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Metabolites of Latilactobacillus curvatus BYB3 and 
Indole Activate Aryl Hydrocarbon Receptor to 
Attenuate Lipopolysaccharide-Induced Intestinal 
Barrier Dysfunction  

Xing Wang, Cheng Chung Yong, and Sejong Oh* 

Division of Animal Science, Chonnam National University, Gwangju 61186, Korea 

Abstract  This study aimed to investigate the effects of the metabolites of 
Latilactobacillus curvatus BYB3 and indole-activated aryl hydrocarbon receptor (AhR) 
to increase the tight junction (TJ) proteins in an in vitro model of intestinal inflammation. 
In a Western blot assay, the metabolites of L. curvatus BYB3 reduced the TJ demage in 
lipoploysaccharide (LPS) stimulated-Caco-2 cells. This reduction was a result of 
upregulating the expression of TJ-associated proteins and suppressing the nuclear factor-
κB signaling. Immunofluorescence images consistently revealed that LPS disrupted and 
reduced the expression of TJ proteins, while the metabolites of L. curvatus BYB3 and 
indole reversed these alterations. The protective effects of L. curvatus BYB3 were observed 
on the intestinal barrier function when measuring transepithelial electrical resistance. Using 
high-performance liquid chromatography analysis the metabolites, the indole-3-latic acid 
and indole-3-acetamide concentrations were found to be 1.73±0.27 mg/L and 0.51±0.39 
mg/L, respectively. These findings indicate that the metabolites of L. curvatus BYB3 have 
increasing mRNA expressions of cytochrome P450 1A1 (CYP1A1) and AhR, and may thus 
be applicable for therapy of various inflammatory gut diseases as postbiotics. 
  
Keywords  Latilactobacillus curvatus BYB3, aryl hydrocarbon receptor, Caco-2 cells, 
tight junctions, lipopolysaccharide 

Introduction 

Intestinal epithelial cells (IECs) with intact tight junctions (TJs) form a barrier 

between the external environment and the mammalian host (Yu et al., 2018). Normal 

functioning of the intestinal epithelial barrier is critical for maintaining health (Citi, 

2018; Odenwald and Turner, 2017; Turner, 2009). Disruption of TJs and paracellular 

permeability can promote the entry of molecules and activate the immune system, 

leading to continuous tissue destruction (Lee, 2015). Hence, maintaining the integrity 

of the intestinal epithelial barrier is critical for inhibiting the development of 

gastrointestinal diseases and inflammation (Tlaskalová-Hogenová et al., 2004).  
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Indole, an interspecies and interkingdom signaling molecule, plays essential roles in bacterial pathogenesis and eukaryotic 

immunity (Lee et al., 2015). The human intestinal tract is rich in a diverse range of about 1014 commensal bacteria, some of 

which are crucial for nutrient assimilation and benefit the immune system (Tlaskalová-Hogenová et al., 2004). A 

metabolomic study demonstrated that the production of indoxyl sulfate and the antioxidant indole-3-propionic acid in animal 

blood depended entirely on enteric bacteria (Wikoff et al., 2009). In addition, indole and its derivatives may influence human 

diseases, such as bacterial infections, intestinal inflammation, neurological diseases, diabetes, and cancers (Lee et al., 2015). 

Multiple protein complexes, which are crucial components of TJs, are located in IECs (Tsukita et al., 2001) and include 

occludin, claudins, and zonula occludens (ZO). These protein complexes are vital for the maintenance of TJs and permit 

cytoskeletal regulation of the intestinal barrier integrity (Van Itallie and Anderson, 2006). Pathogens damage the intestinal 

epithelial barrier, increase intestinal permeability, and induce the development of inflammatory bowel disease (IBD) and 

necrotizing enterocolitis (NEC; Guo et al., 2015). IBD includes two chronic idiopathic inflammatory diseases, ulcerative 

colitis, and Crohn’s disease (Arrieta et al., 2009). Lipopolysaccharide (LPS) is a harmful antigen that can trigger inflammatory 

responses in the intestinal tissue and can be detected in the serum of patients with NEC and IBD (Han et al., 2020). Recent 

studies have identified the association between clinically relevant concentrations (1–10 ng/mL) of LPS and intestinal barrier 

dysfunction under in vivo and in vitro conditions (Guo et al., 2013). In our previous study, Latilactobacillus curvatus BYB3 

decreased the disease activity score of dextran sulfate sodium-induced colitis in a mouse model (Wang et al., 2022). 

Supplementation with indole or using Lactobacillus reuteri with high aryl hydrocarbon receptor (AhR) ligand production can 

improve some metabolic symptoms (Swimm et al., 2018). Therefore, we hypothesized that L. curvatus BYB3 has a similar 

function. The supernatants of L. curvatus BYB3 and the metabolites of L. curvatus BYB3+indole ameliorated LPS-induced 

intestinal barrier dysfunction by upregulating the levels of TJ proteins in Caco-2 cells. These findings illustrated the 

mechanism underlying the destructive effect of clinically relevant concentrations of LPS on the intestinal epithelial barrier, 

providing evidence for the clinical application of metabolites of L. curvatus BYB3+indole in the treatment of LPS-induced 

intestinal barrier dysfunction. 

