of volatile compounds, such as aldehydes, 

ketones, and pyrazines, which contribute to desirable roasted and savory notes (Mottram, 1998). In addition, lipid oxidation, 

which involves the breakdown of fats, results in the formation of compounds such as aldehydes, hydrocarbons, and alcohols, 

which add to the complexity of meat flavor (Fu et al., 2022).  

Different cooking and aging methods, as well as meat processing techniques, can markedly affect meat flavor (Khan et al., 

2015). Marination, curing, cooking, and smoking can also produce compounds that chemically impart a distinctive flavor 

(Smith and Acton, 2001). Even from the same carcass, meat cuts can substantially impact the formation of flavor compounds 

in meat (Wood, 2020), and this is influenced by the protein, fat, and moisture content of the meat, which in turn affects the 

flavor profile (Thu, 2006; Van Ba et al., 2012). 

Recent advancements in analytical techniques, such as gas chromatography-mass spectrometry (GC-MS) and high-

performance liquid chromatography (HPLC), have greatly enhanced our ability to identify and quantify flavoring compounds 

(Bubli et al., 2021; Wei et al., 2019). These technologies allow the precise analysis of both volatile and non-volatile 

constituents of meat, providing detailed profiles of the flavor compounds present (Vilar et al., 2022). By understanding the 

composition and concentration of these compounds, researchers and industry professionals can improve meat quality and 

enhance consumer satisfaction. 

Multi-omics approaches in meat flavor research integrate genomics, transcriptomics, proteomics, and metabolomics to 

comprehensively understand the molecular mechanisms underlying flavor formation. This holistic method enables the 

identification of key flavor-related genes, proteins, and metabolites, as well as their interactions and regulatory pathways. By 

providing insights into how factors like breed, diet, and processing influence flavor, multi-omics enhances precision in flavor 

optimization and supports targeted breeding and processing strategies.  

The objective of this review was to effectively clarify meat flavor and contribute to the advancement of the meat industry 

based on a deeper understanding of meat flavor dynamics. Understanding the principles of various chemical reactions that 

contribute to meat flavor, along with the variables that differentiate meat flavors and molecular-level flavor component analysis 

techniques, can maximize the potential of meat’s flavor profile. In particular, unlike existing reviews that primarily focus on 

flavor-inducing components and their formation mechanisms at the molecular level derived from processing technologies (Xu et 

al., 2023) or the nutritional composition of meat (Fu et al., 2022; Khan et al., 2015), this review expands to an interpretation 

using holistic information about organisms, such as genome, transcriptome, proteome, lipidome, and metabolome, that may 

influence flavor. This comprehensive approach could provide bridge molecular insights with systems-level understanding, 

paving the way for innovative strategies to enhance meat flavor in both research and industry applications. 

 

Flavor Chemistry in Meat and Meat Products 

In general, raw meat has few flavor properties but a slightly smelly and blood-like taste (Van Ba et al., 2012), however, it 

contains abundant flavor precursors, including sugars, proteins, and lipids, which contribute to its meaty flavor. The well-

recognized flavor of meat is primarily attributed to volatile compounds generated upon heat treatment. During heat processing, 

the abundant precursors in meat undergo various chemical reactions, breaking down into smaller molecules (Landy et al., 1996) 

or undergoing oxidation processes (Kanner, 1994), transforming into volatile compounds with low molecular weights and flavor 

properties. These molecular changes include several multiple reactions derived from heat treatment: the Maillard reaction, 

Strecker degradation, lipid degradation, and thiamine and ribonucleotide degradation. Fig. 1 illustrates the process of meat 
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flavor formation, along with its precursors and the primary thermal reactions involved. 

 

Maillard reaction 
The Maillard reaction plays a crucial role in the formation of the unique flavor and color of meat. This nonenzymatic 

browning reaction occurs between reducing sugars and amino acids, producing various volatile flavor compounds that are 

essential to the sensory properties of cooked meat. Diverse volatile compounds, such as aldehydes, alcohols, ketones, furans, 

and their derivatives, including pyrrole, pyridine, pyrazine, thiophene, and sulfides, are generated during thermal processing 

(Chen et al., 2019; Sun et al., 2021; Yu et al., 2020). The Maillard reaction is not limited to simple sugars and amino acids 

and can also involve peptides. The involvement of food-derived peptides in the Maillard reaction produces MRPs that 

Fig. 1. A simple overview of the formation of flavor compounds in meat. 
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enhance meat flavor. Peptides with molecular weights ranging from 1,000 to 5,000 Da induce flavor-enhancing effects 

through the Maillard reaction (Fu et al., 2020). These MRPs are crucial for generating the umami taste and contribute to the 

overall palatability of meat (Kang et al., 2019).  

