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Abstract  Semi-dried restructured sausages are restructured meat products with a high 
nutritional and economic value. However, excessively long drying times can have 
negative effects on the energy consumption, texture, and sensory properties of semi-dried 
restructured sausages. The objective of this study was to investigate the effects of 
different water contents on the drying and physicochemical characteristics of semi-dried 
restructured sausages. Sausages were prepared with different initial moisture contents 
(0%−50%) and drying time (0−580 min). The drying characteristics, including the drying 
rate, effective moisture diffusivity, and water activity of sausage were significantly 
improved as the initial moisture content was increased. When the initial moisture content 
of the sausage was 50%, physicochemical properties, such as color, porosity, shear force, 
and volatile basic nitrogen, were improved the most along with the decreased drying 
time. Scanning electron microscopy data showed greater porosity and pore size in 
sausages with the increase of initial moisture content. Collectively, our data suggest that 
an increase in the initial moisture content of semi-dried restructured sausages improves 
their drying characteristics and physicochemical properties. 
  
Keywords  semi-dried restructured sausage, initial moisture content, drying characteristic, 
physicochemical property 

Introduction 

Meat-restructuring technology is a method that partially or completely disassembles 

and reforms meat in a different form (Sun, 2009). This technology can improve the 

quality characteristics (e.g., structure, texture, appearance, and nutritional value) of 

meat products and has been applied to low-quality cuts of meat to produce value-added 

meat products (Gadekar et al., 2014). Therefore, the manufacture of restructured meat 

products using low-quality meat cuts has economic advantages in the meat industry 

(Gurikar et al., 2014).  
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Semi-dried restructured sausages, one of the restructured meat products, have higher protein content and lower moisture 

content than regular sausages (Choi et al., 2016). However, the structural complexity of semi-dried restructured sausages, 

composed of meat and other functional ingredients, has been reported to reduce thermal conductivity and permeability during 

the drying process (Han et al., 2011). Therefore, the manufacture of semi-dried restructured sausages requires a long time and 

high energy consumption. 

The drying process in semi-dried restructured sausage is an important procedure for determining quality and storage 

stability, and hot-air drying is a conventionally used in these products (Aykın Dinçer, 2021; Jin et al., 2017). During hot air 

drying, moisture in the internal muscle migrates to the surface of the product because of heat conduction from the air onto the 

surface of the meat, resulting in moisture evaporation (Shi et al., 2021b). Thus, increased drying time induces tough texture 

and off-flavor (Arnau et al., 2007), and deteriorates the quality of final products such as tenderness, color, flavor, and 

nutrients (Ran et al., 2019). 

Moisture content is known to be highly associated with thermal diffusivity, mass transfer, and specific heat during the food 

drying process (Mariani et al., 2008; Modi et al., 2014; Razavi and Taghizadeh, 2007). In particular, the high initial moisture 

content of meat products attenuates the particle-particle interaction in materials, thereby resulting in increased porosity and 

shortened drying time (Deng et al., 2018; Jerwanska et al., 1995). A previous study reported that the high porosity of products 

improves heat and mass transfer during the drying process (Datta, 2007). In addition, the increase in porosity through the use 

of various processing methods, such as vacuum, freeze, microwave, and infrared radiation treatments, improved the drying 

characteristics and quality properties (Aykın Dinçer, 2021; Kumar and Karim, 2019; Riadh et al., 2015). Furthermore, the 

formation of a porous structure in dried meat products inhibits the shrinkage and tough texture of jerky (Kim et al., 2021a). 

We hypothesized that increase of initial moisture contents could improve the drying rates and physicochemical properties 

of semi-dried restructured sausages by increasing porosity and moisture diffusivity. Therefore, this study aimed to investigate 

the effects of different initial moisture contents on the drying characteristics and physicochemical properties of semi-dried 

restructured sausages. 