The AhR is a ligand-dependent transcription factor that is widely expressed in vertebrates and is involved in numerous 

biological processes, such as cell proliferation (Xie et al., 2012), apoptosis (Marlowe et al., 2008), differentiation (Xie et al., 

2012), and inflammatory response (Neavin et al., 2018). The AhR separates from its molecular chaperone complex and forms a 

heterodimer with the aryl hydrocarbon nuclear translocator (ARNT) in the nucleus. This AhR-ARNT dimer then binds to the 

upstream regulatory region of its target genes, such as the cytochrome P450 family 1 genes (CYP1A1 and CYP1B1; Esser and 

Rannug, 2015). Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic 

inflammation that occurs with aging (Powell et al., 2020). Indoles and indole-metabolites secreted by the commensal bacteria 

have been shown to extend the healthspan of diverse organisms, including Caenorhabditis elegans, Drosophila melanogaster, 

and mice. The effects of indole and metabolites on animal heatlthspan were found to be AhR-mediated (Sonowal et al., 2017).  

This study was conducted to research the effect of L. curvatus BYB3 on the intestinal epithelial barrier of the Caco-2 cells. 

Furthermore, we investigated the differences in mRNA expression levels of CYP1A1 and AhR in response to the metabolites 

of L. curvatus BYB3 and indole. 
 

Materials and Methods 

Materials 
LPS derived from Escherichia coli O111:B4 was purchased from Sigma-Aldrich (Burlington, MA, USA) and dissolved in 
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phosphate-buffered saline (PBS) to prepare the stock solutions with concentrations of 1 mg/mL. DL-indole-3-lactic acid (ILA), 

3-indoleacetic acid (IAA), indole-3-acetamide (IAM), and indole were purchased from Sigma-Aldrich, and trifluoroacetic acid 

was procured from Daejung Chemicals and Metals (Siheung, Korea). All reagents were stored as specified by the 

manufacturer. The following antibodies were used in the study: Zona occludens 1 (ZO-1) antibody (Cat No.21772-1-AP, 

Proteintech, Chicago, IL, USA), claudin-1 antibody (Cat No. ab211737, Abcam, Cambridge, UK), nuclear factor-kappa B (NF-

κB) antibody (sc-372, Santa Cruz Biotechnology, Dallas, TX, USA), p-NF-κB p65 (Cell Signaling Technology, Danvers, MA, 

USA), β-actin C4 antibody (sc-4778, Santa Cruz Biotechnology, Dallas, TX, USA), secondary R-antibody (Cat. No. A11036, 

Invitrogen, Waltham, MA, USA), and Westar Supernova (Code.XLS3,0100, Cyanagen, Srl, Bologna, Italy). 

 

Indole test  
Twenty-one probiotic candidates (Table 1) were cultivated in MRS medium (DifcoTM Lactobacilli MRS broth, BD 

Diagnostics, Franklin Lakes, NJ, USA) for 24 h at 37℃. Before use, the overnight LABs were diluted to a cell density of 107 

CFU/mL in MRS broth prior to use. Indole was added at a final concentration of 58.5 mg/mL, and the cells were incubated at 

37℃ for 24 h. Then samples were centrifuged at 2,719.5×g for 15 min at room temperature. A total of 1 mL of the 

supernatant was collected and mixed immediately with 0.4 mL of Kovac’s reagent to determine the extracellular indole 

concentration. After the Kovac’s reagent was added, the mixture was vortexed to separate the phases. The top phase was 

collected, and the absorbance was measured at 540 nm. 

 

Bacterial cultivation and cell-free supernatant (CFS) harvesting 
L. curvatus BYB3 cells were isolated from traditional homemade kimchi in Gwangju and Jeollanam-do, and maintained in 

MRS broth. Cells were incubated in the MRS broth at 37℃ and centrifuged at 1,500×g for 15 min at room temperature to 

obtain cell pellets. The pellets were stored in 10% glycerol or skim milk at –80℃ until further use. The supernatant was 

filtered using a 0.2 µm syringe (Sartorius AG, Gottingen, Germany). The cells in the indole group were treated with 58.5 

mg/mL indole, those in the BYB3 group were incubated with L. curvatus BYB3, and those in the BYB3+indole group were 

treated with both L. curvatus BYB3 and 58.5 mg/mL indole. The three groups were incubated in the MRS medium for 24 h at 

37℃. The cell pellets were discarded, and the CFSs were used to treat the Caco-2 cells. 

 

Cell culturing and treatment protocol 
The Caco-2 cells used in the study were obtained from the Korean Cell Line Bank (No.30037.1, Seoul, Korea). Caco-2 

cells were cultured in Modified Eagles Medium (MEM), high glucose (HyClone Laboratories, Logan, UT, USA), 

supplemented with 20% fetal bovine serum (GibcoTM, Thermo Fisher Scientific, Waltham, MA, USA), 1% MEM non-

essential amino acids solution (100×; GibcoTM, Thermo Fisher Scientific), and 1% antibiotic-antimycotic solution (GibcoTM, 

Thermo Fisher Scientific) at 37℃ in an atmosphere containing 5% CO2. The medium was replaced every two or three days. 

The Caco-2 cells (1×106 cells) were seeded in a 20×90 mm dish and treated with 10 ng/mL of LPS. They were then treated 

with 1 mL of indole, 1 mL of L. curvatus BYB3, and 1 mL of the BYB3+ indole metabolites supernatants. 