Notably, the colors, yields, and types of flavor compounds produced are determined by the specific conditions under which 

the Maillard reaction occurs, such as temperature, pH, and humidity (Ribeiro et al., 2024; Starowicz and Zieliński, 2019; Wei 

et al., 2019). The reaction proceeds through three stages: the formation of early glycation products, their degradation, and the 

generation of flavor compounds such as pyrazines and thiophenes, which contribute heavily to the characteristic meat flavor 

(Starowicz and Zieliński, 2019). The distinctive meat flavor produced by the Maillard reaction is influenced by the presence 

of specific precursors such as cysteine, ribose, and lysine, which produce sulfur- and nitrogen-containing compounds (Raza et 

al., 2020; Wang et al., 2012b; Zhang et al., 2023b; Zhu et al., 2018). Glutathione, a tripeptide containing glutamate, cysteine, 

and glycine, forms sulfur-containing volatile compounds by cleaving peptide bonds during thermal processing. It generates 

important precursors of meat flavors, such as pyroglutamic acid and cyclic dipeptides (Wang et al., 2012b). The Maillard 

reaction is closely linked to lipid oxidation in cooked meat (Liu et al., 2024a; Mottram and Elmore, 2005; Zamora and 

Hidalgo, 2011). The interaction between these two processes enhances the complexity of the meat flavor profile because 

volatile compounds derived from lipid oxidation react with Maillard reaction intermediates. This generates heterocyclic 

compounds containing nitrogen and sulfur, which are important for the formation of cooked meat aroma. 

The Maillard reaction also influences the color of cooked meat. The final stage of the reaction leads to the formation of 

melanoidins, brown polymers that markedly influence the visual appeal of meat products (Murata, 2021). The dark brown 

color associated with these polymers is often perceived as an indicator of a more intense flavor, making it a desirable quality 

for many meat products. Higher temperatures generally accelerate the reaction, leading to more intense flavor formation and 

darker color in the meat (Bekhit et al., 2019; Kong and Singh, 2016). In addition to flavor and color, the Maillard reaction 

also impacts meat texture (Starowicz and Zieliński, 2019; Sun et al., 2010). Cross-linking of proteins and other compounds 

during the reaction can influence meat tenderness, with high levels of MRPs contributing to a firmer texture (Renzone et al., 

2022; Sulaiman et al., 2022).  

 

Thermal degradation of carbohydrates 
Carbohydrate degradation plays a pivotal role in the formation of flavor compounds in meat. During the cooking process, 

carbohydrates, including pentoses and hexoses, are degraded through thermal reactions, such as the Maillard reaction, 

caramelization, and pyrolysis. Caramelization occurs at high temperatures (above melting temperatures of sugars) and converts 

sugars into compounds such as furfural and hydroxymethylfurfural, which are key contributors to flavor formation (Suleman 

et al., 2020). These intermediates can be further broken down into aromatic compounds, such as furans, which impart 

characteristic meat-like aromas. Chang et al. (2021) proposed a method for improving chicken flavor using a sugar-smoking 

technique. The authors primarily detected a notable increase in compounds such as furfural, 5-methyl-2-furancarboxaldehyde, 

2-acetyl-5-methylfuran, and 1-(2-furanyl)-ethanone, known products of caramelization and the Maillard reaction. Pyrolysis 

also occurs upon exposure to high temperatures, leading to the production of various volatile compounds such as alcohols, 

aldehydes, and hydrocarbons. Sugars, particularly riboses from nucleotides, undergo degradation to form 5-methyl-4-

hydroxyfuranone, a compound with a robust meat flavor (Begum et al., 2019). This process also releases hydrogen sulfide, 

which reacts with other flavor precursors to enhance the meat-like aroma (Shibamoto and Russell, 1976). The interaction 

between sugar degradation and the Maillard reaction, in which sugars react with amino acids, is another key pathway in the 
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production of complex flavor compounds. This reaction generates volatile sulfur compounds such as thiophenes and 

thiazoles, which contribute to the toasted and roasted flavors typical of cooked meat (Shibamoto and Russell, 1976). In 

summary, the combination of carbohydrate degradation, the Maillard reaction, and the breakdown of other precursors, such as 

amino acids, thiamine, and nucleotides, results in a diverse and complex flavor profile associated with meat. 