 

Materials and Methods 

Preparation of semi-dried restructured sausage 
Fresh pork ham was purchased from a local market (Incheon, Korea), and the visible connective tissue from the meat was 

trimmed. The lean meat was ground using a meat grinder (MGB-32, Hankook Fujee Industries, Suwon, Korea) through a 3 

mm plate. Six different formulations and the initial moisture contents of the semi-dried restructured sausages are listed in 

Table 1. Briefly, sausage samples were prepared using combinations of pork/water as follows: 100/0%, 90/10%, 80/20%, 

70/30%, 60/40%, and 50/50% (w/w) with 1% salt based on the pork weight (w/w). Ground lean meat and salt were 

homogenized for 1 min in a mixer (K5SS, KitchenAid, St. Joseph, MI, USA) and then homogenized with ice. After 

homogenization, the meat batter was stuffed into a collagen casing (10 mm, COLFAN, Lodi, CA, USA) and the length of 

each sausage was set at 100 mm. All samples were frozen at −18℃ until the core temperature of each sample reached −15℃, 

followed by removal of the casing. 

 

Drying procedure for semi-dried restructured sausage 
The sausages were dried in a convection dry oven (HSC-150, AccuResearch Korea, Hanam, Korea). The constant air 
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velocity in the dry oven was 0.5±0.1 m/s, being continuously measured over 3 min. All samples were dried equally at 85℃ 

for different time periods (10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 180, 240, 300, 360, and 580 min). The samples were 

removed from the oven at each time point, and the moisture contents were determined according to the official AOAC 

method (AOAC, 2000). The drying kinetics of semi-dried restructured sausage were illustrated using moisture content (g/g, 

dry basis), moisture ratio (g/g), drying rate (g/(g·h)), and effective moisture diffusivity (m2/s) (Xie et al., 2020). All treatment 

groups had six replicates and each group weighed approximately 4 kg. 

 

Moisture content 
The moisture content of semi-dried restructured sausage at any time was calculated using the following Equation (1). 

 

 

where 𝑊௧ (g water/ g dry basis) and 𝑊ௗ௦ (g) are the weight of sausage at t time of drying and the final dry weight of 

sausage which can be calculated by initial weight and moisture content. 

 

Moisture ratio  
The moisture ratio (MR) during the drying experiments can be expressed by Equation (2). 
 

 

where 𝑀଴, 𝑀௧, and 𝑀௘ are the initial moisture content (g/g), moisture content at time t (g/g), and equilibrium moisture 

content during the drying process (g/g), respectively. Equation (2) can be simplified to Equation (3). 
 

 

where, during long drying times, the value of 𝑀௘ is regarded as zero compared to 𝑀௧ and 𝑀଴ (Aykın-Dinçer and Erbaş, 2018). 

Table 1. Formulation of semi-dried restructured sausages with different water addition levels

Treatment1) Pork (%) Water (%) Salt (% of pork weight) Initial moisture content (db, g)2) 

WAL0 100 - 1.00 2.34±0.14 

WAL10 90 10 1.00 2.81±0.24 

WAL20 80 20 1.00 3.42±0.28 

WAL30 70 30 1.00 4.15±0.30 

WAL40 60 40 1.00 5.11±0.33 

WAL50 50 50 1.00 6.69±0.28 
1) WAL0, 100% pork; WAL10, 90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% 

water; WAL50, 50% pork/50% water of semi-dried restructured sausage. 
2) Data are shown as mean±SD. 

  𝑀௧ = 𝑊௧ − 𝑊ௗ௦𝑊ௗ௦  (1)

  𝑀𝑅 = 𝑀௧ − 𝑀௘𝑀଴ − 𝑀௘ (2)

  𝑀𝑅 = 𝑀௧𝑀଴ (3)
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Drying rate  
The drying rate (DR) can be calculated from the mass of water removed from the material per unit of time in units of mass. 

This can be expressed using Equation (4). 

 

 

where t1 and t2 are the specific drying times (min). 𝑀௧ଵ and 𝑀௧ଶ, calculated using Equation (1), are the moisture contents 

at times t1 and t2 on a dry basis (g/g), respectively. 

 

Effective moisture diffusivity (Deff) 
The migration of moisture during the drying process is controlled by diffusion. According to Fick’s second law of 

diffusion, effective moisture diffusivity (m2/s) can be calculated when the moisture content of the semi-dried restructured 

sausage was reduced below 0.5 g/g (dry basis) using the following Equation (5). 
 

