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Effect of Postmortem Phases on Lamb Meat Quality: 
A Physicochemical, Microstructural and Water 
Mobility Approach  
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and Zhenyu Wang* 

Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, 
Key Laboratory of Agro-Products Quality and Safety Control in Storage and 
Transport Process, Ministry of Agriculture and Rural Affairs, Beijing 100193, China 

Abstract  To investigate the effect of postmortem phases on lamb meat quality, the 
physicochemical quality, microstructure and water mobility of oyster cut, short loin, 
knuckle and silverside muscles from Small-Tail Han sheep were evaluated in the pre-rigor, 
rigor mortis and post-rigor phases. Pre-rigor lamb meat had higher pH and water holding 
capacity (WHC), whereas lower CIE L*, b*, hue angle values than rigor mortis and post-
rigor meat (p<0.05). The Warner-Bratzler shear force (WBSF) values were higher in rigor 
mortis short loin and silverside than their pre-rigor and post-rigor counterparts, pre-rigor 
short loin had lower WBSF value than its post-rigor counterpart (p<0.05). Muscle fibers 
shrank laterally and longitudinally during the onset of rigor mortis. Rigor mortis and post-
rigor lamb meat exhibited wide I-bands, dark A-bands, short sarcomeres and large inter-
myofibrillar spaces. The shift of immobilized water to free water and repulsion from the 
intra-myofibrillar space to the extracellular space result in the increase of water loss in 
rigor mortis and post-rigor lamb meat. The results of the principal component analysis 
(PCA) indicated that rigor mortis and post-rigor lamb meat had similar quality properties 
but different from pre-rigor lamb meat. In conclusion, the lamb meat in the pre-rigor phase 
had good tenderness, color and WHC. The results of this research could provide some 
theoretical references for lamb meat production and processing. 
  
Keywords  lamb meat quality, pre-rigor, rigor mortis, post-rigor, microstructure 

Introduction 

Lamb meat is one of the most popular meat in many countries of the world, and the 

consumption of lamb meat is increasing globally (Suleman et al., 2020). The 

consumption patterns of lamb meat are very diverse in different regions around the 

world (Nam et al., 2010). In the USA, Australia and other Western places, the 

commercial abattoirs commonly use chilling procedure to produce aged lamb meat, 

with aging time commonly from 5 to 28 d and even longer (Colle et al., 2016; Geesink 
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et al., 2011; Kim et al., 2018; Xiao et al., 2020). However, consumers in some Eastern countries, such as China, prefer pre-

rigor meat, which is ubiquitous in Chinese commercial abattoirs (Xiao et al., 2020). Without aging process, pre-rigor meat 

requires less cooler space, electricity consumption and capital investment (Lang et al., 2016; Sukumaran et al., 2018).  

The conversion of muscle to meat and subsequent aging involve complex energy metabolism, biochemical and 

physiological changes, including the pre-rigor, rigor mortis and post-rigor phases (Lawrie and Ledward, 2017; Xiao et al., 

2020). Generally, the pH of lamb muscle declines to ultimate pH at 24 h postmortem, with the muscle fibers enter rigor and 

the muscle stiffness occurs, complete rigor mortis was attained (Lawrie and Ledward, 2017). During subsequent aging 

process, with the degradation of cytoskeletal proteins and the increase of sarcomere length, the muscle tension decreased 

(resolution of rigor mortis) (Lawrie and Ledward, 2017). Xiao et al. (2020) reported that before 12 h postmortem the lamb 

topside muscle was in the pre-rigor phase, 12–24 h postmortem was in the rigor mortis phase, 3–7 d postmortem was in the 

post-rigor phase according to the pH and Warner-Bratzler shear force (WBSF) values.  

The process of rigor mortis and resolution of muscle could affect the meat quality significantly (Lawrie and Ledward, 

2017; Xiao et al., 2020). Wheeler and Koohmaraie (1994) reported that the WBSF of ovine longissimus muscle increased 

from 5.10 kg at 3 h postmortem (per-rigor) to 8.66 kg at 24 h postmortem (rigor mortis), and then decreased to 4.36 kg by 72 

h postmortem (post-rigor). Wu et al. (1995) found that pre-rigor bovine stemomandibularis muscle was more tender than 

post-rigor control muscle cooked to 70℃ internally. The amount of free water increased during rigor mortis and resolution, 

which caused an accumulation of water on the cut surface and higher drip loss (Devine et al., 2014). Meat tenderness, color 

and water holding capacity (WHC) are main quality traits concerned by consumers and meat industry (Li et al., 2021). To 

date, the quality properties of rigor mortis and post-rigor meat have been systematically investigated (Colle et al., 2016; 

Lawrie and Ledward, 2017; Pearce et al., 2011). However, little is known about the quality properties of per-rigor lamb meat. 