 

Transepithelial electrical resistance (TEER) assay 
Caco-2 cells (1×103 cells/cm2) were seeded in a Corning®, Costar®, Transwell® chamber with 0.4 μm pores (Corning, New 
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York, NY, USA) that had been placed in a 24-well plate. Another Transwell® plate was kept blank. After reaching 

confluence, the cells were differentiated and polarized for 7–10 days in the culture medium. Subsequently, the Caco-2 cells 

were treated with 10 ng/mL of LPS and later with 100 µL of indole supernatant, 100 µL of L. curvatus BYB3 supernatant, 

and 100 µL of BYB3+ indole supernatants. The TEER assay was used to measure cell monolayer integrity before and after 

all treatments. The TEER was measured using an epithelial volt-ohm-meter equipped with a chopstick electrode [Millicell® 

ERS-2 (Electrical Resistance System), EMD Millipore, Burlington, MA, USA]. The electrode was immersed at a 90° angle, 

with one tip in the basolateral chamber and the other in the apical chamber. Care was taken to prevent contact of the electrode 

with the monolayer. Measurements were performed in triplicate for each monolayer. An insert without Caco-2 cells was used 

as a blank; the mean resistance of the blank was subtracted from all samples. The unit area resistance was calculated by 

dividing the resistance values by the effective membrane area (0.33 cm2). 

 

RNA isolation and gene expression analysis 
Caco-2 cells (1×106 cells) seeded in a 20×90 mm dish were treated with 10 ng/mL of LPS followed by treatment with 1 mL 

of indole supernatant, 1 mL of strain 3, 15 and LGG supernatant, and 1 mL of indole+strain 3, 15 and LGG supernatants. 

Table 1. Probiotic candidates tested 

No. Strains Abbreviation Source Renamed genus  
(Zheng et al., 2020) 

1 L. curvatus BYB1 BYB1 Kimchi Latilactobacillus curvatus 

2 L. curvatus BYB2 BYB2 Kimchi Latilactobacillus curvatus 

3 L. curvatus BYB3 BYB3 Kimchi Latilactobacillus curvatus 

4 L. curvatus BYB4 BYB4 Kimchi Latilactobacillus curvatus 

5 L. curvatus BYB7 BYB7 Kimchi Latilactobacillus curvatus 

6 L. brevis OB1 OB1 Kimchi Levilactobacillus brevis 

7 L. brevis OB4 OB4 Kimchi Levilactobacillus brevis 

8 L. brevis OB3 OB3 Kimchi Levilactobacillus brevis 

9 L. sakei OB8 OB8 Kimchi Latilactobacillus sakei 

10 L. casei MYA5 MYA5 Kimchi Lacticaseibacillus casei 

11 L. sakei JNU533 JNU533 Kimchi Latilactobacillus sakei 

12 L. sakei MYA6 MYA6 Kimchi Latilactobacillus sakei 

13 L. fermentum NS4 NS4 Kimchi Limosilactobacillus fermentum 

14 L. amylovorus CH6 KCNU Swine intestine Unchanged 

15 L. acidophilus GP1B GP1B Swine intestine Unchanged 

16 L. plantarum L67 L67 Infant feces Lactiplantibacillus plantarum 

17 L. plantarum OY1 OY1 Kimchi Lactiplantibacillus plantarum 

18 L. plantarum OY2 OY2 Kimchi Lactiplantibacillus plantarum 

19 L. fermentum JNU532 JNU532 Kimchi Limosilactobacillus fermentum 

20 L. fermentum JNU534 JNU534 Kimchi Limosilactobacillus fermentum 

21 L. rhamnosus GG LGG Human intestine Latilactobacillus rhamnosus 
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After incubation for 24 h, the cells were collected for further analysis. Total RNA was isolated and converted into 

complementary DNA (cDNA) as described previously. Briefly, 2 µg of total RNA was used to cDNA using a Maxime RT 

PreMix kit (Oligo Dt primer; Cat. No. 25081, iNtRON Biotechnology, Seongnam, Korea). The following primers were used 

for real-time polymerase chain reaction (RT-PCR; Table 2). 

PCR was performed under the following conditions: Initial denaturation at 94℃ for 3 min, followed by 40 cycles of the 

program with incubations at 94℃ for 30 s, 60℃ for 30 s, and 72℃ for 1 min, followed by incubation at 65℃ for 5 s, until 

the end of the program. The relative gene expression levels were determined by comparative analyses using the formula:  
 Relative expression = 2−(∆Ct), with ΔCt = Ct gene − Ct GAPDH 
 

Protein extraction and Western blot analysis 
Caco-2 cells (1×106 cells) were seeded in a 20×90 mm dish and treated with 10 ng/mL of LPS and then 1 mL of the indole 

supernatant, 1 mL of BYB3 supernatant, and 1 mL of indole+BYB3 metabolites supernatant. After incubation for 24 h, the 

cells were collected for further analysis. 

The total protein concentration in the cell lysates was determined using the PRO-PREP protein extraction solution 

(iNtRON Biotechnology). Briefly, 5×106 cells were immersed in 400 µL of the PRO-PREP solution and homogenized in ice 

for 10–20 min. The mixture was then centrifuged at 13,000×g at 4℃ for 5 min, and the extracted protein was collected in the 

supernatant. The protein concentration was determined by the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). 

Equal amounts of protein (50 µg per lane) were separated using 10% sodium dodecyl sulfate-polyacrylamide gel, electroblotted 

(Mini-PROTEAN® II Cell Systems, Bio-Rad Laboratories, Hercules, CA, USA), and transferred to a polyvinylidene 

difluoride membrane (Bio-Rad Laboratories). The proteins were blocked with 5% skim milk (Difco Laboratories, Detroit, 

MI, USA) and underwent overnight antibody incubation against E-cadherin, N-cadherin, Vimentin, and β-actin at 4℃. After 

incubation, the membranes were washed and incubated with horseradish peroxidase-conjugated goat anti-mouse or anti-rabbit 

antibodies for 1 h at room temperature. After each was washed three times with PBST for 10 min, protein bands developed. 

The bands were detected via enhanced chemiluminescence, and the band density was determined using β-actin as the 

reference protein. 