 

Using an infinite slab geometry and consistent initial moisture distribution, Equation (5) can be calculated according to 

Equation (6) (Aykın-Dinçer and Erbaş, 2018). 
 

 

where n is the number of experiments, t the drying time (s), and L the half thickness of the sausage (m). Equation (6) can 

be simplified to Equation (7) by taking the natural logarithms. 
 

 

The effective moisture diffusivity was calculated by plotting the drying data at a given drying time using the slope of the 

graph acquired from ln(𝑀𝑅). This can be expressed by Equation (8). 
 

 

Physicochemical characteristics of semi-dried restructured sausage 
Sausages with different water contents (0%, 10%, 20%, 30%, 40%, and 50%) were prepared under the same condition of 

below 0.5 g/g moisture content on a dry basis. Samples were dried at 85℃ for 360, 350, 350, 300, 270, and 270 min using a 

convection dry oven (HSC-150). The moisture content of each sample was determined using the AOAC method (2000). The 

  𝐷𝑅 = 𝑀௧ଵ − 𝑀௧ଶ𝑡ଶ − 𝑡ଵ  (4)

  𝜕𝑀𝜕𝑡 = 𝐷௘௙௙∇ଶ𝑀 (5)

  𝑀𝑅 = 𝑀௧ − 𝑀௘𝑀଴ − 𝑀௘ = 8𝜋ଶ ෍ 1(2𝑛 + 1)ଶஶ௡ୀ଴ 𝑒𝑥𝑝 ቆ− (2𝑛 + 1)ଶ𝜋ଶ4𝐿ଶ 𝐷௘௙௙𝑡ቇ (6)

  ln 𝑀𝑅 = ln 8𝜋ଶ − 𝜋ଶ4𝐿ଶ 𝐷௘௙௙𝑡 (7)

  𝐷௘௙௙ = 𝑠𝑙𝑜𝑝𝑒 × 4𝐿ଶ𝜋ଶ  (8)
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physicochemical characteristics of the sausages were determined by measuring the water activity, pH, color, porosity, volatile 

basic nitrogen, shear force, and microstructure. 

 

Water activity 
A water activity meter (Humimeter RH2, Schaller, Austria) was used to measure the water activity of semi-dried 

restructured sausages at a temperature of 25±1℃. 

 

pH value 
Semi-dried restructured sausages (5 g) and distilled water (20 mL) were homogenized using a homogenizer (Daihan 

Scientific, Gangwon, Korea) for 2 min at 10,000 rpm. The pH of the homogenate was determined using a LAQUA pH meter 

(Horiba, Kyoto, Japan). 

 

Color evaluation 
The color of the semi-dried restructured sausages was determined using a colorimeter (CR-210, Minolta Camera, Osaka, 

Japan). It is expressed using L* (lightness), a* (redness), and b* (yellowness) color values according to the CIE (International 

Commission on Illumination). The colorimeter was calibrated using a white plate (L*=97.27, a*=5.21, and b*=−3.40). 

 

Porosity 

For the calculation of porosity (𝜀, %), the apparent density (ρ௔, g/cm) and real density (ρ௥, g/cm) were required (Silva-

Espinoza et al., 2019). The apparent density refers to the weight (m, g) per volume (V, cmଷ) of the material, including water 

and pores. Real density also refers to the weight per volume but does not consider the pores in the material. The apparent 

density can be expressed by Equation (9). 
 

 

where the real density is calculated based on the composition of the sample according to Equation (10). 
 

 

where 𝑋ௐ is the mass fraction of water, 𝜌ௐ the density of water (0.9976 g/cm3), 𝑋஼ு the mass fraction of carbohydrates, 

and 𝜌஼ு the density of carbohydrates (1.4246 g/cm3). The porosity was calculated using Equation (11). 
 

 

Shear force analysis 
The shear force of the semi-dried restructured sausage was obtained using a texture analyzer (TA-XT2i, Stable Micro 

  𝜌௔ =  𝑚𝑉  (9)

  ρ௥ = 1𝑋ௐρௐ + 𝑋஼ுρ஼ு  (10)

  𝜀 = ൬𝜌௥ − 𝜌௔𝜌௥ ൰ × 100 (11)
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Systems, Surry, UK) with a V-slot blade (Warner-Bratzler, Hamilton, MA, USA). The texture analyzer was operated at pre-test 

speed 2.0 mm/s, test speed 2.0 mm/s and post-test speed 1.0 mm/s at 25±1℃. The shear force was expressed in kilograms (kg). 