Therefore, the aim of this research was to investigate the physicochemical quality and microstructure of pre-rigor (45 min 

postmortem), rigor mortis (24 h postmortem) and post-rigor (72 h postmortem) lamb meat, and the principal component 

analysis (PCA) method were used to compare and analyze the differences of quality properties of lamb meat in different 

stages of postmortem.  

 

Materials and Methods 

Animals and cuts collection 
Fifty-four male sheep carcasses (8 mon of age, Small-Tail Han sheep) with the same feeding system (drylot feeding with 

the same commercial diet) were randomly collected at a local commercial abattoir in Hebei, China. The Small-Tail Han sheep 

is a predominant local sheep variety and widely raised in many provinces of China, which originated from Mongolia Sheep 

and carefully cultivated for a long time in northern China (Li et al., 2018). The 54 carcasses were allocated randomly to three 

groups for sampling in pre-rigor (45 min postmortem), rigor mortis (24 h postmortem) and post-rigor (72 h postmortem) with 

18 carcasses in each group. All of the carcasses were hot-deboned, about 200 g of meat sample was obtained from the oyster 

cut (a mixture of subscapularis, infraspinatus, teres minor and supraspinatus), short loin (longissimus thoracis et lumborum), 

knuckle (quadriceps femoris) and silverside (a mixture of biceps femoris and semitendinosus) in the right side of the lamb 

carcasses immediately after slaughter. After trimming the external fat and connective tissue, each sample was dissected into 

two sections. One section was wrapped in polyethylene cling film and placed in a chiller (~4℃) used for pH, color and 

microstructure analysis; the other section was vacuum packed (the average packaged weight was 128.63±8.28 g), frozen (at 
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45 min postmortem or after refrigerating at 4℃ for 24 or 72 h) and stored at –35℃ for further WHC and WBSF 

measurements.  

 

pH measurement 
The pH measurement was preformed using a portable pH meter (Testo 205, Testo, Lenzkirch, Germany). The glass probe 

of the pH meter was directly inserted into the center of the samples after calibrating with pH 4.00 and pH 7.00 standard 

buffers. For each sample, four measurements were made at different positions, and the average value was used for further 

analysis. 

 

Color measurement 
The cut surface was exposed in the air for 30–40 min at ~4℃ to allow blooming prior to color determination. The color 

analysis was conducted by a portable colorimeter (Minolta CR-400, Konica Minolta Optics, Osaka, Japan) according to 

Calnan et al. (2016). The lightness (CIE L*), redness (CIE a*) and yellowness (CIE b*) of the samples were recorded, and the 

parameters hue angle and Chroma were calculated by the equations tanିଵ(𝑏∗ /𝑎∗) and √𝑎∗ଶ + 𝑏∗ଶ, respectively. 

 

Water holding capacity (WHC) analysis 

Thawing loss  
Frozen samples (128.63±8.28 g) were thawed at 4℃ for 16 h, thawing loss (TL) was expressed as a percentage of weight 

loss before and after thawing (Li et al., 2012). 

 
Cooking loss and total moisture loss 
The cooking loss (CL) of the samples was determined according to the procedure described by Hopkins et al. (2010). 

Briefly, thawed samples were dissected into blocks with the weight of 65 g, placed inside polyethylene bags and cooked for 

35 min in 71℃ water-bath. CL was expressed as a percentage of weight loss before and after cooking. Total moisture loss 

(TML) was the sum of TL and CL. 

