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Abstract  We investigated the effects of different phosphate replacements on the quality 
of ground pork products cured with sodium nitrite or radish powder to determine their 
potential for achieving clean-label pork products. The experimental design was a 2×5 
factorial design. For this purpose, the ground meat mixture was assigned into two groups, 
depending on nitrite source. Each group was mixed with 0.01% sodium nitrite or 0.4% 
radish powder together with 0.04% starter culture, and then processed depending on 
phosphate replacement [with or without 0.5% sodium tripolyphosphate; STPP (+), STPP 
(−), 0.5% oyster shell calcium (OSC), 0.5% citrus fiber (CF), or 0.5% dried plum powder 
(DPP)]. All samples were cooked, cooled, and stored until analysis within two days. The 
nitrite source had no effect on all dependent variables of ground pork products. However, 
in phosphate replacement treatments, the STPP (+) and OSC treatments had a higher 
cooking yield than the STPP (−), CF, or DPP treatments. OSC treatment was more effective 
for lowering total fluid separation compared to STPP (−), CF, or DPP treatments, but had a 
higher percentage than STPP (+). The STPP (+) treatment did not differ from the OSC or 
CF treatments for CIE L* and CIE a*. Moreover, no differences were observed in nitrosyl 
hemochrome content, lipid oxidation, hardness, gumminess, and chewiness between the 
OSC and STPP (+) treatments. In conclusion, among the phosphate replacements, OSC 
addition was the most suitable to provide clean-label pork products cured with radish 
powder as a synthetic nitrite replacer. 
  
Keywords nitrite replacement, phosphate replacement, radish powder, pork products, 
clean-label 

Introduction 

As a curing ingredient in meat products, nitrite plays a key role in curing meat color, 

while conferring antimicrobial and antioxidant protection, and a curing flavor 

(Alahakoon et al., 2015; Pegg and Shahidi, 2000). Despite the benefits of nitrite in meat 

curing, increasing consumer awareness of health-related risks associated with synthetic 

food additives (Hur et al., 2015) has boosted the demand for ‘clean-label products,’ such 

as organic, eco-friendly, and synthetic additive-free products (Maruyama et al., 2021; 

Yong et al., 2021). In response to this need, the meat industry uses pre-conversion of  
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nitrite from vegetable powders or nitrate-rich vegetable sources together with starter culture is applied to meat products 

(Jeong, 2016). 

Celery juice powder, which is widely used, is a feasible alternative to synthetic nitrite. However, excessive addition of 

celery juice or powder affects the sensory properties of the products negatively (Alahakoon et al., 2015), and may cause 

allergic reactions (Ballmer-Weber et al., 2002). Therefore, other natural sources, such as vegetables, fruits, and their by-

products, have been studied as alternative nitrite sources. Thus, Riel et al. (2017) found that the addition of parsley-extract 

powder to mortadella sausages produced a redness similar to that obtained by addition of synthetic nitrite. Similarly, Šojić et 

al. (2020) reported that a mixture of tomato peel extract and peppermint oil could be used for partial replacement of sodium 

nitrite in pork sausages. Moreover, testing different vegetable (Chinese cabbage, radish, and spinach) powders for nitrite 

substitution, Jeong et al. (2020) found that the use of radish powder conferred similar qualities to those obtained by the 

addition of synthetic nitrite, suggesting its potential as a substitute for synthetic nitrite. However, for ‘clean-label’ meat 

products, other challenges are faced, and solutions to replace synthetic phosphates are emerging in the meat industry 

(Thangavelu et al., 2019).  

Phosphate is widely used for meat production because of its many functions, including increasing water-holding capacity, 

inhibiting lipid oxidation, and improving textural and sensory attributes (Long et al., 2011; Thangavelu et al., 2019). 