 

Strecker degradation of amino acids 
Strecker degradation is a chemical reaction that occurs when amino acids are degraded in the presence of dicarbonyl 

compounds produced during the Maillard reaction. This results in the formation of Strecker aldehydes, which are key 

contributors to the aroma of cooked meat (Chen et al., 2024). The interaction of Strecker degradation products with Maillard 

reaction intermediates leads to the formation of heterocyclic compounds, such as pyrazines, which further enhance the 

roasted flavor profile of cooked meat (Sohail et al., 2022). These interactions are crucial for generating the complex flavors 

associated with high-temperature cooking. Strecker degradation also produces sulfur-containing compounds, such as 

methanethiol and dimethyl disulfide, which are formed through the breakdown of methionine (Cerny, 2015; Schutte and 

Teranishi, 1974). Strecker degradation of sulfur-containing amino acids, such as cysteine and methionine, is particularly 

important in the formation of meaty and roasted flavors. These reactions produce volatile sulfur compounds that have a low 

odor threshold and strongly influence the aroma profile of cooked meat. Aldehydes generated from branched-chain amino 

acids, such as 2-methylbutanal and 3-methylbutanal, contribute to fruity and malty notes and add complexity to the flavor of 

meat (Wojtasik-Kalinowska et al., 2024). Strecker degradation is closely linked to lipid oxidation in meat. Lipid oxidation 

products can interact with Strecker intermediates, enhancing the development of flavor compounds such as aldehydes, which 

contribute to the overall sensory experience of cooked meat (Roldan et al., 2014; Utama et al., 2018). 

 

Lipid oxidation and degradation 
In meat, fatty acids undergo oxidation, particularly at high temperatures, resulting in the formation of various volatile 

flavor compounds, such as aldehydes, ketones, and alcohols, which contribute to the overall flavor profile of cooked meat. 

During the heating process, phospholipids and triglycerides in meat undergo degradation, releasing short-chain fatty acids 

(Ren et al., 2024). These fatty acids are further oxidized to produce hydroperoxides, which can decompose into volatile 

compounds and enhance the aroma of cooked meat (Rasinska et al., 2019). The interaction between lipid oxidation products 

and MRPs is also essential for generating the complex flavor of cooked meat. Phospholipids play a pivotal role in these 

interactions, contributing to the formation of volatile compounds crucial for meat flavor (Cheng et al., 2024; Mottram and 

Edwards, 1983). Unsaturated fatty acids are particularly prone to oxidation, leading to the production of volatile compounds 

that can either enhance or degrade meat flavor depending on the degree of oxidation. Linoleic acid (C18:2n-6) and 

arachidonic acid (C20:4n-6) are easily oxidized, leading to the formation of volatile compounds, such as hexanal and 1-octen-

3-ol, which are considered off-flavors in meat products (Yu et al., 2024). 

To preserve meat quality, it is necessary to control lipid oxidation, which includes the use of antioxidants (Smet et al., 

2008) and the maintenance of low temperatures (Soyer et al., 2010) during storage and cooking. Among the methods to 

inhibit lipid oxidation, freezing is effective in delaying irreversible biochemical reaction in meat, such as phospholipid 

oxidation and the generation of toxic compounds including malondialdehyde and cholesterol oxidation products (Soyer et al., 

2010). These strategies help preserve meat flavor and extend its shelf life.  
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Thiamine and ribonucleotide degradation 
Thiamine (vitamin B1) is a bicyclic structure containing sulfur and nitrogen atoms, producing sulfur or nitrogen-containing 

heterocyclic compounds, such as furans, pyrimidines, thiols, thiazoles, sulfides, and disulfides (Brehm et al., 2019; Dwivedi 

and Arnold, 1973; Grosch, 2001). One important product is 4-methyl-5-(2-hydroxyethyl)thiazole, which is further degraded 

into various types of thiazoles. Specifically, it forms compounds such as 2-methyl-3-furanthiol and bis(2-methyl-3-furyl) 

disulfide, both of which are associated with strong meat flavors (Tang et al., 2013). Additionally, 2-acetylthiophene (toasty) 

and 2-formyl-5-methylthiophene (meaty) contribute to the flavor complexity of cooked meat (Feng et al., 2018). These 

volatile compounds derived from thiamine degradation were selected as representative compounds of the characteristic aroma 

of pork, which is rich in thiamine precursors (Han et al., 2021). 

Nucleotide degradation, particularly of inosine monophosphate (IMP), is a key contributor to meat flavor, imparting 

characteristic umami and brothy flavors to meats such as pork and chicken (Yang et al., 2020; Zhang et al., 2018). The 

process through which the nucleotide adenosine monophosphate is broken down into IMP and hypoxanthine is responsible 

for changes in flavor during meat maturation, changing from a savory to a slightly bitter flavor with increasing hypoxanthine 

levels (Ichimura et al., 2017). The increase of hypoxanthine content (under 7.0 μmol/g in sample) has been reported to positively 

influence the taste of cured meat (Ichimura et al., 2017). The Maillard reaction, which involves ribose and amino acids from 

nucleotide degradation, also plays a role in producing sulfur-containing flavor compounds that contribute to the meaty aroma. 