 
Low-field nuclear magnetic resonance (LF-NMR) analysis 
1H NMR transverse relaxation times (T2b, T21, T22) and their corresponding water populations (P2b, P21, P22) measurements 

were conducted on an NMR analyzer (NM120-040H-1, Niumag Electric, Shanghai, China) by using the Carr-Purcell-

Meiboom-Gill (CPMG) sequences (Li et al., 2014). After thawed at 4℃ for 16 h, the samples were cut into 3×1×1 cm parallel 

to the orientation of muscle fiber, placed in a plastic tube and inserted into the NMR probe. The analysis was performed at 

32℃. The spectrometer frequency was 20 MHz, and the τ value (time between 90° pulse and 180° pulse) was 100 μs. The 

repetition time between the two succeeding scans was 1,500 ms. Data were acquired as 8 scan repetitions for each sample. 

The data were expressed by using the software of MultiExp Invert Analysis 4.6 (Niumag Electric).  

 
Warner-Bratzler shear force (WBSF) measurement 
The WBSF measurement was preformed using a texture analyzer (TA-XT plus, Stable Micro System, UK) equipped with 
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an HDP/BSW probe. Briefly, after CL determination, the samples were cooled at 4℃ overnight, and each sample was cut into 

6 to 8 cubes (1 cm2 cross section) parallel to the orientation of muscle fiber and sheared by the texture analyzer. The average 

peak force of the subsamples was calculated and the shear force was expressed as N/cm2. 

 

Muscle microstructure analysis 

Scanning electron microscope (SEM)  
The meat samples in different stages of postmortem were dissected into 2×2×3 mm parallel to the orientation of muscle 

fiber and fixed overnight in 2.5% glutaraldehyde, then rinsed for 1 h with distilled water and dehydrated with graded ethanol. 

Dried samples were sputter-coated with gold and observed with SEM (SU8010, Hitachi, Tokyo, Japan) at a magnification of 

500× (Qian et al., 2020).  

 

Transmission electron microscope (TEM) 
The samples were cut into 1×1×3 mm and fixed overnight in 2.5% glutaraldehyde, then post-fixed with 1% OsO4 and 

washed with 0.1 M phosphate buffer, followed by dehydration in ethanol. After embedded in spur resin, meat sections were 

prepared using the Leica ultramicrotome, and then stained with uranyl acetate and lead citrate and observed under TEM (H-

7500, Hitachi) at a magnification of 15,000× (Lang et al., 2016). The pictures were analyzed by using the software of Image-

Pro Plus 6.0 (Media Cybernetics, Rockville, MD, USA). 

 

Statistical analysis 
The data analyses were conducted using SPSS 25.0 (IBM, Chicago, IL, USA) and Origin 2021b software (OriginLab, 

Northampton, MA, USA). The mean values of the variables were analysed by one-way ANOVA and Duncan-multiple range 

test, least significant differences (p<0.05) were reported. The postmortem phases and cuts were considered as the fixed 

effects, and animals as the random effect. The PCA of the variables were done by the PCA package of Origin.  

 

Results 

pH 
As shown in Table 1, the pH of lamb oyster cut, short loin, knuckle and silverside declined from 6.50–6.58 in pre-rigor to 

5.63–5.92 in rigor mortis (p<0.05), and then remained stable from rigor mortis to post-rigor (p>0.05). Short loin (5.63) and 

silverside (5.64) had lower ultimate pH than oyster cut (5.86) and knuckle (5.92) at 24 h postmortem (p<0.05).  

 

Color 
The L*, b* and hue angle values were significantly higher in rigor mortis and post-rigor cuts than their pre-rigor 

counterparts (p<0.05, Table 1). Pre-rigor meat had lower a* value than rigor mortis meat in the four cuts (p<0.05), whereas 

pre-rigor and post-rigor meat had similar a* value in short loin and silverside cuts (p>0.05). 

 

Water holding capacity (WHC) 
As shown in Table 2, rigor mortis cuts had the highest TL, followed by post-rigor cuts, whereas pre-rigor cuts had the 
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lowest TL (p<0.05). The TL of rigor mortis cuts (oyster cut, 4.02%; short loin, 8.21%; knuckle, 3.18%; silverside, 6.14%) 

were almost twice as much as their pre-rigor counterparts (2.31%, 4.11%, 1.73%, and 3.79%, respectively). Similarly, 

compare with rigor mortis cuts, pre-rigor cuts also had less TML (p<0.05), there was no significant difference of CL between 

pre-rigor and rigor mortis cuts (p>0.05).  