Recognized as a GRAS (Generally Recognized as Safe) substance by the FDA (Food and Drug Administration), phosphate 

can be added at a concentration of 0.5% or less of the final meat products (USDA-FSIS, 2015). With respect to replacing 

synthetic phosphates, the use of calcium powders from natural sources (Bae et al., 2017; Cho et al., 2017), polysaccharides 

(Meyer, 2018; Öztürk‐Kerimoğlu and Serdaroğlu, 2019), amino acids (Kim et al., 2014), protein hydrolyzates (Shahidi and 

Synowiecki, 1997; Vann and DeWitt, 2007), dietary fiber (Magalhães et al., 2020; Powell et al., 2019), and mushrooms (Choe 

et al., 2018), has been tested. Thus, Bae et al. (2017) reported that pork meat products containing oyster shell calcium (OSC) 

had a texture similar to that of obtained upon sodium tripolyphosphate treatment. Fernández-Ginés et al. (2003) reported that 

Bologna sausages treated with citrus fiber (CF) had a cooking yield and emulsion stability similar to those of products added 

with sodium tripolyphosphate. Similarly, Jarvis et al. (2012) confirmed that chicken breast fillets marinated by combining 

plum powder and plum fiber showed similar quality characteristics to those obtained upon marinating with sodium 

tripolyphosphate. Although several studies have reported effective replacement of synthetic nitrite and phosphate, studies on 

the replacement of synthetic phosphate in naturally cured meat products with a vegetable powder have not been reported. 

Therefore, in this study we compared OSC, CF, and dried plum powder (DPP) as candidate natural phosphate sources for 

phosphate replacement in meat products cured with either sodium nitrite or with radish powder as a natural nitrite alternative, 

aiming to contribute to the development of clean-label meat production. 

 

Materials and Methods 

Preparation of radish powder and other materials 
Fresh radishes (Raphanus sativus L.) grown in Korea were purchased and randomly selected to manufacture radish 

powder. Radish powder was prepared after subsequent washing, homogenizing, drying, and powdering as previously 

described by Bae et al. (2020). Then, powdered samples were vacuum-packed and stored at −18℃ until further use. To 

standardize the nitrate content (32,000 ppm) from each batch, the radish powder was mixed with maltodextrin (#186785579, 

ESfood, Gunpo, Korea) before processing the meat products. 
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A starter culture (Bactoferm® CS-300, CHR Hansen, Pohlheim, Germany) comprising Staphylococcus carnosus and 

Staphylococcus carnosus subsp., sodium nitrite (S225, Sigma-Aldrich, St. Louis, MO, USA), sodium tripolyphosphate 

(238503, Sigma-Aldrich, St. Louis, MO, USA), sodium chloride (S-3160-65, Fisher Scientific UK, Loughborough, UK), 

sodium ascorbate (#35268, Acros Organics, Geel, Belgium), and dextrose (A16828, Thermo Fisher Scientific, Heysham, UK) 

were purchased from commercial suppliers. As alternatives to synthetic phosphate, OSC (Glucan, Jinju, Korea), CF (CF-100, 

Fiberstar, River Falls, WI, USA), and DPP (#80276308572, Sunsweet Growers, Yuba City, CA, USA) were obtained. 

 

Preparation of ground pork products 
Fresh pork ham and back fat were purchased from a local market. After trimming intermuscular fat and visible connective 

tissues, the lean pork meat and back fat were stored at −18℃ until processing within one month. Frozen materials (total batch 

size of 35 kg per trial) were completely thawed and then ground using a chopper (TC-22 Elegnant plus, Tre Spade, Torino, 

Italy) equipped with a 3-mm plate. Ground mixtures were randomly divided into ten portions and assigned to two groups 

(five batches each) depending on the nitrite source (Table 1). First, 70% pork meat and 15% back fat were mixed for 3 min 

with 0.01% sodium nitrite or 0.4% radish powder and 0.04% starter culture in a mixer (5K5SS, Whirlpool, St. Joseph, MI, 

USA). Second, each group was processed depending on phosphate replacement, including with or without 0.5% sodium 

tripolyphosphate (STPP) or 0.5% phosphate replacement (OSC, CF, and DPP). Other ingredients (1.5% sodium chloride, 1% 

dextrose, and 0.05% sodium ascorbate; total meat mixture basis) along with 15% ice/water were added to a mixer and mixed 

again for 7 min. The treatments were filled into 50 mL conical tubes. Five batches of sodium nitrite were placed in a 

refrigerator at 4℃ for 1 h. The remaining five batches of radish powder and starter culture were stored in an incubator at 