The addition of IMP to beef at ten times its natural concentration increased the production of thiols and disulfides containing 

furan groups, which are key compounds that contribute to the aroma of meat (Ichimura et al., 2017). 

 

Factors Influencing the Flavor of Meat 

Meat flavor, a representative indicator of meat quality, is affected by animal species, sex, age, feed, and processing. The 

effects of these factors on meat flavor are described in Table 1. Animal species possess unique flavors owing to differences in 

their carcass composition, including protein, fat, and moisture. Meat flavor can be influenced by factors such as total fat, 

intramuscular fat, and fatty acid composition. Fat levels impact the fatty acid profile of meat, as greater fat accumulation 

tends to increase the amounts of saturated and monounsaturated fatty acids more rapidly, thereby reducing the relative 

proportions of polyunsaturated fatty acids and the polyunsaturated/saturated ratio (De Smet et al., 2004). Van Ba et al. (2013) 

concluded that the breed (e.g., Hanwoo versus Angus) could considerably impact the physicochemical quality, sensory 

characteristics, and content of volatile flavor compounds in meat. 

Additionally, the impact of animal sex on meat flavor has been well documented. Gorraiz et al. (2002) reported that 

Pirenaica and Friesian bulls and heifers demonstrated notable differences in volatile compounds, odors, and flavors. After 

cooking, bull beef had a bloody flavor that was linked to a high 2-propanone content, along with a more pronounced liver-

like odor and flavor, whereas heifer beef exhibited a robust characteristic flavor. The differences in juiciness and flavor 

intensity between male and female lambs could be attributed to variations in intramuscular fat, which plays a major role in the 

development of aroma and flavor in meat (Brennand and Lindsay, 1992). 

The age of an animal can markedly impact flavor, resulting in a distinctive aroma or poor quality as it ages (Fry et al., 

1958). Khan et al. (2015) reported that age impacts collagen solubility in the muscle and increases flavor intensity, with older 

animals possessing higher levels of straight-chain fatty acids. Foraker et al. (2020) found that animal age affects flavor and 

also influences overall taste in meat quality. 
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Animal feed is a notable cost factor in livestock production, and the type of feed plays a crucial role in determining carcass 

conformation and the physicochemical and organoleptic characteristics of meat, such as proximate composition, fatty acid 

profile, tenderness, and color (Andersen et al., 2005; Dinh et al., 2021; Wood et al., 2008). Feed systems affect carcass 

composition and fattening, which can affect meat flavor (Watkins et al., 2013). Young et al. (1997) reported that feed type 

affected the fatty acid composition of meat. Additionally, the authors detected the presence of volatile compounds such as 

terpenes and diterpenoids in pasture-raised lambs. Grain-finished animals also possess high concentrations of short-branched-

chain fatty acids, which are associated with the “mutton” aroma of cooked sheep meat (Young et al., 2003). According to 

Melton (1990), high-energy grain diets produced more acceptable or more intense flavors in red meat than low-energy forage 

or grass diets, and that flavor changes were greater in beef than in pork as unsaturation in the diet increased. 

The meat processing process can also impart a unique flavor, and various technologies have been developed to enhance 

this flavor. Curing, aging, cooking, and smoking are used to impart or enhance meat flavor. Wang et al. (2012a) showed that 

decreasing the level of curing salt increased the formation of flavor-active volatiles in dry-cured turkey ham. Jia et al. (2024) 

reported that the addition of salt and nitrates/nitrites for meat curing was associated with the color and flavor of cured meat. 

Dou et al. (2022) reported that aging can improve meat flavor by increasing the amount of flavor compounds through 

enzymatic action, thereby enhancing the amount of volatile compounds. Liu et al. (2024b) detected the presence of 62 volatile 

flavor compounds during the dry-aging period, and the contents of Strecker aldehydes (2-methyl-butanal and 3-methyl-

butanal), acids, heterocyclic compounds, and ethyl acetate increased with increasing dry-aging time. Zhu et al. (2019) 

reported that cooking enhances the flavor of meat owing to its effects on the amounts of free amino acids, carnosine, 

pyrazine, and hexanol. Guo et al. (2021) found that wood-smoked bacon had stronger smoke and fat aromas than liquid-

smoked bacon, and aldehydes were the most abundant compound groups. Begic et al. (2022) detected a positive correlation 

between the contents of phenols and hydrocarbons, alcohols, ketones, esters and lactones, terpenes, aromatic hydrocarbons, 

and acids in dry-smoked goat meat using principal component analysis. Therefore, the meat processing process can increase 

Table 1. Analysis of factors influencing meat flavor 

Factors Influencing meat flavor References 

Animal species Animal species have a unique flavor due to differences in protein and fat 
content. 