 

Volatile basic nitrogen (VBN) 
Volatile basic nitrogen (VBN) was measured using microdiffusion analysis as previously described (Kim et al., 2019). 

Semi-dried restructured sausage (5 g) was homogenized with distilled water (20 mL) for 1 min at 12,000 rpm. The 

homogenates were mixed with distilled water (30 mL) and filtered through Whatman No.1 filter paper. The indicator solution 

was prepared by mixing 0.066% methyl red in ethanol and 0.066% bromocresol green in ethanol at a 1:1 ratio. In the inner 

part of the Conway diffusion cell, the indicator solution (100 μL) and 0.01N H3BO3 (1 mL) were added. The filtrate of the 

sample (1 mL) and 50% K2CO3 solution (1 mL) were added to the outer section of the cell. The cells were left at 37℃ for 90 

min and the 0.02N H2SO4 was titrated to the solution of inner part. The VBN value is expressed as mg%. 

 

Field emission scanning electron microscopy (FE-SEM) evaluation of microstructure 
The microstructures of the semi-dried restructured sausages were evaluated using field emission scanning electron 

microscopy (FE-SEM) (SU8010, Hitachi, Tokyo, Japan). The samples were cut into small pieces and frozen for 12 h at 

−78℃. The frozen samples were lyophilized in a vacuum evaporator (MCFD 8508, Il Shin Bio, Yangju, Korea) for 24 h. 

Thereafter, the samples were sputter-coated with platinum using an ion sputter (MC1000, Hitachi) and observed at an 

accelerating voltage of 5 kV by FE-SEM. The magnification of all images was ×300. 

 

Statistical analysis 
Experimental data were analyzed using SPSS Statistics 24 software (IBM, Armonk, NY, USA). Data are presented as 

mean±SD, and one-way analysis of variance with Duncan’s multiple range test was performed to identify significant 

differences (p<0.05). Data were obtained from at least three replicates in all experiments. 

 

Results and Discussion 

Moisture content, moisture ratio and drying rate of semi-dried restructured sausages 
The results of moisture content, moisture ratio, and drying rate are shown in Fig. 1. The moisture content and moisture 

ratio of all samples gradually decreased during the drying period (Fig. 1A and 1B). In addition, the moisture ratio of sausages 

with water addition (WAL10−50) was lower than that of the sausages without water addition (WAL0 group). The drying rate 

was also higher in sausages with added water during the initial 10 min of drying (Fig. 1C). Free water evaporates more easily 

than bound water in food products (Tunde-Akintunde et al., 2005). A previous study reported that a higher moisture content 

of ginger slices resulted in a higher drying rate during the preliminary stage of drying (Zeng et al., 2022). Thus, the increase 

of drying rate resulted from the increase of free water in the sausage. Moreover, the drying time required to reach a moisture 

content of 50% (dry basis) in sausages was shortened by the increase in the water addition level (Table 2). Shortening the 

drying time during the production of dried foods is important for minimizing energy consumption and improving quality 

properties (Riadh et al., 2015; Tunde-Akintunde and Ogunlakin, 2011). Our data indicate that an increase of initial moisture 

content significantly shortened the drying time and improved the drying characteristics of the sausages. A similar observation 

was reported, in which high initial moisture content using brine injection to beef jerky shortened the drying time (Kim et al., 
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2022). Collectively, our data demonstrate that an increase in the initial water content can accelerate the drying rate and 

shorten the drying time in semi-dried restructured sausages. 

Fig. 1. Moisture content (A), moisture ratio (B), and drying rate curve (C) of semi-dried restructured sausages with different water 
addition levels. WAL0, 100% pork; WAL10, 90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 
60% pork/40% water; WAL50, 50% pork/50% water of semi-dried restructured sausage. The samples were dried at 85℃ for different 
time periods (10, 20, 30, 40, 50, 60, 80, 100, 120, 150, 180, 240, 300, 360, and 580 min). Moisture content was calculated as dry basis 
(g/g, db). The error bars indicate SD. a–f Different superscript letters represent significant differences at the drying time (p<0.05). 