40℃ for 2 h to allow the conversion of nitrate to nitrite. All samples were cooked to 75℃ in a water bath (MaXturdy 45, 

Daihan Scientific, Wonju, Korea) at 90℃. Once cooking, the samples were cooled for 20 min in ice slurry and stored 

overnight at 2℃–3℃ in the dark until analysis. Experiments were performed in triplicate, and all dependent variables were 

measured in duplicate. 

Table 1. Experimental design (2×5 factorial) to investigate the effects of nitrite and phosphate replacements for ground pork products

Samples Nitrite sources1) Phosphate replacements2) 

1 Sodium nitrite No sodium tripolyphosphate 

2 Sodium nitrite Sodium tripolyphosphate 

3 Sodium nitrite Oyster shell calcium 

4 Sodium nitrite Citrus fiber 

5 Sodium nitrite Dried plum powder 

6 Radish powder No sodium tripolyphosphate 

7 Radish powder Sodium tripolyphosphate 

8 Radish powder Oyster shell calcium 

9 Radish powder Citrus fiber 

10 Radish powder Dried plum powder 
1) Nitrite sources: Two different nitrite sources (sodium nitrite or radish powder) were used. Radish powder was added with a starter culture 

comprising Staphylococcus carnosus and Staphylococcus carnosus subsp.  
2) Phosphate replacements: Samples prepared with or without 0.5% sodium tripolyphosphate or with one of three different synthetic phosphate 

replacements (0.5% oyster shell calcium, citrus fiber, or dried plum powder). 
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Determination of pH and cooking yield 
The pH was measured with a pH meter (Accumet AB150, Thermo Fisher Scientific, Singapore) after adding 25 mL of 

distilled water to a 5 g sample and homogenized (DI-25 basic, IKA-Werke, Staufen, Germany). Five samples per each batch 

were weighed before cooking and after cooking and cooling overnight. Cooking yield was calculated as follows: (cooked 

sample weight / raw sample weight) × 100. 

 

Total fluid separation (TFS), lipid separation (LS), and water separation (WS) 
TFS, LS, and WS of ground pork products was measured by the method described by Hughes et al. (1997) and Lee et al. 

(2008). Twenty grams of the uncooked meat mixture was placed into a 50-mL conical tube with a mesh. After weight 

measurement, the conical tubes filled with the samples were cooked for 30 min in a water bath at 75℃ (CB60L, Dongwon 

Scientific Instrument, Busan, Korea), cooled for 20 min, and centrifuged at 500×g for 5 min. Pellets and supernatants in the 

conical tubes were weighed before drying. The supernatant was dried for 18 h at 105℃ using a dryer (ON-12GW; JeioTech, 

Daejeon, Korea) and weighed again. The percentage TFS, LS, and WS were calculated using the following equations: 

   % TFS = Weight of sample before cooking (g) − Weight of pellet after cooking and centrifuging (g)Weight of sample before cooking (g) × 100 

   % LS = Weight of dried supernatant (g)Weight of sample before cooking (g) × 100 

   % WS = % TFS − % LS 

 

Color measurements 
After cutting the samples in the longitudinal direction, the cut surfaces of samples were measured for CIE L*, CIE a*, CIE 

b* using a colorimeter (CR-400, 8 mm aperture, illuminant C, 2° standard observer; Konica Minolta Sensing, Osaka, Japan) 

after calibrating the standard plate (CIE L* 94.87, CIE a* −0.39, CIE b* 3.88). Two readings were recorded on each cut 

surface for each pork sausage immediately after cutting. 