Pre-rigor cuts had higher NMR T2 relaxation time of immobilized water (T21) compared with rigor mortis cuts (p<0.05), 

and the T21 of pre-rigor short loin, knuckle and silverside were higher than those of post-rigor cuts (p<0.05). The proton 

populations of immobilized water (P21) in short loin and silverside decreased by 0.26% and 0.79%, meanwhile, the proton 

population of free water (P22) in short loin increased by 0.51% during the onset of rigor mortis (p<0.05). 

 

Warner-Bratzler shear force (WBSF) 
As shown in Fig. 1, WBSF values were higher in rigor mortis meat than in pre-rigor and post-rigor meat for all cuts except 

oyster cut (p<0.05). For short loin, pre-rigor meat had lower WBSF than post-rigor meat (pre-rigor, 58.10 N; post-rigor, 69.49 

N; p<0.05). However, for other cuts no different were found between pre-rigor and post-rigor meat (p>0.05). Oyster cut had 

the lowest WBSF values than other cuts in different stages of postmortem (p<0.05). 

Table 1. pH and color values of lamb oyster cut, short loin, knuckle and silverside in the pre-rigor, rigor mortis and post-rigor phases

Parameters Postmortem phases 
Cuts 

Oyster cut Short loin Knuckle Silverside 

pH Pre-rigor  6.50±0.20Aa  6.54±0.16Aa  6.53±0.20Aa  6.58±0.18Aa 

Rigor mortis  5.86±0.13Ba  5.63±0.10Bb  5.92±0.17Ba  5.64±0.07Bb 

Post-rigor  5.96±0.27Ba  5.63±0.11Bb  5.88±0.17Ba  5.69±0.13Bb 

CIE L* Pre-rigor 31.60±1.74Ca 28.01±1.28Bc 30.10±1.56Bb 27.57±1.52Bc 

Rigor mortis 37.95±2.17Ba 35.48±1.73Ab 35.91±2.11Ab 34.99±1.76Ab 

Post-rigor 39.44±1.82Aa 36.36±1.72Abc 37.08±2.18Ab 35.29±1.42Ac 

CIE a* Pre-rigor 13.30±1.20Ba 12.15±10.03Bb 12.53±1.51Bab 12.53±1.11Bab 

Rigor mortis 14.78±10.09Aa 13.17±0.95Ab 14.79±1.33Aa 14.20±1.33Aa 

Post-rigor 14.81±1.32Aa 12.50±0.94ABb 14.67±1.80Aa 12.31±0.85Bb 

CIE b* Pre-rigor  2.20±0.51Ca  1.77±0.41Cb  1.94±0.51Cab  1.91±0.39Cab 

Rigor mortis  4.91±0.57Bb  4.85±0.57Bb  4.84±0.95Bb  5.58±0.68Ba 

Post-rigor  7.02±0.91Aa  6.72±0.80Aa  6.81±0.97Aa  6.90±0.43Aa 

Hue angle Pre-rigor  9.49±1.50Ca  7.64±2.34Cb  8.73±1.42Cab  8.21±1.00Cab 

Rigor mortis 18.31±1.80Bb 21.64±1.73Ba 16.90±1.64Bc 21.29±1.90Ba 

Post-rigor 26.53±2.31Ab 29.19±1.84Aa 23.19±2.07Ac 29.15±1.85Aa 

Chroma Pre-rigor 13.34±1.13Ba 12.14±0.95Bb 12.84±1.48Cab 12.51±0.97Cab 

Rigor mortis 15.51±0.97Aa 13.88±1.44Ab 15.46±1.46Ba 15.42±1.31Aa 

Post-rigor 15.75±1.12Ab 13.83±1.23Ac 16.95±1.60Aa 14.18±0.99Bc 

Data were recorded as mean±SD.  
A–C Means with different letters indicate significant difference (p<0.05) between postmortem phases in the same cut.  
a–c Means with different letters indicate significant difference (p<0.05) between cuts in the same postmortem phase. 
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Micro- and ultra-structure 
Micro- and ultra-structure of the lamb samples in the pre-rigor, rigor mortis and post-rigor phases are showed in Fig. 2 and 

3. Compared to pre-rigor cuts, significant shrinkage of muscle fibers and the gaps formation among muscle fibers can be seen 

in rigor mortis and post-rigor cuts (Fig. 2). From pre-rigor to post-rigor, the diameters of muscle fiber of oyster cut, short loin, 

knuckle and silverside decreased from 33.30, 37.60, 34.36, and 44.91 μm to 29.34, 28.1, 27.24, and 30.64 μm, respectively  