Table 2. Effective moisture diffusion coefficient of semi-dried restructured sausages with different water addition levels during hot air drying

Drying condition 
r2 Deff (×10–10 m2/s) 

Treatment1) Moisture content (dry basis) Drying time (h) 

WAL0 0.50 6.00 0.9882  7.29±0.36f 

WAL10 0.50 5.83 0.9936  9.23±0.35e 

WAL20 0.49 5.83 0.9930 10.70±0.50d 

WAL30 0.50 5.00 0.9892 12.42±0.45c 

WAL40 0.50 4.50 0.9858 15.25±0.73b 

WAL50 0.49 4.50 0.9734 17.79±0.92a 

Data are presented as mean±SD. 
1) WAL0, 100% pork; WAL10, 90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% 

water; WAL50, 50% pork/50% water of semi-dried restructured sausage. 
a–f Different superscript letters represent significant differences (p<0.05). 
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Effective moisture diffusivity (Deff) of semi-dried restructured sausages 
Deff represents the intrinsic mass transfer in food materials and has been used to provide information about moisture 

movement within foods during the drying process (Dadali et al., 2007). Deff values were calculated at the time of drying, and 

the moisture content of the sausages reached 50% (dry basis). The Deff value of the sausage increased with the amount of 

water added (p<0.05) (Table 2). Deff is influenced by various factors, such as drying temperature, pretreatment, and 

ingredients added to food materials (Sharma and Prasad, 2004; Tunde-Akintunde and Ogunlakin, 2011; Wang et al., 2019). In 

several previous studies, high moisture content was closely related to an increase in the Deff value (Chen et al., 2020; Wang et 

al., 2019). The Deff value is influenced by the thermal conductivity of water, which has a higher thermal conductivity than 

proteins or fats (Tavman and Tavman, 1999). Additionally, the pore network, which is affected by the higher water content, 

also influences the Deff value of foods (Chen, 2007). In a previous study, the porous structure of pumpkin slices was induced 

by blanching and freezing before hot air drying, which resulted in a higher moisture diffusivity during drying (Ando et al., 

2019). Collectively, an increase of initial moisture content positively influenced the high thermal diffusivity in semi-dried 

restructured sausages, which consequently led to an increased drying rate and effective moisture diffusivity. 

 

pH and color of semi-dried restructured sausages 
The pH values of the semi-dried restructured sausages are listed in Table 3. Overall, there were no significant differences 

between the groups, although an increase of initial moisture content may be associated with higher pH values. This may result 

from the shorter drying time in the groups with added water. According to previous studies, a relatively short drying time 

inhibited the lowering of pH in meat products by reducing protein denaturation during the drying process (Yang et al., 2009). 

Color of semi-dried restructured sausages are presented as the L*, a*, and b* values in Table 3. The significant increase of 

L* and b* values were observed in the WAL40 and WAL50 group than WAL0 group, and increment of water addition levels 

induced the decrease of a* values (p<0.05). The increase in the L* values of sausages with the addition of water may result 

from the shortened drying time. During the drying process, Maillard browning reactions occur, which are associated with the 

darker color of the products (Akonor et al., 2016). A previous study showed that increased drying time induced lower L* and 

b* values in restructured jerky (Kim et al., 2021b). Taken together, our results show that the shortened drying time owing to 

the addition of water to the semi-dried restructured sausage blocked the excessive browning reactions. 