 

Nitrosyl hemochrome and 2-thiobarbituric acid-reactive substances (TBARS) determination 
Nitrosyl hemochrome in pork products was measured using the method described by Hornsey (1956). After extraction and 

filtration, absorbance of the filtrate was determined at 540 nm (A540) using a spectrophotometer (UV-1800, Shimadzu, Kyoto, 

Japan). Nitrosyl hemochrome concentration (ppm) was calculated by multiplying absorbance (A540) by 290. TBARS values 

was measured using the method described by Tarladgis et al. (1960). Briefly, after reacting malondialdehyde (MDA) in 

samples with 0.02 M 2-thiobarbituric acid (TBA) solution, absorbance of reactive substances was determined at 538 nm. The 

results were multiplied by a factor of 7.8 to calculate TBARS values (mg MDA/kg samples). 

 

Texture profile analysis 
After cutting the cross section of the samples to a thickness of 2.5 cm, the hardness, springiness, cohesiveness, gumminess, 

and chewiness of the samples (2.8 cm diameter) were measured using a texture analyzer (TA-XT2i, Stable Micro Systems, 
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Surrey, UK) equipped with a 50-mm aluminum cylinder. Crosshead speed for the measurements was 5 mm/s and 

compression was 40% of sample thickness. 
 

Statistical analysis 
The experimental design was a 2×5 factorial design with two nitrite sources (sodium nitrite or radish powder) and five 

phosphate replacement treatments (with or without phosphate, OSC, CF, or DPP). All data were statistically analyzed using 

the PROC GLIMMIX procedure in the SAS software (version 9.4; SAS, 2012) to determine fixed effects for nitrite and 

phosphate replacement and their interactions. When significance (p<0.05) was determined, the least squares means were 

further separated using the LINES option in the same software. 
 

Results and Discussion 

The significance of nitrite sources (N), phosphate replacements (P), and their interaction was shown in Table 2. A two-way 

interaction (N×P) between the main effects was not found (p>0.05) for any dependent variables tested in this study. 

Therefore, the results for individual main effects are presented.  
 

pH 
Nitrite sources (N) did not affect (p>0.05) the pH of pork products (Table 2), indicating that there were no significant 

(p>0.05) differences in pH between sodium nitrite- and radish powder-treated pork products (Table 3). These findings agreed 

with those reported by Sindelar et al. (2007) and Yoon et al. (2021), who found that pH of meat products naturally cured with 

celery juice powder and white kimchi powder, respectively, did not differ from those of meat products cured with sodium 

nitrite. In contrast, phosphate replacements (P) was found to significantly (p<0.001) affect the pH of ground pork products 

(Table 2). Thus, the OSC treatment had the highest (p<0.05) pH values, while the CF and DPP treatments had lower (p<0.05) 

pH values than either the STPP (+) or STPP (−) treatments (Table 3). In our preliminary test, the pH of OSC was 9.93, 

whereas those of CF and DPP ranged from 3.60 to 4.05. It is likely that organic acids, such as citric acid, quinic acid, and 

malic acid contained in CF and DPP reduced the pH of the final products (Bae et al., 2014; Song et al., 1998).  

Table 2. Significance of main and interaction effects on nitrite sources and phosphate replacements on physicochemical properties of 
ground pork products 

Main and 
interaction effects1) 

Dependent variables 

pH Cooking 
yield TFS LS WS CIE L* CIE a* CIE b*

Nitrosyl
hemo-
chrome

TBARS Hard-
ness 

Cohesive-
ness 

Springi-
ness 

Gummi-
ness 

Chewi-
ness 

Nitrite sources2) 
(N) NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

Phosphate 
replacements3) (P) 

** ** ** ** ** ** ** ** ** NS NS ** ** NS NS 

N×P NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS 

1) Main and interaction effects: ** p<0.001. 
2) Nitrite sources: Two different nitrite sources (sodium nitrite or radish powder) were used. Radish powder was added with a starter culture comprising 

Staphylococcus carnosus and Staphylococcus carnosus subsp. 
3) Phosphate replacements: Samples prepared with or without 0.5% sodium tripolyphosphate or with one of three different synthetic phosphate replacements 