Dinh et al. (2021); Park et al. (2024) 

Animal sex Differences in intracutaneous and subcutaneous fat between the sexes of 
animals may influence flavor-related compounds. 

Jayasena et al. (2014); Khan et al. (2015); 
Lorenzo et al. (2013) 

Animal age Animal age affects intramuscular collagen solubility and fatty acid 
composition, affecting flavor. 

Jaborek et al. (2020) 

Animal feed Animal feed affects flavor by changing the fatty acid composition and 
meat composition. 

Wood et al. (2008) 

Processing (curing, 
aging, cooking, and 
smoking) 

Curing produces desirable flavors by chemical reactions of proteins and 
fats with salt and nitrite. 

Martin, (2001);  
Ramarathnam and Rubin (1994) 

Aging enhances the flavor of meat by increasing the amount of flavor 
compounds via enzymatic action or by increasing the amount of volatile 
compounds derived from fatty acid degradation. 

Dou et al. (2022); Liu et al. (2024a) 

Cooking enhances the flavor of meat by impacting the amount of free 
amino acids, carnosine, pyrazine, and hexanol. Cooking also induces the 
oxidation of lipids contained in meat to form flavor. 

Khan et al. (2015); Lorenzen et al. 
(2005); Zhu et al. (2019) 

Smoking affects the satisfactory flavor of meat owing to the influence of 
phenols, alcohols, methyl ketones, and esters. 

Guo et al. (2021); Van Ba et al. (2012)
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the amount of volatile compounds to impart a unique flavor to meat, and the mechanism for producing flavor components can 

also change depending on the processing process method. 

 

Techniques for Identifying Flavor Compounds in Meat 

Extraction and analysis of odor-active volatile compounds in meat 
The components that contribute to the flavor and aroma of meat are highly dynamic and diverse, making it advisable to 

apply strategies and techniques tailored to the specific research objectives (Fig. 2). Volatile compounds are organic chemicals 

that easily evaporate and release distinct odors, which are commonly found in plants, fruits, and essential oils. These 

compounds play crucial roles in determining the aroma and flavor profiles of foods, beverages, and perfumes (Chambers and 

Koppel, 2013; Guichard, 2002). They are highly reactive and unstable; therefore, various factors, such as temperature, 

extraction time, and interaction with the matrix, must be considered when extracting volatile compounds from food (Madruga 

et al., 2009; Wagner and Franco, 2012). Food flavor analysis is typically performed to separate individual volatile compounds 

from the food matrix based on their physicochemical properties while simultaneously gathering the entire set of volatile 

compounds. It can efficiently extract volatile compounds from foods using the chemical properties of solvents; however, it 

has high selectivity owing to the affinity between the compounds and the solvent. Recently, there has been an increasing 

preference for extraction methods that avoid the use of organic solvents or employ nonthermal techniques. 

Steam distillation is a typical extraction process, in which steam is used to separate volatile compounds from a liquid 

matrix at low temperatures. Simultaneous distillation extraction combines steam and solvent extraction and is an important 

extraction method for isolating 3-methylindole and p-cresol, which are crucial to the ‘pastoral’ flavor characteristics of lamb 

(Schreurs et al., 2007). Solvent-assisted flavor evaporation is a gentle technique that operates at low temperatures and high 

vacuum, preserving sensitive compounds during extraction. It can be used for flavor extraction from milk, raw meat, and ham 

Fig. 2. Analytical methods for assessing meat flavor. 
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(Colahan-Sederstrom and Peterson, 2005; Liu et al., 2022); however, it is a time-consuming and laborious process. Solid-

phase microextraction (SPME) involves exposing a fiber coated with an adsorbent to the sample or headspace to capture 

volatile compounds. This technique is preferred for flavor analysis owing to its simple extraction process, cost-effectiveness, 

solvent-free nature, and high sensitivity. SPME is an effective extraction method capable of identifying volatile compounds 

in various meat products, as demonstrated in a previous study that compared volatile compound extraction from beef and 

lamb fats (Watkins et al., 2012). Stir-bar sorptive extraction (SBSE) uses a coated stir bar to absorb volatile compounds from 

a sample in the absence of solvents. SBSE has an extraction phase that is 50–250 times larger than that of SPME 

(Ngamchuachit et al., 2020), resulting in enhanced extraction capabilities, and is used to extract volatile compounds from 

various meat products (Benet et al., 2015; Ngamchuachit et al., 2020). 

