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Optimizing Food Processing through a New 
Approach to Response Surface Methodology  

Sungsue Rheem* 

Division of Big Data Science, Korea University, Sejong 30019, Korea 

Abstract In a previous study, ‘response surface methodology (RSM) using a fullest 
balanced model’ was proposed to improve the optimization of food processing when a 
standard second-order model has a significant lack of fit. However, that methodology can 
be used when each factor of the experimental design has five levels. In response surface 
experiments for optimization, not only five-level designs, but also three-level designs are 
used. Therefore, the present study aimed to improve the optimization of food processing 
when the experimental factors have three levels through a new approach to RSM. This 
approach employs three-step modeling based on a second-order model, a balanced higher-
order model, and a balanced highest-order model. The dataset from the experimental data 
in a three-level, two-factor central composite design in a previous research was used to 
illustrate three-step modeling and the subsequent optimization. The proposed approach to 
RSM predicted improved results of optimization, which are different from the predicted 
optimization results in the previous research. 
  
Keywords  response surface methodology, lack of fit, three-step modeling, balanced 
higher-order model, balanced highest-order model 

Introduction 

Response surface methodology (RSM) refers to a set of statistical methods for the 

design of experiments, modeling of responses, and optimization of factor levels (Myers 

et al., 2009). RSM has extensively been used in experimental sciences, including the 

food science of animal resources. In RSM, a satisfactory modeling of responses is 

crucial for an accurate understanding of the response system and a precise optimization 

of explanatory factors. A model can be said to be satisfactory when: (1) the model is 

significant at the 5% level (the p-value of the model≤0.05), (2) the lack of fit is non-

significant at the 5% level (the p-value of the lack of fit>0.05) or the model has no lack 

of fit, and (3) the adjusted r-square is as large as at least 0.8 (≥0.8). 

In RSM, after obtaining data from an experiment, we fit a standard second-order 

model to the data and then check whether the above three criteria are met. If not all 

three criteria are met, the second-order model is unsatisfactory. Subsequently, we fit a  
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“balanced higher-order model” to the data and check whether the above three criteria are met. If still not all three criteria are 

met, the balanced higher-order model too is unsatisfactory, and we fit a “balanced highest-order model” to the data. This 

three-step sequential modeling can be summarized as follows: 

 

[1] Step 1: Fit a second-order model to the data. If this model is satisfactory, modeling stops here. Otherwise, go to step 2. 

[2] Step 2: Fit a balanced higher-order model to the data. If this model is satisfactory, modeling stops here. Otherwise, go 

to step 3. 

[3] Step 3: Fit a balanced highest-order model to the data. 

 

When each factor of the experimental design has five levels, a balanced higher-order model in step 2 is a third-order 

model, and a balanced highest-order model in step 3 is the fullest balanced model proposed by Rheem et al. (2017). These 

models used in Rheem et al. (2017) contain cubic terms in the form of Xj
3. When each factor of the design has three levels 

that are coded as –1, 0, and 1, these models cannot be used, as cubic terms cannot be entered into the model because they are 

the same as linear terms [(–1)3=–1, 03=0, and 13=1, that is, Xj
3=Xj)]. Thus, when each factor has three levels, the balanced 

higher-order and balanced highest-order models that have no cubic terms in them are required. The construction of such 

models will be explained later. 

The present study proposes a three-step modeling strategy for experiments where each factor of the design has three levels, 

and subsequently optimizes factor levels for maximizing the response based on the balanced highest-order model. The study 

was conducted using the data from a three-level, two-factor experiment on a coffee-supplemented milk beverage (Ahn et al., 

2017; Rheem et al., 2019). 

 

Materials and Methods 

Dataset to be analyzed 
The construction of a balanced highest-order model will be explained through re-analysis of a dataset from the 

experimental data in the article titled “Improving the Quality of Response Surface Analysis of an Experiment for Coffee-

supplemented Milk Beverage: II. Heterogeneous Third-order Models and Multi-response Optimization” authored by Rheem 

et al. (2019). In that study, two three-level factors were used in an experiment. Among the responses in that experiment, the 

Zeta-potential, for which the objective of optimization is maximization, is the Y variable in this study. To illustrate the model 

for the data from a three-level, two-factor design, the factors (the X1 and X2 variables) in this experiment and their coded and 

actual levels are presented in Table 1. 

The dataset used for re-analysis was the data in Rheem et al. (2019) from which the first center run was deleted. The data 

in Rheem et al. (2019) was obtained through the screening (Rheem and Oh, 2019) of the original data in Ahn et al. (2017). 

The dataset that was analyzed in this study is presented in Table 2. In this dataset, the experimental design is the central 

composite design by Box and Wilson (1951) for two factors having –1, 0, and 1 as their coded levels. With this dataset, we 

performed a response surface analysis using balanced higher-order and balanced highest-order models. 

 

Statistical analysis tool 
Data were analyzed using the SAS software. SAS (2016b) procedures were used for the modeling of the response and the  
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drawing of a contour plot. The optimization of factor levels was performed by SAS data-step programming. A three-

dimensional plot was generated using SAS (2016a). 