(0.5% oyster shell calcium, citrus fiber, or dried plum powder). 
TFS, total fluid separation; LS, lipid separation; WS, water separation; TBARS, 2-thiobarbituric acid reactive substances; NS, not significant. 
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Cooking yield 
Cooking yield was not affected (p>0.05) by nitrite sources (N; Tables 2 and 3). Conversely, Yoon et al. (2021) showed that 

pork sausages containing sodium nitrite showed a higher cooking yield than those containing white kimchi powder. However, 

Jeong et al. (2020) found no significant difference in cooking yield between pork products cured with various vegetable 

powders (Chinese cabbage, radish, and spinach) and sodium nitrite-added products, consistently with the findings reported 

herein. However, in this study, phosphate replacements (P) had a significant (p<0.001) effect on cooking yield of ground pork 

products (Table 2). Interestingly, the cooking yield in the OSC treatment was 96.81%, which did not differ significantly 

(p>0.05) from that of the STPP (+) treatment (98.45%; Table 3). Similarly, Lee et al. (2011) found that emulsion-type pork 

sausages treated with 0.3% STPP showed similar cooking yield as those treated with 0.5% oyster shell powder. However, the 

CF and DPP treatments showed a lower (p<0.05) cooking yield than the STPP (+) treatment (Table 3). Dietary fiber from 

citrus fruits and sorbitol in DPP have been introduced as good candidates for improving the water retention capacity of meat 

systems (Fernández-Ginés et al., 2003; Jarvis et al., 2015; Lundberg et al., 2014). However, the unexpected results for the CF 

and DPP treatments in this study might be attributed to the fact that the organic acids contained in CF and DPP had a negative 

effect on the cooking yield of ground pork products. Consistently, with regard to the effect of organic acids on meat products, 

Bae et al. (2021) reported that naturally cured sausages containing more organic acids showed a lower pH, thereby resulting 

in a lower cooking yield, which supports our findings.  
 

Total fluid separation (TFS), lipid separation (LS), and water separation (WS) 
Neither TFS, LS, nor WS of pork products were affected (p>0.05) by nitrite sources (N; Tables 2 and 3). However, 

significant (p<0.001) phosphate replacement (P) effects were observed for TFS, LS, and WS in ground pork products (Table 

2). The OSC treatment had a significantly (p<0.05) higher TFS than the STPP (+) treatment, but lower (p<0.05) than the 

Table 3. Effects of nitrite and phosphate replacements on pH, cooking yield, total fluid separation, lipid separation, and water 
separation in ground pork products 

Main effects pH Cooking yield  
(%) 

Total fluid 
separation (%) 

Lipid separation  
(%) 

Water separation 
(%) 

Nitrite sources1) (N)      

Sodium nitrite 6.25 93.39 11.14 1.01 10.13 

Radish powder 6.25 93.02 11.24 1.03 10.21 

SEM 0.01  1.27  0.47 0.11  0.36 

Phosphate replacements2) (P)      

STPP (−) 6.09C 91.06B 13.03C 1.20B 11.83C 

STPP (+) 6.32B 98.45A  5.08E 0.25C  4.83E 

OSC 6.79A 96.81A  6.83D 0.42C  6.41D 

CF 6.03D 89.76B 16.62A 1.77A 14.85A 

DPP 6.04D 89.97B 14.39B 1.46AB 12.93B 

SEM 0.01  1.38  0.56 0.14  0.43 
1) Nitrite sources: Two different nitrite sources (sodium nitrite or radish powder) were used. Radish powder was added with a starter culture 

comprising Staphylococcus carnosus and Staphylococcus carnosus subsp. 
2) Phosphate replacements: Samples prepared with or without 0.5% sodium tripolyphosphate [STPP (+), STPP (−)] or with one of three different 

synthetic phosphate replacements (0.5% oyster shell calcium; OSC, citrus fiber; CF, or dried plum powder; DPP). 
A–E Means within columns followed by different superscript letters are significantly different (p<0.05). 
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STPP (−), CF, and DPP treatments (Table 3). Among the phosphate replacement treatments, the low TFS of the OSC 

treatment may be due to the increased water holding capacity owing to the high pH of OSC itself (Park, 2011). The highest 

TFS (p<0.05) was seen in the CF treatment. Since dietary fiber has a microporous structure, it can adsorb moisture and fat, 

but it is thought that the adsorbed components were discharged by strong physical forces such as centrifugation during the 

experiment (Lundberg et al., 2014; Wang et al., 2015). A lower TFS was observed with DPP treatment than with CF treatment 

in this study, likely because the high sorbitol content of DPP may affect its moisture binding ability (Jarvis et al., 2015). 