 

Immunofluorescence staining of zona occludens 1 (ZO-1), claudin-1, and nuclear factor-kappa B (NF-κB) 
Caco-2 cells were seeded on a 24-well plate at a density of 1×103 cells/mL. These cells were treated with 10 ng/mL of LPS 

Table 2. Primer sequences for quantitative polymerase chain reaction (PCR)

Gene Primer sequences References 

CYP1A1 F: TCGGCCACGGAGTTTCTTC (Yang et al., 2022) 

CYP1A1 R: GGTCAGCATGTGCCCAATCA  

AhR F: CAAATCCTTCCAAGCGGCATA (Behfarjam and Jadali, 2018) 

AhR R: CGCTGACCTAAGAACTGAAAG  

GAPDH F: GAAATCCCA CACCATCTTCC  

GAPDH R: AAATGAGCCCCAGCCTTCT  

CYP, cytochrome P450; AhR, aryl hydrocarbon receptor; GAPDH, glyceraldehyde-3-phosphate dehydrogenase. 
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and then with 100 µL each of indole, L. curvatus BYB3, BYB3+indole metabolite supernatants. After treatment for 24 h, the 

cells were collected for the next step. 

The cells were prepared as described in Material and Methods. Caco-2 cells were grown on glass coverslips; the slides 

were washed with PBS for 5 min at room temperature, fixed with 3.7% formaldehyde in PBS buffer for 20 min at 4℃, and 

again rinsed thrice with PBS buffer for 5 min at room temperature. The monolayers were permeabilized with 0.5% TritonTM 

X-100 (Sigma-Aldrich) for 20 min at room temperature and rinsed three times with PBS buffer for 2 min at room 

temperature. The slides were blocked with 5% skim milk in tris buffered saline with Tween® (TBST) for 1 h at room 

temperature without rinsing. They were then incubated with rabbit polyclonal anti-ZO-1 antibody, rabbit monoclonal anti-

claudin-1 antibody, and rabbit polyclonal anti-NF-κB p65 antibody for 2 h at room temperature. The slides were rinsed thrice 

with TBST for 5 min at room temperature. The remaining incubations were performed in the dark. The slides were further 

incubated with an Alexa Fluor® 568 goat anti-rabbit secondary antibody (Abcam). Nuclei were stained using 4’,6-diamidino-

2-phenylindole dihydrochloride (DAPI; Cat. No D1306, Invitrogen) for 15 s at room temperature. The samples were covered 

with a coverslip using the Vectashield® anti-fade mounting medium (Vector cat. #H-1000, Vector Laboratories, Newark, CA, 

USA). The edges of the coverslips were sealed by nail polishing. The slides were examined and analyzed using a 

fluorescence microscope (Olympus BX50, Olympus, Tokyo, Japan). 
 

Analysis of the metabolites in the cell-free supernatants (CFSs) by high-performance liquid chromatography 

(HPLC) 
The indole derivatives in the CFSs were analyzed as previously described. Briefly, filtered samples were injected (10 mL), 

in triplicate, into an HPLC system (KNAUER, Wissenschaftliche Geräte GmbH, Berlin, Germany) equipped with a C-18 

gravity 150×4.6 mm column, particle size: 5 μm (Macherey-Nagel GmbH & Co. KG, Düren, Germany). The flow rate was 

set to 1 mL/min, and the column oven temperature was maintained at 30℃. The running buffers were 0.3% trifluoroacetic 

acid solutions prepared in ultra-pure water (A) and acetonitrile (B). The process was initiated with an A:B ratio of 90:10; the 

linear gradient was applied to reach this ratio in 1 min. The steps included gradients with 55% solution A: 45% solution B for 

28 min, 5% solution A: 95% solution B for 30 and 35 min, and 90% solution A: 10% solution B for 36 min. The 

measurements were stopped after 45 min. The detection wavelength was set at 280 nm. 
 

Statistical analysis 
All data are presented as mean±SD of triplicate experiments. Statistical significance comparing different sets of groups was 

determined using the Student’s t-test. In experiments comparing multiple experimental groups, statistical differences between 

groups were analyzed using one-way analysis of variance (ANOVA). Statistical analyses were performed using IBM® SPSS® 

Statistics 20 (IBM, Chicago, IL, USA), and a p<0.05 was considered statistically significant. 
 

Results 

Indole test result of the probiotic candidates’ cell-free supernatants (CFSs) 
The probiotic candidates (Table 1 and Fig. 1) show the Lactobacillus strains’ ability to metabolize and reduce indole 

concentration during fermentation. Among the tested Lactobacillus strains, 3 (L. curvatus BYB3), 15 (Lactobacillus 

acidophilus), and 21 (Lactilacobacillus rhamnosus GG) demonstrated remarkable indole reducing abilities and were selected 
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for subsequent analyses. 

 

Metabolites of Latilactobacillus curvatus BYB3 and indole significantly increased aryl hydrocarbon receptor 

(AhR) activation in lipopolysaccharide (LPS)-treated Caco-2 cells 
Caco-2 cells were treated with the 10% MRS as the control and 10% supernatant of the strains (3, 15, and 21) previously 

screened for 24 h. Treatment of the Caco-2 cells with 10 ng/ mL of LPS simulated the conditions of colitis. A previous study 

detected increased expression of CYP1A1, which is indicative of the AhR activation (Yu et al., 2018). To confirm the 

activation of the AhR by the metabolites, the mRNA expression levels of CYP1A1 and AhR were determined after treating the 

Caco-2 cells for 24 h with LPS alone or in combination with other supernatants. The supernatants of L. curvatus BYB3 and 

indole significantly increased the mRNA expression CYP1A1 and AhR by 35-fold and 3-fold, respectively (Figs. 2A and B). 