Table 2. Thawing loss, cooking loss, total moisture loss, NMR T2 relaxation times (T2b, T21, and T22) and corresponding proton 
populations (P2b, P21, and P22) of lamb oyster cut, short loin, knuckle and silverside in the pre-rigor, rigor mortis and post-rigor phases 

Parameters Postmortem phases 
Cuts 

Oyster cut Short loin Knuckle Silverside 

Thawing loss (%) Pre-rigor   2.31±0.60Bb   4.11±0.77Ca   1.73±0.53Bb   3.79±0.63Ba 

Rigor mortis   4.02±0.56Ac   8.21±0.91Aa   3.18±0.74Ad   6.14±0.87Ab 

Post-rigor   2.18±0.66Bc   5.91±1.44Ba   2.11±0.79Bc   4.36±0.85Bb 

Cooking loss (%) Pre-rigor  28.93±1.86Aa  27.28±1.27Bb  28.98±2.00Aa  27.40±2.34Bb 

Rigor mortis  30.07±2.07Aa  28.25±1.57Bb  29.93±20.08Aa  28.95±1.92ABab

Post-rigor  30.29±2.42Aab  31.15±2.11Aa  30.34±2.72Aab  29.21±2.28Ab 

Total moisture loss (%) Pre-rigor  32.04±2.07Ba  31.75±2.21Ba  30.88±2.56Aa  30.68±2.60Ca 

Rigor mortis  34.39±2.91Ab  36.57±2.30Aa  32.18±2.59Ac  35.44±2.48Aab 

Post-rigor  32.54±2.59Bb  37.29±2.34Aa  32.16±2.66Ab  33.34±2.60Bb 

T2b (ms) Pre-rigor   0.39±0.10Bab   0.34±0.07Abc   0.30±0.07Bc   0.42±0.09Aa 

Rigor mortis   0.50±0.15Aa   0.38±0.12Ab   0.43±0.18Aab   0.36±0.10Ab 

Post-rigor   0.46±0.09ABa   0.37±0.11Aa   0.37±0.10ABa   0.46±0.19Aa 

T21 (ms) Pre-rigor  54.74±2.81Aa  49.57±1.66Ac  54.78±2.72Aa  51.48±2.47Ab 

Rigor mortis  50.60±2.95Ba  44.80±2.79Bc  50.72±1.63Ba  47.64±2.45Bb 

Post-rigor  54.06±3.13Aa  46.17±2.96Bd  51.60±2.72Bb  49.46±1.98Bc 

T22 (ms) Pre-rigor 314.97±26.93Ca 267.94±15.48Ac 299.26±22.69Bb 289.63±19.76Ab

Rigor mortis 336.17±21.13Bb 276.25±19.75Ad 365.59±45.68Aa 302.19±12.88Ac 

Post-rigor 366.20±27.49Aa 271.92±22.34Ac 361.19±26.80Aa 299.81±22.27Ab

P2b (%) Pre-rigor   4.80±0.72Ab   5.61±0.57Aa   4.86±0.48Ab   5.19±0.80Aab 

Rigor mortis   4.09±0.51Bb   5.14±0.89Aa   4.44±0.65ABb   5.04±0.90Aa 

Post-rigor   4.00±0.34Ba   4.18±1.41Ba   4.08±0.62Ba   4.22±0.84Ba 

P21 (%) Pre-rigor  93.23±0.69Aa  92.23±0.47Ab  92.94±0.83Aa  92.83±0.81Aa 

Rigor mortis  92.77±0.82Aa  91.97±0.51Bb  93.05±1.05Aa  92.04±0.73Bb 

Post-rigor  94.41±0.78Aa  92.68±0.73Ac  93.71±0.71Ab  92.95±0.69Ad 

P22 (%) Pre-rigor   2.28±0.64Aa   2.22±0.53Ba   2.25±0.89Aa   2.26±0.97Aa 

Rigor mortis   2.39±0.77Aa   2.73±0.72Aa   2.38±10.01Aa   2.58±0.90Aa 

Post-rigor   1.44±0.38Bb   1.95±0.52Ba   1.76±0.79Aab   2.15±0.61Aa 

Data were recorded as mean±SD.  
A–C Means with different letters indicate significant difference (p<0.05) between postmortem phases in the same cut.  
a–c Means with different letters indicate significant difference (p<0.05) between cuts in the same postmortem phase. 
NMR, nuclear magnetic resonance. 