However, there were no significant differences (p>0.05) in LS between the OSC and STPP (+) treatments (Table 3). In 

addition, these treatments had a significantly (p<0.05) lower LS than the CF or the DPP treatments. Similar to the TFS results 

described above, the same trend was observed for WS (Table 3). The greatest WS (p<0.05) was observed in the CF treatment, 

likely due to the coalescence and agglomeration of fiber particles (Powell et al., 2019). Overall, our results suggest that, 

among the phosphate replacements tested in this study, OSC has the potential to substitute STPP in ground pork products in 

terms of water-holding capacity, regardless of the nitrite source. 

 

CIE color 
The nitrite sources (N) had no effects (p>0.05) on the CIE L* of cooked products (Tables 2 and 4). Similarly, Choi et al. 

(2020) found that pork sausages cured with white kimchi powder obtained similar CIE L* as those cured with sodium nitrite, 

although the type of vegetable powder used was different from that in this study. However, phosphate replacements (P) did 

significantly (p<0.001) affect CIE L* of cooked products (Table 2). The OSC treatment did not differ (p>0.05) in CIE L* 

from STPP (+) and CF treatments, but lower (p<0.05) than those in the STPP (−) treatment (Table 4). DPP treatment obtained 

the lowest CIE L* (p<0.05). Similarly, Lee and Ahn (2005) observed that the inclusion of plum extract in turkey breast rolls 

resulted in reduced CIE L*.  

The CIE a* of products containing sodium nitrite and radish powder were 9.87 and 9.86, respectively, and were not 

significantly (p>0.05) affected by nitrite sources (N; Tables 2 and 4). Similar results were obtained by Bae et al. (2020), who 

reported that pork products cured with radish powder showed CIE a* similar to those with sodium nitrite. Yoon et al. (2021) 

also found that there were no significant differences in CIE a* between pork sausages added with sodium nitrite and those 

added with white kimchi powder. Additionally, the main effect of phosphate replacement (P) on CIE a* was significant 

(p<0.001; Table 2). The CIE a* were lowest (p<0.05) for the DPP treatment and did not significantly (p>0.05) differ among 

treatments (Table 4). These CIE a* were in agreement with those of Meyer (2018), who reported that the addition of plum 

concentrate as a phosphate replacement in whole muscle hams resulted in a decrease in redness.  

Nitrite sources (N) did not affect (p>0.05) CIE b* of ground pork products (Tables 2 and 4). Jeong et al. (2020) found that 

cooked meat products added with 0.4% radish powder showed similar CIE b* to those with 150 ppm sodium nitrite, as shown 

in this study. Overall, our CIE color results suggest that radish powder is a useful alternative to synthetic nitrite for clean-

label meat products. However, phosphate replacements (P) significantly (p<0.001) affected CIE b* of ground pork products 

(Table 2). All phosphate replacement treatments significantly (p<0.05) increased the CIE b*, compared to the STPP (+) 

treatment (Table 4). The impact of the addition of OSC on CIE b* of ground pork products was smaller, although significant. 

In contrast, DPP treatment showed the highest CIE b* (p<0.05), probably due to the color of the endogenous pigments in the 

plant extract (Nowak et al., 2016; Riel et al., 2017). Thus, the use of DPP may have a negative effect on the color of ground 

pork products.  
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Nitrosyl hemochrome 
Nitrosyl hemochrome, which provides a typical cured-meat color, is formed by the reaction of myoglobin with nitric oxide 

reduced from nitrite during cooking (Parthasarathy and Bryan, 2012). In this study, nitrite sources (N) had no effect (p>0.05) 

on nitrosyl hemochrome content in ground pork products (Tables 2 and 4), indicating that radish powder is a good candidate 