 

Results and Discussion 

Fitting the second-order model to the data (Step 1 in modeling) 
First, the second-order polynomial regression model containing two linear, two quadratic, and one interaction term was 

fitted to the data by using the RSREG procedure of SAS/STAT. Results of the analysis of variance for the second-order 

model are shown in Table 3. 

Table 3 says that: (1) the model is non-significant at the 5% level (the p-value of the model=0.3338>0.05), (2) the lack of 

fit is significant at the 5% level (the p-value of the lack of fit=0.0071<0.05), and (3) the adjusted r-square=0.1388<0.8; none 

of the three criteria were satisfied, and thus, this model was unsatisfactory. As the second-order model had a poor fit, we 

proceeded to build a balanced higher-order model. 

 

Fitting a balanced higher-order model to the data (Step 2 in modeling) 
In a multifactor polynomial regression model, if each factor appears the same number of times in all the terms in the 

model, such a model is said to be “balanced.” In a balanced response surface model, each factor has an equal opportunity of 

being evaluated through the coefficients of the model terms that contain it. 

Table 1. Response, actual, and coded factors and the levels of the factors

Response=Y Actual factor Coded factor
Actual factor level corresponding to the  

coded factor level of 

–1 0 1 

Y=Zeta-potential F1=Speed of primary homogenization (rpm) X1 5,000 10,000 15,000 

F2=Concentration of emulsifier (%) X2 0.1 0.2 0.3 
 

Table 2. Experimental design in coded factors and responses

Standard order Design point X1 X2 Y 

1 1 –1 –1 27.5 

2 2 –1 1 29.9667 

3 3 1 –1 24.3 

4 4 1 1 32.5666 

5 5 –1 0 36.1 

6 6 1 0 28.2667 

7 7 0 –1 29.1 

8 8 0 1 28.2 

9 9 0 0 29.0667 

10 9 0 0 29.6 

11 9 0 0 29.1 
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When there are two factors, a second-order model, which consists of X1, X2; X1

2, X2
2; and X1X2, is balanced, because for 

j=1 and 2, each Xj appears three times in all the terms (1 time in X1, X2; 2 times in X1
2, X2

2; and 1 time in X1X2) in the model. 

Thus, the balanced higher-order model consists of X1, X2; X1
2, X2

2; X1X2; X1X2
2, X1

2X2, where for j=1 and 2, each Xj appears 

7 times (1 time in X1, X2, 2 times in X1
2, X2

2, and 1 time in X1X2, and 3 times in X1X2
2, X1

2X2). Table 4 shows the results of 

the analysis of variance for the balanced higher-order model. 

Table 4 says that: (1) the model is non-significant at the 5% level (the p-value of the model=0.0841>0.05), (2) the lack of 

fit is significant at the 5% level (the p-value of the lack of fit=0.0154<0.05), and (3) the adjusted r-square=0.7785<0.8; none 

of the three criteria were satisfied, and thus, the balanced higher-order model was also unsatisfactory. Therefore, for the next 

step of model fitting, a balanced highest-order model was fitted to the data. 

 

Fitting a balanced highest-order model to the data (Step 3 in modeling) 
In Table 4, the lack of fit had one degree of freedom, implying that we can add one more term to the model. For the model 

to be balanced, this additional term needs to contain all of X1 and X2. As the last terms in the model are X1X2
2 and X1

2X2, the 

Table 3. Analysis of variance for the second-order model

Model terms: X1, X2; X12, X22; X1X2 

Source Degrees of freedom Sum of squares Mean square F-value p-value 

Model  5 50.05 10.01 1.32 0.3833 

Error  5 37.85  7.57 

Total 10 87.90 

Root MSE=2.75 r-square=0.5694 Adjusted r-square=0.1388 

Test of lack of fit 

Source Degrees of freedom Sum of squares Mean square F-value p-value 

Lack of fit 3 37.67 12.56 140.69 0.0071 

Pure error 2  0.18  0.09 

MSE, mean square error. 

Table 4. Analysis of variance for the balanced higher-order model

Model terms: X1, X2; X12, X22; X1X2; X1X22, X12X2  

Source Degrees of freedom Sum of squares Mean square F-value p-value 

Model  7 82.06 11.72 6.02 0.0841 

Error  3  5.84  1.95 

Total 10 87.90 

Root MSE=1.40 r-square=0.9335 Adjusted r-square=0.7785 

Test of lack of fit 

Source Degrees of freedom Sum of squares Mean square F-value p-value 

Lack of fit 1  5.66  5.66 63.45 0.0154 

Pure error 2  0.18  0.09 

MSE, mean square error. 
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next term to be entered into the model should be X1
2X2

2. When we add this term to the model, the model becomes a balanced 

highest-order model, which has no lack of fit, because the number of coefficients in the model is the same as the number of 

design points in the experimental design. Design points are indicated in Table 2. Results of the analysis of variance for the 

balanced highest-order model are presented in Table 5. 