 

Metabolites of Latilactobacillus curvatus BYB3 and indole increased the transepithelial electrical resistance 

(TEER) in lipopolysaccharide (LPS)-induced Caco-2 cells 
The TEER was used to measure cell monolayer integrity, which was assessed before and after all treatments. LPS increased 

the permeability of the intestinal epithelial barrier. However, the effects of the metabolites of L. curvatus BYB3 and indole on 

the LPS-mediated increase in intestinal permeability are unknown. LPS significantly decreased the TEER after 12 h; the 

reduction continued for 24 h after application (Fig. 3). In contrast, the metabolites of L. curvatus BYB3 and indole remarkably 

increased the TEER. This finding suggests that the metabolites reduced the permeability of the intestinal epithelial barrier. In 

addition, the supernatants of L. curvatus BYB3 and indole increased the TEER. However, co-treatment with the metabolites 

and LPS significantly restored the LPS-mediated increase in the permeability of the intestinal epithelial barrier in Caco-2 

cells (Figs. 2 and 3). Hence, these metabolites could significantly protect against LPS-induced intestinal permeability. 

Fig. 1. Indole test results of the probiotic candidates’ CFSs. Indole test of 21 candidate strains for examination of metabolism. The mean
values of the samples are significantly different (indicated by different letters). Different letters indicate significant differences according 
to the change in indole concentration from low to high. The values of the experimental groups were normalized to those of the control
groups, and statistically significant differences are indicated by * p<0.05, ** p<0.01. Data are presented as the mean±SD (n=3). CFS, cell-
free supernatant. 
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Effect of metabolites of Latilactobacillus curvatus BYB3 and indole on the expression of tight junction (TJ) 

proteins and inflammatory responses in Caco-2 cells 
LPS down-regulated the expression of the ZO-1, occludin, and claudin-1 proteins. Caco-2 cells were co-treated with 10 

ng/mL of LPS, the supernatants of indole and L. curvatus BYB3, and the metabolites of BYB3+indole for 24 h to determine 

alterations in the expression of the TJ proteins. The Caco-2 cells treated with L. curvatus BYB3+indole showed increased 

expression of the ZO-1 and claudin-1 proteins compared to cells treated with LPS alone (Figs. 4A and B). Furthermore, cells 

treated with the metabolites of BYB3+indole showed a significant increase in the expression of ZO-1 and claudin-1. 

(A) (B) 

Fig. 2. Metabolites of Latilactobacillus curvatus BYB3 and indole significantly increased AhR activation in LPS-treated Caco-2 cells. (A, B) 
Show the mRNA levels of CYP1A1 and AhR in 10 ng/mL LPS-induced cells, respectively. The sample sequence is the control (supernatant
of the medium MRS), and supernatants after treatment with indole, L. curvatus BYB3, BYB3+indole, strain 15, strain 15+indole, strain 21, 
strain 21+indole, which were added in turn. Different letters indicate the mean values of the samples that are significantly different
according to the changes in mRNA expression. Experimental groups were normalized to control groups; statistically significant differences 
are shown by * p<0.05 and ** p<0.01. Data are presented as mean±SD (n=3). CYP, cytochrome P450; LPS, lipopolysaccharide; AhR, aryl
hydrocarbon receptor. 

 

Fig. 3. Metabolites of Latilactobacillus curvatus BYB3 and indole increased the TEER in LPS-treated Caco-2 cells. Metabolites of L. 
curvatus BYB3 and indole significantly increased the TEER of Caco-2 cell monolayers in response to an inflammatory stimulus (LPS). After
incubation with 10 ng/mL of LPS, the supernatants were incubated with indole, L. curvatus BYB3, and BYB3+indole from 0 to 24 h. The 
data are presented as the mean±SD (n=3). Statistically significant differences are shown by * p<0.05 and ** p<0.01. TEER, transepithelial 
electrical resistance; LPS, lipopolysaccharide. 
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To explore the anti-inflammatory effects of the metabolites on Caco-2 cells, alterations in NF-κB, a biomarker of 

inflammation, were examined. NF-κB p65 and the protein levels of total and phospho-p65 were detected by Western blot 

analysis. Compared to the LPS-treated cells (10 ng/mL, control), the Caco-2 cells treated with the supernatants of L. curvatus 

BYB3, indole, and metabolites of BYB3+indole showed decreased NF-κB expression. The reduction was significant in the 

presence of the metabolites of L. curvatus BYB3+indole. Interestingly, co-treatment with the metabolites of L. curvatus 

BYB3+indole and LPS had a remarkable effect on the attenuation of LPS-induced inflammation. 

 

Immunofluorescence of the metabolites of Latilactobacillus curvatus BYB3 and indole  
Immunofluorescence was used to detect the localization and expression of TJ proteins, as these results were more intuitive. 

The LPS-treated group showed severe disruption in the structure of TJ proteins structure (Fig. 5). In contrast, the TJ protein 

ZO-1 was intact without any damage in the cells treated with LPS+BYB3+indole. LPS-induced disruption was repaired in the 

LPS+indole, and LPS+BYB3 treated groups. Examination of claudin-1 expression revealed a trend similar to that observed 

for ZO-1 (Figs. 5A and B). 

Consistent with this observation, immunofluorescence analysis of NF-κB demonstrated that p65 accumulated within the 

nucleus of Caco-2 cell monolayers treated with the metabolites of L. curvatus BYB3+indole. However, incubation with LPS 

decreased LPS-induced nuclear accumulation of NF-κB (Fig. 5C). 