Mass spectrometry (MS) is a typical analytical method for volatile flavor compound analysis owing to its ability to provide 

detailed chemical identification and quantification of individual compounds. Coupled with GC-MS, MS facilitates the precise 

separation and detection of complex volatile compound mixtures. Liquid chromatography-MS (LC-MS) is well suited for in-

depth flavor analysis, enabling the identification of semi- or non-volatile compound profiles in foods. To identify key flavor 

compounds and elucidate the mechanism of flavor formation in foods, it is important to identify the composition of volatile 

and non-volatile compounds. Kang et al. (2024) investigated key volatile and non-volatile metabolites and their metabolic 

pathways using GC-MS and LC-MS to determine the molecular regulatory mechanisms and support molecular breeding for 

yak meat flavor formation. In addition, Zhang et al. (2025) provided a rapid LC-MS/MS method to detect livestock species in 

meat products. 

The electronic nose (E-nose) mimics human olfactory senses by using an array of sensors to detect volatile compounds 

based on patterns, although it cannot identify individual compounds. It is used for the rapid classification and comparison of 

aroma profiles, particularly for quality control and differentiation of products. Similarly, the electronic tongue (E-tongue) 

assesses flavor attributes, such as sweetness, bitterness, and umami, using sensors that detect taste-related chemicals in 

liquids. These electronic sensory devices can be used to determine the freshness of meat samples (Chotimah et al., 2024), 

provide indicators to distinguish their origin (Yuan et al., 2024), or yield information regarding unique flavor characteristics 

depending on the muscle type (Zhou et al., 2024). 

Gas chromatography-olfactometry (GC-O) combines chemical analysis with sensory evaluation; human panelists sniff the 

GC effluent to identify odor-active compounds. GC-O is particularly useful for detecting specific compounds that contribute 

the most to the overall aroma or flavor of a product. Determination of odor-active compounds involves sensory and chemical 

techniques, including aroma extract dilution analysis (AEDA) and time-intensity methods. In AEDA, flavor extracts are 

diluted in a stepwise manner, and panelists evaluate each dilution for aroma, allowing identification of the most potent odor-

active compounds based on their detection at higher dilutions. The time-intensity method records the perception of an aroma 

over time, providing insight into the duration and intensity of the impact of an odor-active compound. To quantify the 

contribution of these compounds, the odor activity value (OAV) is calculated by dividing the concentration of each 

compound by its odor threshold (the concentration at which it can be perceived). Compounds with an OAV greater than one 

are considered to substantially contribute to the overall aroma. The identification of odor-active compounds in meat not only 

provides crucial indicators for the sensory perception of meat flavor but also provides essential information for recreating its 

aroma (Nie et al., 2024; Pu et al., 2020; Wang et al., 2022). These methods allow researchers to prioritize compounds not 

only by presence but also by their sensory relevance, combining chemical data with human perception to effectively identify 

the compounds that define a product’s aroma profile. This approach ensures that both potency and perceptibility are 
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considered in flavor analysis. 

 

Omics technology 
Recent advances in high-throughput sequencing technologies, particularly genomics, transcriptomics, proteomics, and 

metabolomics, have enabled a comprehensive understanding of meat quality and taste at the molecular level (Table 2). These 

omics technologies are employed to explore the genetic, protein, and metabolic contributions to meat quality. Genomic 

studies have focused on identifying genes related to economically important traits such as tenderness, fat deposition, and meat 

color (Arikawa et al., 2024; Marín-Garzón et al., 2021). Advanced sequencing tools, such as long-read sequencing (Liu et al., 

2024c) and combination with artificial ingelligence (Hamadani et al., 2022), have made it easier to investigate the role of 

these genes in improving meat quality. Long-read sequencing is a technology developed to overcome the limitations of NGS 

(Next-Generation Sequencing), which struggles with errors in genome assembly and difficulties in decoding repetitive 

regions due to its short read lengths. It leverages the advantages of TGS (Third-Generation Sequencing), including long read 

lengths, real-time base sequencing, and the ability to directly sequence DNA/RNA without PCR amplification. TGS offers 

significant advantages in livestock research by enabling the detection of rare genes, structural variations, and transcriptional 

complexity, while facilitating superior breeding, genetic reproduction, and epigenetic analysis through its long reads, real-

time sequencing, and reduced bioinformatics costs. 

Research on meat flavor using transcriptome analysis contributes to improving the taste and quality of meat by uncovering 

various gene expression patterns and metabolic pathways. Transcriptomics, which focuses on gene expression profiles, has 

revealed the influence of genes on fat accumulation, muscle development, and tenderness (Bongiorni et al., 2016; Wang et 

al., 2024). These data help us understand how feeding management and other factors affect meat quality at the genetic level. 