Table 5 says that: (1) the model is significant at the 5% level (the p-value of the model=0.0081<0.05), (2) the model has no 

lack of fit, and (3) the adjusted r-square=0.9898>0.8; all three criteria were satisfied, and the r-square was 0.9980, almost 

equal to 1. Therefore, the balanced highest-order model was satisfactory and accepted as our final model. With Y෡ denoting 

the predicted value of Y, this model can be specified as: 
 Y෡ = 29.25557+ (–3.91665) X1 + (–0.45) X2+ 2.92778 X12 + (–0.60557) X22 + 1.44998 X1X2     + 3.76662 X1X22 + 3.13333 X12X2 + (–2.99446) X12X22. (1)
 

Table 6 shows the coefficient estimates and their SEs, t-values, and p-values of the balanced higher-order model.  

The p-values in Table 6 say that the X1, X1
2, X1X2, X1X2

2, X1
2X2, and X1

2X2
2 terms, which all involve the X1 factor, are all 

significant at the 5% level, whereas the X2 and X2
2 terms, which involve only the X2 factor, are non-significant at the 5% 

level. From this, we see that the X1 factor plays a more important role than the X2 factor in the model. 

 

Finding the optimum point of the factors 
According to Ahn et al. (2017), the objective of optimization for Y was maximization. Thus, using a search on a grid (Oh 

et al., 1995), we optimized the model for maximization in the form of the above equation. In this experiment, the bounds 

were –1≤Xj≤1 for j=1, 2. Thus, within these bounds, we conducted a search on a grid using the SAS data step programming. 

A search for the maximum on a grid was performed by calculating the Y෡ function over a grid for the values of X1 and X2, 

with an increment of 0.01 within the bounds –1≤Xj≤1 for j=1, 2, and then sorting the calculated function values in descending 

order. The optimum point at which Y෡ was maximized was found this way and is presented in Table 7. 

In Rheem et el. (2019), the predicted maximum Zeta-potential based on their model was 35.2957, which is lower than 

36.1515, our predicted maximum Zeta-potential in Table 7. And, according to the data and the model in Rheem et el. (2019),  

Table 5. Analysis of variance for the balanced highest-order model

Model terms: X1, X2; X12, X22; X1X2; X1X22, X12X2; X12X22 

Source Degrees of freedom Sum of squares Mean square F-value p-value 

Model  8 87.72 10.97 112.86 0.0081 

Error  2  0.18  0.09 

Total 10 87.90 

Root MSE=0.30 r-square=0.9980 Adjusted r-square=0.9898 

Test of lack of fit 

Source Degrees of freedom Sum of squares Mean square F-value p-value 

Lack of fit 0 0 

Pure error 2 0.18 0.09 

MSE, mean square error. 
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for their predicted maximum (35.2957) of Zeta-potential, their predicted optimum points of (X1, X2) in coded levels and (F1, 

F2) in actual levels are calculated as (X1=–1, X2=0.10) and (F1=5.000, F1=0.210), which are different from (X1=–1, X2=0.08) 

and (F1=5.000, F1=0.208), our predicted optimum points in coded and actual levels in Table 7. Thus, it can be said that our 

approach has predicted improved results of optimization, which are different from the predicted optimization results in the 

previous research. A validation experiment is needed after the optimum point is predicted. 

Table 6. Coefficient estimates and related statistics in the balanced highest-order model

Coefficient Estimate SE t-value p-value 

Intercept 29.25557 0.1725 169.61 <0.0001 

X1 –3.91665 0.2112 –18.54 0.0029 

X2 –0.45000 0.2112 –2.13 0.1669 

X12 2.92778 0.2727 10.74 0.0086 

X22 –0.60557 0.2727 –2.22 0.1565 

X1X2 1.44998 0.1494 9.71 0.0104 

X1X22 3.76662 0.2587 14.56 0.0047 

X12X2 3.13333 0.2587 12.11 0.0067 

X12X22 –2.99446 0.3759 –7.97 0.0154 
 

Table 7. Optimization results 

X1 X2 F1=Speed of primary 
homogenization (rpm) 

F2=Concentration of 
emulsifier (%) 

Predicted maximum 
of Y (=Zeta-potential) 

–1 0.08 5,000 0.208 36.1515 
 

 

Fig. 1. Three-dimensional plot for the effects of X1 and X2. 
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Drawing the 3D and contour plots of the response surface 
For the X1 and X2 factors, the three-dimensional (3D) response surface plot was drawn, with the vertical axis representing 

the predicted response and two horizontal axes indicating the coded levels of the X1 and X2 factors. Fig. 1 is such a plot. 

The two-dimensional contour plot of the response surface was also drawn, with two axes indicating two coded factors. Fig. 

2 is such a plot. 

These figures visualize the optimization results shown in Table 7; they show that the predicted response was maximized at 

the point of (X1=–1, X2=0.08). 
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Fig. 2. Contour plot for the effects of X1 and X2. 
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