 

Identification and verification of indole compounds in the samples using high-performance liquid 

chromatography (HPLC) 
HPLC analysis was performed to precisely identify and quantify indole derivatives. Several indole derivatives (100 µM 

each) were separated, and their peaks were detected by HPLC using a C-18 reverse column (Fig. 6). Under optimal 

conditions, the retention times of IAM, ILA, IAA, and indole were 13.2, 16.1, 19.3, and 29.1 min, respectively (Fig. 6A). The 

peak in Fig. 6B corresponds to the main components because of the presence of indole from the supernatants of the indole-

(A) (B) 

Fig. 4. Expression of TJ proteins and inflammatory responses. Caco-2 cells were co-treated with 10 ng/mL of LPS and indole, Latilactobacillus 
curvatus BYB3, and BYB3+indole for 24 h. Cells treated with LPS (10 ng/mL) alone served as the control. LPS down-regulated the expression of 
ZO-1 and claudin-1, increased paracellular permeability, and disrupted the epithelial membrane integrity (A). Protein expression was restored
in the treatment groups. The metabolites of the L. curvatus BYB3+indole group showed the most significant increase in ZO-1 expression and a 
decrease in NF-κB expression. Graph (B) showed the ratios of the proteins ZO-1, claudin-1, and NF-κB, respectively, according to the β-actin 
calculated from the band density via western blots analysis (* p<0.05, ** p<0.01, *** p<0.001 compared with the control, n=3). ZO-1, zona 
occludens 1; NF-κB, nuclear factor-kappa B; LPS, lipopolysaccharide; TJ, tight junction. 
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treated 0 h. The three peaks in Fig. 6C represent IAM, ILA, and indole. The main component in Fig. 6C, indicated by three 

peaks, including two of IAM and one of ILA, represented the supernatant of the L. curvatus BYB3 group fermented for 24 h. 

The indole content in the supernatants of the L. curvatus BYB3+indole group was reduced, and IAM and ILA metabolites 

were observed to varying degrees (Fig. 6D). 

 

Discussion 

Indole alleviates the symptoms of gastrointestinal disorders by activating the AhR (Hubbard et al., 2015). Several 

Fig. 5. Immunofluorescence of the localization and expression of TJ proteins. The supernatants of the indole and Latilactobacillus 
curvatus BYB3, and the metabolites of BYB3+indole treatment groups modulated the expression of (A) ZO-1, (B) claudin-1, and (C) NF-κB 
in differentiated Caco-2 cells exposed to an inflammatory stimulus. Caco-2 cells were differentiated and treated with 10 ng/mL of LPS 
(control) for 24 h. The control demonstrated severe disruption of the tight junction proteins. Co-treatment with supernatants of LPS, 
indole, and L. curvatus BYB3+indole improved the ZO-1 protein expression. However, the group treated with LPS and the metabolites of L. 
curvatus BYB3+indole displayed more improvement than those co-treated with LPS+indole and LPS+BYB3. (A) A similar trend was
observed for the expression of claudin-1. (B) The metabolites of L. curvatus BYB3+indole suppressed the LPS-induced activation of NF-κB. 
(C) The reduction observed with the co-treatment of LPS+indole and LPS+BYB3 was lower than that observed in the group co-treated with 
LPS and metabolites of L. curvatus BYB3+indole (n=3). H&E stain, ×40. ZO-1, zona occludens 1; DAPI, 4’,6-diamidino-2-phenylindole 
dihydrochloride; LPS, lipopolysaccharide; NF-κB, nuclear factor-kappa B; TJ, tight junction.  
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Fig. 6. HPLC chromatographs of samples’ indole compounds. (A) Indole and indole derivates (ILA, IAA, and IAM) at 280 nm and UV
spectra of 200–400 nm. (B, C) 0 and 24 h fermentation supernatants of Latilactobacillus curvatus BYB3+indole samples. (D) Indole and 
indole derivatives (ILA and IAM) in the supernatants of the 0 and 24 h fermentations of L. curvatus BYB3+indole samples (n=3). HPLC, 
high-performance liquid chromatography. 



 Metabolites of Latilactobacillus curvatus BYB3 

1057 

compounds have been proposed as putative endogenous AhR ligands, many of which are produced via pathways involved in 

the metabolism of tryptophan and indole, including indole-3-aldehyde, IAA, and many more (Bittinger et al., 2003; Chung 

and Gadupudi, 2011). In our previous study, AhR activation inhibited NF-κB expression, in vivo and in vitro (Salisbury and 

Sulentic, 2015). In macrophages, the activation of AhR signaling blocks NF-κB binding sites and masks NF-κB transcription 

activity, suppressing NLRP3 inflammasome activation (Huai et al., 2014). Hence, the current study aimed to identify the 

potential effect of metabolites of L. curvatus BYB3 and indole in mediating the recovery of TJ after LPS-induced disruption 

of the intestinal barrier in the colon mucosal cell layer. Our preliminary studies showed that L. curvatus BYB3 might play a 

role in alleviating inflammatory responses. However, the association between intestinal TJ proteins and inflammation 

influenced by L. curvatus BYB3 was not elucidated under in vitro conditions. The findings from this study suggest that the 

metabolites of L. curvatus BYB3 and indole can activate the AhR. 