Table 3. pH and color of semi-dried restructured sausages with different water addition levels

Treatment1) pH CIE L* CIE a* CIE b* 

WAL0 5.95±0.00 35.69±2.08c 5.33±0.75a 12.55±1.21d 

WAL10 5.99±0.01 35.99±2.66c 3.69±0.28b 12.66±1.47d 

WAL20 6.02±0.01 36.03±2.00c 3.62±0.54b 13.75±1.33d 

WAL30 5.99±0.06 36.73±3.55c 3.65±0.37bc 15.69±3.00c 

WAL40 5.97±0.02 49.36±5.48b 3.64±0.36bc 20.14±2.77b 

WAL50 5.99±0.00 58.64±4.66a 2.94±0.82c 25.56±1.18a 

Data are presented as mean±SD. 
1) WAL0, 100% pork; WAL10, 90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% 

water; WAL50, 50% pork/50% water of semi-dried restructured sausage. 
a–d Different superscript letters represent significant differences between results (p<0.05). 
CIE, International Commission on Illumination. 
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Water activity of semi-dried restructured sausages 
The water activity of the semi-dried restructured sausages gradually decreased depending on the drying time (Fig. 2). As 

the amount of added water increased, the water activity of the sausages decreased markedly. Previous studies have reported 

that thermal conductivity increased with an increase in the moisture content of foods (Modi et al., 2014). In addition, our data 

show that the addition of water increased the drying rate (Fig. 1). Thus, the decrease in water activity with the addition of 

water to the sausage resulted from the increase in thermal conductivity, which accelerates the decrease in free water. 

Moreover, water activity is one of the most crucial factors related to the classification criteria for semi-dried restructured 

sausages (Jang et al., 2015), and the safety of microorganisms in semi-dried foods. Water activity between 0.60−0.90 is 

desirable for intermediate moisture foods (Aguilera and Gutiérrez-López, 2018). In our study, with water addition levels of 

0%, 10%, 20%, 30%, 40%, and 50% of sausages, the time required for the water activities of sausages to reach below 0.90 

were 300, 240, 180, 180, 180, and 180 min and the time to reach water activities below 0.80 were 580, 360, 360, 360, 300, 

and 300 min, respectively. Our data indicate that the addition of water to semi-dried restructured sausages positively 

influences microbiological safety by decreasing water activity. 

 

Porosity, shear force, and VBN of semi-dried restructured sausages 
The porosity of semi-dried restructured sausages was significantly affected by the water addition levels in the samples 

(p<0.05) (Table 4), and the WAL50 group had the highest porosity and WAL20, WAL30, and WAL40 groups had 

significantly higher porosity than WAL0 group (p<0.05). This result could be explained by the increased number of water 

molecules, which might induce the formation of porous structures in the samples during the drying process (Kim et al., 2022). 

Different water contents in food materials affect the size and/or number of pores (Wang and Liapis, 2012). In addition, the 

high moisture content and porous structure of food materials shorten the drying time, as they accelerate heat and mass 

transfer during the drying process (Kim et al., 2022). Therefore, the high porosity from the increased amount of added water 

in the samples could explain the drying rate of the semi-dried restructured sausages. 

 

Fig. 2. Water activity of semi-dried restructured sausages with different water addition levels. WAL0, 100% pork; WAL10, 90% 
pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% water; WAL50, 50% pork/50%
water of semi-dried restructured sausage. The samples were dried at 85℃ for different time periods (10, 20, 30, 40, 50, 60, 80, 100, 120, 
150, 180, 240, 300, 360, and 580 min). The error bars indicate SD. a–f Different superscript letters represent significant differences at the
drying time (p<0.05). 
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An extended drying time causes excessive hardening in meat products, and the shear force is associated with the tenderness 

of meat products (Shi et al., 2021a). In the present study, the shear force of the sausages was significantly affected by the 

moisture content of the samples (p<0.05) (Table 4). The shear force of the sausages significantly decreased with increasing 

initial water content, except WAL10 group (p<0.05). These results can be explained by the reduced drying time of samples 

with added water. During drying, myofibrillar protein is denatured by heat and extended drying time, which causes shrinkage 

of myofibrillar protein (Shi et al., 2021a). This shrinkage induces tough texture of dried meat products, and the excessive 

hardness of dried meat negatively influences consumer preference (Kim et al., 2010). Collectively, our data suggest that 

increased moisture content leads to lower shear forces in semi-dried restructured sausages resulting from the increased 

formation of porous structures during the drying process. 