Studies using transcriptomic approaches to investigate the molecular basis of beef quality highlight the strengths of high-

throughput transcriptomics as a more sensitive and accurate analytical method for comprehensively exploring the transcriptional 

landscape of biological systems (Wang et al., 2009). 

Molecular-level research, including proteomics, lipidomics, and metabolomics, can integrate data obtained from various 

biological layers, advancing meat quality and flavor studies in a more precise and practical direction. Proteomics is a 

technology that analyzes protein expression, modifications (e.g., phosphorylation, glycosylation), and interactions to identify 

their functional roles, making it highly useful for meat quality analysis. Proteomics is used to investigate how proteins 

influence meat quality, particularly how they change during the pre- and post-slaughter phases (Kim et al., 2021; Lamri et al., 

2023). Proteomics has also revealed the impact of various factors, such as animal breed, on protein expression profiles in 

meat (Luca et al., 2022). Lipidomics comprehensively analyzes lipid metabolites, including studies on fatty acid composition 

and lipid metabolic pathways. It is particularly important for evaluating fat accumulation and its impact on meat flavor and 

juiciness (Guo et al., 2022; Zhang et al., 2023a). Lipid metabolism plays a pivotal role in determining the organoleptic 

properties of meat, including its taste and texture (Ramalingam et al., 2019). Finally, metabolomics aims to quantify and 

qualitatively analyze the end products of metabolism to interpret biochemical pathways. Metabolomics focuses on small 

molecules and metabolites involved in real-time changes in meat quality. Based on the metabolic approach, biochemical 

processes such as lipid oxidation and glycolysis contribute to the flavor and tenderness of meat (Jia et al., 2021; Tamura et al., 

2022; Yu et al., 2024).  

Multi-omics approaches integrate different omics platforms to provide deeper insights into the molecular mechanisms 

responsible for meat quality. This integration facilitates the identification of biomarkers related to taste, texture, and other  
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Table 2. Analysis of recent studies to identify trends in meat flavor analysis methods 

Keywords Samples Extraction Instrument Analytical method References 

Flavor 
extraction 

Chicken, pork, duck, 
beef, mutton meat 

HS-SPME GC-MS Volatile profiling 
Multivariate analysis 

(PCA, PLS_DA,  
OPLS-DA) 

Yu et al. (2025) 

Beef, raw ham, baked 
ham, pork sausage, and 

chicken meat 

HS-SPME GC-MS Volatile profiling 
Multivariate analysis 

(PCA) 

Acquaticci et al.  
(2024) 

Dry-cured ham Headspace sorptive 
extraction, DHE 

GC-MS Volatile profiling 
Multivariate analysis 

(PCA) 

Segura-Borrego et al. 
(2023) 

Grilled chicken DHE, SBSE GC-O/MS Volatile profiling, 
olfactory detection 

Ngamchuachit et al. 
(2020) 

Dry-rendered beef fat SAFE GC-MS, GC-O Odor-active compounds 
identifying 

Yang et al. (2023b) 

Jinhua ham SAFE, SPME, needle 
trap 

GC–TOF/MS Odor-active compounds 
identifying 

Liu et al. (2022) 

Electronic 
sensor 

Vacuum-packaged 
chicken meat 

Headspace extraction Electronic nose Discrimination of 
freshness 

Chotimah et al. (2024)

Yak jerky Headspace extraction, 
aqueous solution 

Electronic 
nose/tongue,  

GC-IMS 

Flavor profiling and 
discrimination model 

Zhou et al. (2024) 

Sauced pork Headspace extraction, 
aqueous solution 

Electronic 
nose/tongue,  

GC-MS, GC-IMS

Discrimination of 
different regions 

Yuan et al. (2024) 

Omics 
technologies 

Beef cattle - - Genomics Arikawa et al. (2024)

Pork meat - - Transcriptomics Wang et al. (2024) 

Broiler chicken breast 2% SDS buffer HPLC-MS/MS Proteomics Yang et al. (2023a) 

Beef meat Acid hydrolysis, SE 
(cold acetone) 

LC-MS/MS Proteomics Kim et al. (2021) 

Chicken meat LLE 
(chloroform/methanol)

UPLC-ESI-MS Lipidomics Zhang et al. (2023a) 

Dry-cured mutton ham Solvent extraction UPLC-MS/MS Lipidomics Guo et al. (2022) 

Meat exudate LLE  
(cold methanol/water)

UHPLC-MS/MS Metabolomics Yu et al. (2024) 

Goat meat LLE 
(methanol/acetonitrile/

water) 

UHPLC-Q-Orbitrap-
MS 

Metabolomics Jia et al. (2021) 