In previous studies, LPS-induced inflammation disrupted the integrity of IECs and increased paracellular permeability (Gao et 

al., 2017). The results from this study demonstrated that the supernatants of L. curvatus BYB3, indole, and metabolites of 

BYB3+indole inhibited LPS-induced inflammation in IECs by enhancing the expression of TJ proteins and decreasing 

paracellular permeability in Caco-2 cells. However, direct evidence is required to explore the association between the supernatants 

of cells treated with L. curvatus BYB3, indole, and the metabolites of L. curvatus BYB3+indole and intestinal permeability; such 

evidence was not available earlier. ZO-1, occludin, and claudin-1 are important TJ proteins that maintain permeability in the small 

intestine (Anderson and Van Itallie, 1995). Western blot analysis revealed that the administration of the metabolites of L. curvatus 

BYB3+indole significantly improved intestinal epithelial barrier function by increasing the expression of the TJ proteins ZO-1 and 

claudin-1. Deregulated NF-κB activation has been previously reported to contribute to the pathogenesis of various inflammatory 

diseases (Liu et al., 2017). In this study, the metabolites of BYB3+indole decreased NF-κB expression. 

In a previous study, we determined that Lactobacillus improved the intestinal epithelial barrier function by increasing the 

expression of TJ proteins (Zeng et al., 2020). TEER is a commonly used indicator of intestinal epithelial membrane 

permeability (Srinivasan et al., 2015). An increase in the TEER and a decrease in paracellular permeability reflect the 

enhancement of the barrier function (Capaldo et al., 2017). The small intestine is one of the main organs of the digestive 

system, and the Caco-2 cell monolayer is a recognized intestinal cell line.  

According to this study’s HPLC analysis, only three indole compounds were detected among the metabolites of L. curvatus 

BYB3+indole, namely IAM, indole, and ILA. Several Bacteroides spp. and Clostridium bartlettii have been reported to 

produce ILA and IAA, whereas Bifidobacterium spp. have been reported to produce ILA (Aragozzini et al., 1979; Russell et 

al., 2013). However, there are few reports of L. curvatus producing ILA.  

Our results provide evidence that microbiota-mediated metabolism inhibits LPS-induced inflammation, increasing the 

expression of TJ proteins. Based on the primary research results of this study, key metabolic molecules that improve 

intestinal should be investigated in further studies. We demonstrated that the metabolites of L. curvatus BYB3 and indole 

inhibited LPS-induced inflammation in IECs by enhancing TJs, which, in turn, reduced paracellular permeability. HPLC 

results confirmed that various concentrations of indole and indole derivatives (ILA and IAM) enhance TJ protein expression. 

This protective effect may provide a potential approach to restoring TJ barrier function, and AhR may be a novel therapeutic 

target in gut health and diseases such as IBD.  
 

Conflicts of Interest 

The authors declare no potential conflicts of interest. 



Food Science of Animal Resources  Vol. 42, No. 6, 2022 

1058 

Acknowledgements 

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea 

(NRF) funded by the Minister of Education, Science, and Technology (NRF-2019R1A2C108764811). 

 

Author Contributions 

Conceptualization: Oh S. Data curation: Wang X, Yong CC, Oh S. Formal analysis: Wang X. Methodology: Wang X, 

Yong CC. Software: Wang X. Validation: Wang X, Yong CC. Investigation: Wang X, Yong CC. Writing - original draft: 

Wang X, Oh S. Writing - review & editing: Wang X, Yong CC, Oh S. 

 

Ethics Approval 

This article does not require IRB/IACUC approval because there are no human and animal participants. 

 

References 

Anderson JM, Van Itallie CM. 1995. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J 

Physiol Gastrointest Liver Physiol 269:G467-G475. 

Aragozzini F, Ferrari A, Pacini N, Gualandris R. 1979. Indole-3-lactic acid as a tryptophan metabolite produced by 

Bifidobacterium spp. Appl Environ Microbiol 38:544-546. 

Arrieta MC, Madsen K, Doyle J, Meddings J. 2009. Reducing small intestinal permeability attenuates colitis in the Il10 gene-

deficient mouse. Gut 58:41-48. 

Behfarjam F, Jadali Z. 2018. Increased expression of aryl hydrocarbon receptor in peripheral blood mononuclear cells of 

patients with autoimmune hepatitis. Middle East J Dig Dis 10:105-108. 

Bittinger MA, Nguyen LP, Bradfield CA. 2003. Aspartate aminotransferase generates proagonists of the aryl hydrocarbon 

receptor. Mol Pharmacol 64:550-556. 

Capaldo CT, Powell DN, Kalman D. 2017. Layered defense: How mucus and tight junctions seal the intestinal barrier. J Mol 

Med 95:927-934. 

Chung KT, Gadupudi GS. 2011. Possible roles of excess tryptophan metabolites in cancer. Environ Mol Mutagen 52:81-104. 

Citi S. 2018. Intestinal barriers protect against disease. Science 359:1097-1098. 

Esser C, Rannug A. 2015. The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol 

Rev 67:259-279. 

Gao Y, Li S, Wang J, Luo C, Zhao S, Zheng N. 2017. Modulation of intestinal epithelial permeability in differentiated Caco-

2 cells exposed to aflatoxin M1 and ochratoxin a individually or collectively. Toxins 10:13. 

Guo S, Al-Sadi R, Said HM, Ma TY. 2013. Lipopolysaccharide causes an increase in intestinal tight junction permeability in 

vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol 

182:375-387. 

Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. 2015. Lipopolysaccharide regulation of intestinal tight junction 

permeability is mediated by TLR4 signal transduction pathway activation of FAK and Myd88. J Immunol 195:4999-



 Metabolites of Latilactobacillus curvatus BYB3 

1059 

5010. 

Han Y, Zhao Q, Tang C, Li Y, Zhang K, Li F, Zhang J. 2020. Butyrate mitigates weanling piglets from lipopolysaccharide-

induced colitis by regulating microbiota and energy metabolism of the gut–liver axis. Front Microbiol 11:588666. 