as a synthetic nitrite substitute for cured meat color. However, nitrosyl hemochrome content was significantly (p<0.001) 

affected by phosphate replacements (P; Table 2). CF and DPP treatments had significantly (p<0.05) higher nitrosyl 

hemochrome contents than STPP (−), STPP (+), or OSC treatments, and the highest (p<0.05) nitrosyl hemochrome content 

was observed in DPP treatment (Table 4). As a decrease in pH can promote the rate of the curing reaction (Honikel, 2008), 

organic acids and polyphenols in CF or DPP may accelerate meat curing by lowering the pH or acting as a reducing agent 

(Ahmad et al., 2015; Terns et al., 2011). In contrast, the OSC treatment had the lowest (p<0.05) nitrosyl hemochrome content 

across all treatments, probably due to the high pH of OSC powder used in this study (Table 4). Nevertheless, in this study, 

there was no difference in CIE a* in OSC treatment and other treatments except for DPP treatment. This may be because the 

high pH of OSCs limited the curing process or the denaturation of myoglobin (Honikel, 2008; Trout, 1989).  
 

2-Thiobarbituric acid-reactive substances (TBARS) 
The TBARS values were not significantly (p>0.05) influenced by nitrite sources (N) or phosphate replacements (P) in 

ground pork products (Table 2). Regardless of nitrite sources, TBARS values of all cooked products were 0.12 mg MDA/kg 

(Table 4). These findings agreed with those reported by Magrinyà et al. (2016), who found that cooked cured sausages had 

similar TBARS values despite different nitrite treatment (sodium nitrite or vegetable powder). It is likely that nitrites reduced 

from nitrates contained in radish powder as well as antioxidants present in radish inhibited lipid rancidity (Ahn et al., 2019; 

Ozaki et al., 2021). Thus, adding radish powder may have a similar inhibitory effect on lipid oxidation as that which results 

Table 4. Effects of nitrite and phosphate replacements on CIE color, nitrosyl hemochrome, and TBARS values in ground pork products

Main effects CIE L* CIE a* CIE b* Nitrosyl hemochrome 
(ppm) 

TBARS  
(mg MDA/kg) 

Nitrite sources1) (N)      

Sodium nitrite 67.62  9.87 8.70 36.09 0.12 

Radish powder 67.32  9.86 8.66 35.72 0.12 

SEM  0.14  0.05 0.04  0.34 0.03 

Phosphate replacements2) (P)      

STPP (−) 68.67A 10.15A 7.67C 36.71C 0.14 

STPP (+) 68.18AB 9.93A 6.25E 33.66D 0.13 

OSC 68.02B 9.93A 6.75D 32.91D 0.13 

CF 68.50AB 10.03A 8.50B 37.82B 0.10 

DPP 63.97C 9.27B 14.23A 39.71A 0.09 

SEM  0.21 0.08 0.04  0.42 0.03 
1) Nitrite sources: Two different nitrite sources (sodium nitrite or radish powder) were used. Radish powder was added with a starter culture 

comprising Staphylococcus carnosus and Staphylococcus carnosus subsp.  
2) Phosphate replacements: Samples prepared with or without 0.5% sodium tripolyphosphate [STPP (+), STPP (−)] or with one of three different 

synthetic phosphate replacements (0.5% oyster shell calcium; OSC, citrus fiber; CF, or dried plum powder; DPP). 
A–E Means within columns followed by different superscript letters are significantly different (p<0.05). 
TBARS, 2-thiobarbituric acid reactive substances; MDA, malondialdehyde. 
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from treatment with synthetic nitrite. Furthermore, TBARS values of ground pork products were not significantly (p>0.05) 

affected by phosphate replacements (P; Tables 2 and 4). This result is supported by previous research on substitution for 

synthetic phosphates. Lee et al. (2011) reported that OSC had similar efficacy in inhibiting lipid oxidation as STPP in 

emulsion-type sausages. Powell et al. (2019) found that Bologna sausages treated with CFs did not differ in TBARS value 

from those treated with STPP. Moreover, Nuñez de Gonzlaes et al. (2009) obtained similar TBARS values when dried plum 

concentrate or phosphate was added to boneless ham. 
 