The VBN values of the semi-dried restructured sausages are shown in Fig. 3. The increment of water addition levels in the 

sausages decreased the VBN values (p<0.05), although WAL10 group did not showed significant difference to WAL0 group 

(p>0.05). In the case of dried food, VBN values increase as the drying progresses because of the generation of volatile 

Table 4. Porosity and shear force of semi-dried restructured sausages with different water addition levels 

Treatment1) Porosity (%) Shear force (kg) 

WAL0  5.97±1.45e 8.49±0.52a 

WAL10  9.22±2.72e 8.39±0.75a 

WAL20 15.35±3.38d 7.11±1.04b 

WAL30 22.61±3.30c 6.57±1.10b 

WAL40 29.90±2.09b 4.26±0.67c 

WAL50 33.69±3.43a 4.69±0.43c 

Data are presented as mean±SD. 
1) WAL0, 100% pork; WAL10, 90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% water;

WAL50, 50% pork/50% water of semi-dried restructured sausage. 
a–e Different superscript letters represent significant differences (p<0.05). 

 

Fig. 3. Volatile basic nitrogen (VBN) values of semi-dried restructured sausages produced with different water addition levels. WAL0, 
100% pork; WAL10, 90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% water; 
WAL50, 50% pork/50% water of semi-dried restructured sausage. The samples were dried at 85℃ for different time periods (360, 350, 
350, 300, 270, and 270 min), which were determined for the same condition of below 0.5 g/g moisture content on the dry basis. a–d

Different superscript letters represent significant differences of the results (p<0.05). VBN values are expressed as mg%. 
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nitrogen compounds (Chen et al., 2004). Previous study reported that extended drying time significantly increases VBN 

values of dried yellow corvina (Gwak and Eun, 2010). Thus, the lower VBN values observed in the groups with more than 

20% of moisture addition levels might result from the shortened drying time. 

 

Microstructure of semi-dried restructured sausages 
The microstructures of the semi-dried restructured sausages with different initial moisture contents were observed using FE-

SEM (Fig. 4). The addition of water to the sausages formed pores, and the size and number of pores were markedly changed 

with the increase in initial moisture content. In WAL0 to WAL20 group, increase of water addition levels in semi-dried 

restructured sausages induced the increased number of small pores. In WAL30 to WAL50 group, the addition of water expanded 

 
Fig. 4. Microstructure of semi-dried restructured sausages produced with different water addition levels. WAL0, 100% pork; WAL10, 
90% pork/10% water; WAL20, 80% pork/20% water; WAL30, 70% pork/30% water; WAL40, 60% pork/40% water; WAL50, 50% pork/50%
water of semi-dried restructured sausage. The samples were dried at 85℃ for different time periods (360, 350, 350, 300, 270, and 270 
min), which were determined for the same condition of below 0.5 g/g moisture content on the dry basis. Microstructure of semi-dried 
restructure sausages was observed using field emission scanning electron microscopy. Magnification of all images was ×300. 
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the size of pores. During the drying process of meat products, heat treatment induces denaturation of myosin and decreases the 

water-binding capacity through the migration of water from the interior to the surface, resulting in the shrinkage of meat (Shi et 

al., 2021a). In this progress, water molecules were evaporated and formed a number of pores. The larger pore size was 

influenced by the increased rate of moisture migration (Labuza and Hyman, 1998). As observed in our data, the addition of 

water positively affected the porosity and pore size of the semi-dried restructured sausage by shortening the drying time. Indeed, 

the acceleration of moisture loss induces a higher number and size of pores in the semi-dried restructured jerky during the drying 

process (Kim et al., 2021b). Collectively, our data suggest that increasing the initial moisture content leads to a more porous 

structure, which improves the drying characteristics and physicochemical properties of semi-dried restructured sausages. 
 

Conclusion 

Our results demonstrated that increased initial moisture content in semi-dried restructured sausages shortened the drying 

time and increased thermal diffusivity. Particularly, WAL20, WAL30, WAL40, and WAL50 showed significantly improved 

physicochemical properties, including porosity, shear force, and VBN, compared with those of WAL0 (p<0.05). The 

structural difference in semi-dried restructured sausages was observed where the increment of initial moisture content 

resulted in improved drying characteristics. In conclusion, our data suggest that an increase in initial moisture content, 

especially more than 20% (w/w), is a good method for improving the drying characteristics and physicochemical properties 

of semi-dried restructured sausages. 
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