Huai W, Zhao R, Song H, Zhao J, Zhang L, Zhang L, Gao C, Han L, Zhao W. 2014. Aryl hydrocarbon receptor negatively 

regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat Commun 5:4738. 

Hubbard TD, Murray IA, Perdew GH. 2015. Indole and tryptophan metabolism: Endogenous and dietary routes to Ah 

receptor activation. Drug Metab Dispos 43:1522-1535. 

Lee JH, Wood TK, Lee J. 2015. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol 

23:707-718. 

Lee SH. 2015. Intestinal permeability regulation by tight junction: Implication on inflammatory bowel diseases. Intest Res 
13:11-18. 

Liu T, Zhang L, Joo D, Sun SC. 2017. NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. 

Marlowe JL, Fan Y, Chang X, Peng L, Knudsen ES, Xia Y, Puga A. 2008. The aryl hydrocarbon receptor binds to E2F1 and 

inhibits E2F1-induced apoptosis. Mol Biol Cell 19:3263-3271. 

Neavin DR, Liu D, Ray B, Weinshilboum RM. 2018. The role of the aryl hydrocarbon receptor (AhR) in immune and 

inflammatory diseases. Int J Mol Sci 19:3851. 

Odenwald MA, Turner JR. 2017. The intestinal epithelial barrier: A therapeutic target? Nat Rev Gastroenterol Hepatol 14:9-

21. 

Powell DN, Swimm A, Sonowal R, Bretin A, Gewirtz AT, Jones RM, Kalman D. 2020. Indoles from the commensal 

microbiota act via the AhR and IL-10 to tune the cellular composition of the colonic epithelium during aging. Proc Natl 

Acad Sci USA 117:21519-21526. 

Russell WR, Duncan SH, Scobbie L, Duncan G, Cantlay L, Graham Calder A, Anderson SE, Flint HJ. 2013. Major 

phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol Nutr Food 

Res 57:523-535. 

Salisbury RL, Sulentic CEW. 2015. The AhR and NF-κB/rel proteins mediate the inhibitory effect of 2,3,7,8-

tetrachlorodibenzo-p-dioxin on the 3’ immunoglobulin heavy chain regulatory region. Toxicol Sci 148:443-459. 

Sonowal R, Swimm A, Sahoo A, Luo L, Matsunaga Y, Wu Z, Bhingarde JA, Ejzak EA, Ranawade A, Qadota H, Powell DN, 

Capaldo CT, Flacker JM, Jones RM, Benian GM, Kalman D. 2017. Indoles from commensal bacteria extend healthspan. 

Proc Natl Acad Sci USA 114:E7506-E7515. 

Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. 2015. TEER measurement techniques for in vitro 

barrier model systems. J Lab Autom 20:107-126. 

Swimm A, Giver CR, DeFilipp Z, Rangaraju S, Sharma A, Ulezko Antonova A, Sonowal R, Capaldo C, Powell D, Qayed M, 

Kalman D, Waller EK. 2018. Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-

versus-host disease. Blood 132:2506-2519. 

Tlaskalová-Hogenová H, Štěpánková R, Hudcovic T, Tučková L, Cukrowska B, Lodinová-Žádnı́ková R, Kozáková H, 

Rossmann P, Bártová J, Sokol D, Funda DP, Borovská D, Řeháková Z, Šinkora J, Hofman J, Drastich P, Kokešová A. 

2004. Commensal bacteria (normal microflora), mucosal immunity and chronic inflammatory and autoimmune diseases. 

Immunol Lett 93:97-108. 

Tsukita S, Furuse M, Itoh M. 2001. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2:285-293. 



Food Science of Animal Resources  Vol. 42, No. 6, 2022 

1060 

Turner JR. 2009. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799-809. 

Van Itallie CM, Anderson JM. 2006. Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403-429. 

Wang X, Li D, Meng Z, Kim K, Oh S. 2022. Latilactobacillus curvatus BYB3 isolated from kimchi alleviates dextran sulfate 

sodium (DSS)-induced colitis in mice by inhibiting IL-6 and TNF-R1 production. J Microbiol Biotechnol 32:348-354. 

Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G. 2009. Metabolomics analysis reveals large 

effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106:3698-3703. 

Xie G, Peng Z, Raufman JP. 2012. Src-mediated aryl hydrocarbon and epidermal growth factor receptor cross talk stimulates 

colon cancer cell proliferation. Am J Physiol Gastrointest Liver Physiol 302:G1006-G1015. 

Yang Z, Yu H, Tu H, Chen Z, Hu K, Jia H, Liu Y. 2022. Influence of aryl hydrocarbon receptor and sulfotransferase 1A1 on 

bisphenol AF-induced clastogenesis in human hepatoma cells. Toxicology 471:153175. 

Yu M, Wang Q, Ma Y, Li L, Yu K, Zhang Z, Chen G, Li X, Xiao W, Xu P, Yang H. 2018. Aryl hydrocarbon receptor 

activation modulates intestinal epithelial barrier function by maintaining tight junction integrity. Int J Biol Sci 14:69-77. 

Zeng Y, Zhang H, Tsao R, Mine Y. 2020. Lactobacillus pentosus s-pt84 prevents low-grade chronic inflammation-associated 

metabolic disorders in a lipopolysaccharide and high-fat diet c57/bl6j mouse model. J Agric Food Chem 68:4374-4386. 

Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, O’toole PW, Pot B, Vandamme P, Walter J, Watanabe K, 

Wuyts S, Felis GE, Gänzle MG, Lebeer S. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel 

genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and 

Leuconostocaceae. Int J Syst Evol Microbiol 70:2782-2858. 