Textural properties  
Nitrite sources (N) had no significant (p>0.05) effect on the textural properties of ground pork products (Tables 2 and 5). 

Our results were supported by Sucu and Turp (2018), who reported no difference in texture profile between nitrite- and 

beetroot powder-added Turkish fermented sausages. However, significant effects of phosphate replacements (P) on ground 

pork products was observed (p<0.001) only for cohesiveness and springiness (Table 2), whereas neither hardness, 

gumminess, nor chewiness were affected (p>0.05) by phosphate replacement. The STPP (+) treatment showed the highest 

cohesiveness and springiness (p<0.05), while cohesiveness and springiness of STPP (−), CF, and DPP treatments were lower 

(p<0.05) than those of STPP (+) and OSC treatments, but were similar to each other (p>0.05; Table 5). Consistently with the 

findings reported herein, recently, Lee (2020) reported that the addition of OSC resulted in higher cohesiveness, springiness, 

and chewiness than restructured hams containing STPP, although, in our study, chewiness did not differ. Similarly, Powell et 

al. (2019) found that bologna sausages added with 0.5% CF had lower cohesiveness and springiness than those added with 

STPP but, in agreement with our results, hardness, gumminess, and chewiness were similar between them. However, Lee and 

Ahn (2005) reported that the hardness, cohesiveness, springiness, and chewiness of turkey breast rolls were not influenced by 

the addition of up to 3% plum extract, which partially agrees with our results. Consequently, the addition of OSC resulted in 

lower cohesiveness and springiness of ground pork products, compared to synthetic phosphate, although OSC can have a 

Table 5. Effects of nitrite and phosphate replacements on textural properties in ground pork products  

Main effects Hardness (N) Cohesiveness Springiness Gumminess (N) Chewiness (N) 

Nitrite sources1) (N)      

Sodium nitrite 34.43  0.74 0.93 25.56 23.75 

Radish powder 35.52  0.74 0.92 26.40 24.29 

SEM  2.20  0.01 0.01  2.05  2.00 

Phosphate replacements2) (P)      

STPP (−) 34.95  0.72C 0.91C 25.23 22.99 

STPP (+) 34.51  0.79A 0.96A 27.28 26.06 

OSC 34.10  0.76B 0.93B 25.88 24.13 

CF 36.67  0.71C 0.90C 26.78 23.81 

DPP 34.65  0.72C 0.91C 25.23 23.12 

SEM  2.29  0.01 0.01  2.12  2.07 
1) Nitrite sources: Two different nitrite sources (sodium nitrite or radish powder) were used. Radish powder was added with a starter culture 

comprising Staphylococcus carnosus and Staphylococcus carnosus subsp.  
2) Phosphate replacements: Samples prepared with or without 0.5% sodium tripolyphosphate [STPP (+), STPP (−)] or with one of three different 

synthetic phosphate replacements (0.5% oyster shell calcium; OSC, citrus fiber; CF, or dried plum powder; DPP).  
A–C Means within columns followed by different superscript letters are significantly different (p<0.05). 
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greater effect on the texture of the final products among the phosphate replacement treatments tested here, as observed by 

Bae et al. (2017) for various calcium powders. 
 

Conclusion 

Nitrite sources (sodium nitrite or radish powder) did not significantly affect the physicochemical or textural properties of 

ground pork products. However, most dependent variables were influenced by phosphate replacement treatment. The addition 

of OSC maintained cooking yield and LS, replacing sodium tripolyphosphate in the final products. In contrast, ground pork 

products with CF or dried plum power showed a negative effect on water and lipid binding ability. In particular, the addition 

of DPP resulted in a difference in color in ground pork products compared to STPP (+) treatment. Pork products with OSC 

showed textural properties relatively similar to those of products treated with sodium tripolyphosphate. Therefore, OSC is 

suitable as a synthetic phosphate substitute for clean-label ground pork products when cured with radish powder.  
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