Aged pork LLE 
(methanol/chloroform/

water) 

GC-TOF/MS Metabolomics Tamura et al. (2022)

Roasted quail meat SAFE, LLE 
(chloroform/methanol)

GC-O/MS,  
HPLC-HRMS 

Lipidomics and 
volatilomics 

Liu et al. (2024a) 

Pork cuts Headspace extraction, 
LLE 

(chloroform/methanol)

GC×GC-TOF/MS, 
LC-MS/MS 

VOC, lipidomics and 
transcriptome 

Zhang et al. (2025) 

Xinjiang brown beef Headspace extraction, 
SE (methanol) 

GC×GC-TOF/MS, 
LC-MS 

Metabolomics and 
transcriptomics 

Ma et al. (2024) 
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sensory attributes. Multi-omics approaches have also been applied to study food fraud and the authenticity of meat products. 

Comprehensive strategies are particularly useful for detecting species-specific markers that can reveal the adulteration of 

meat products (Liu et al., 2024d; Ma et al., 2024; Zhang et al., 2025). Proteomics and metabolomics can be to uncover 

regulatory connections between proteins and metabolites, while metabolomics and transcriptomics has primarily explored 

how fat deposition can be controlled and tenderness of meat is enhanced though the involvement of various genes and 

signaling pathways. According to research on beef quality (Ma et al., 2024), intramuscular fat is a key factor in determining 

beef quality. Through integrated omics approach, including metabolomics and trasncriptomics, it was revealed that the 

composition of flavor compounds significantly differed based on the contents of intramuscular fat and identified major genes 

associated with this variation. In meat science, omics research involves improving the accuracy and efficiency of these 

technologies, which includes optimizing bioinformatic tools and expanding existing databases to better predict and control 

meat quality. 

 

Conclusion 

This review provides insights into effective strategies for understanding meat flavors. The strategic presentation of meat 

flavor, the most important factor affecting meat quality, could be a cornerstone in advancing the meat industry. Meat flavor is 

primarily developed through heat-induced chemical reactions that transform flavor precursors such as sugars, proteins, and 

lipids into volatile compounds. These reactions, including the Maillard reaction and lipid degradation, contribute to the 

complex flavor profile of cooked meat. Meat flavor is influenced by factors such as species, sex, age, feed, and processing, 

which affect its physicochemical, sensory, and volatile compound characteristics. Processing methods like curing, aging, 

cooking, and smoking enhance flavor by altering volatile compounds and flavor precursors. Volatile compounds, essential for 

aroma and flavor, are extracted using methods like steam distillation, SPME, and SBSE, with analysis often conducted via 

GC-MS or LC-MS for detailed profiling. Advanced techniques, including electronic noses and GC-O, integrate sensory and 

chemical data to identify key odor-active compounds and their contributions to food flavors. Omic technologies, including 

genomics, proteomics, and metabolomics, offer comprehensive insights into the molecular mechanisms that influence meat 

quality, such as flavor, tenderness, and fat composition. This review was aimed at overcoming this situation and providing 

insights into the development of the meat industry, thereby contributing to its development of the meat industry. 

Table 2. Analysis of recent studies to identify trends in meat flavor analysis methods (continued)

Keywords Samples Extraction Instrument Analytical method References 

Sensory test Chicken broth HS-SPME, SAFE GC-O/MS AEDA Nie et al. (2024) 

Beef flavoring SPME, DHS, LLE SGC×GC-O/MS, 
sensory test 

AEDA, OAV Wang et al. (2022) 

Smoked cured pork 
meat 

SDE GC-MS, GC-O/MS, 
sensory test 

AEDA, OAV Pu et al. (2020) 

HS-SPME, headspace-solid phase microextraction; DHE, dynamic headspace extraction; SBSE, stir bar sorptive extraction; SAFE, solvent-assisted 
flavor extraction; SE, solvent extraction; LLE, liquid-liquid extraction; SDE, simultaneous distillation and extraction; GC-MS, gas chromatography-
mass spectrometry; GC-O, gas chromatography-olfactometry; GC-TOF/MS, gas chromatography-time of flight-mass spectrometry; GC-IMS, gas 
chromatography-ion mobility spectrometry; LC-MS, liquid chromatography-mass spectrometry; UPLC-ESI-MS, ultra-performance liquid 
chromatography-electrospray ionization-mass spectrometry; SGC×GC-O/MS, switchable two-dimensional gas chromatography-olfactometry-mass 
spectrometry; PCA, principal component analysis; PLS-DA, partial least squares-discriminant analysis; OPLS-DA, orthogonal partial least squares 
discriminant analysis; AEDA, aroma extract dilution analysis; OAV, odor activity values. 
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