Food Science of Animal Resources  Vol. 41, No. 5, 2021 

808 

 

 

Fig. 1. Warner-Bratzler shear force (WBSF) values of lamb oyster cut, short loin, knuckle and silverside in the pre-rigor, rigor mortis and 
post-rigor phases. Data were recorded as mean±SD. A–C Means with different letters indicate significant difference (p<0.05) between
postmortem phases in the same cut. a–c Means with different letters indicate significant difference (p<0.05) between cuts in the same
postmortem phase. 

 

Fig. 2. Scanning electron micrographs of lamb oyster cut, short loin, knuckle and silverside in the pre-rigor, rigor mortis and post-rigor 
phases (500×). Scale bar=100 µm. 
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(p<0.05, Fig. 4A). Pre-rigor cuts exhibited an intact structure and long sarcomere. During the onset of rigor mortis, the 

sarcomere shrank laterally and longitudinally (Fig. 3). Rigor mortis and post-rigor meat exhibited wide I-bands, dark A-

bands, short sarcomeres and large inter-myofibrillar spaces. Degradation of Z-lines occurred in post-rigor cuts. From pre-

rigor to post-rigor, the length of sarcomere of oyster cut, short loin, knuckle and silverside decreased from 1.57, 1.45, 1.52, 

1.56 μm to 1.37, 1.20, 1.34, and 1.30 μm, respectively (p<0.05, Fig. 4B). 

 

Principal component analysis (PCA) 
From the result of the PCA, 62.2% of the total variability was explained by the two first principal components (PCs) with 

 

Fig. 3. Transmission electron micrographs of lamb oyster cut, short loin, knuckle and silverside in the pre-rigor, rigor mortis and post-
rigor phases (15,000×). Scale bar=1 µm. 
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37.5% explained by PC1 and 24.7% explained by PC2. The PC1 was positively related with L*, b* and hue angle, whereas 

negatively related with pH. T21 relaxation time constant had a strongly positive influence on PC2, whereas WBSF and TL 

were negatively related to PC2. From the PCA score plot (Fig. 5B), there was a clear separation of pre-rigor cuts from rigor 

mortis and post-rigor cuts. Pre-rigor cuts were present in the negative side of PC1 characterized by higher pH and lower water 

loss, whereas rigor mortis and post-rigor sample were in the positive PC1 axis characterized by higher L*, b* and water loss. 

The score plot highlighted that rigor mortis and post-rigor cuts had similar characteristics but different from pre-rigor cuts 

(Fig. 5B and Figs. S1–S4). 

 

Fig. 4. Muscle fiber diameter and sarcomere length of lamb oyster cut, short loin, knuckle and silverside in the pre-rigor, rigor mortis 
and post-rigor phases. (A) muscle fiber diameter, (B) sarcomere length. Data were recorded as mean±SD. A–C Means with different letters 
indicate significant difference (p<0.05) between postmortem phases in the same cut. a–c Means with different letters indicate significant 
difference (p<0.05) between cuts in the same postmortem phase.  

Fig. 5. Principal component analysis for meat quality parameters of lamb meat in the pre-rigor, rigor mortis and post-rigor phases. (A)
loading plot, (B) score plot. CL, cooking loss; TML, total moisture loss; TL, thawing loss. 
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Discussion 

Differential postmortem glycolysis in pre-rigor, rigor mortis and post-rigor result in different meat quality 
The conversion of muscle to meat during the postmortem period involves complex energy metabolism and biochemical 

reaction in pre-rigor, rigor mortis and post-rigor (Lawrie and Ledward, 2017; Pearce et al., 2011). Following exsanguination, 

the skeletal muscle lacks the oxygen supplied to produce ATP through oxidative metabolism. Glycolysis becomes the 

overarching pathway to produce ATP in the postmortem period, and the accumulation of lactic acid causes pH decline and 

acidification of muscle (Lawrie and Ledward, 2017). Previous research studying in Poll Dorset cross-bred sheep (Ithurralde et 

al., 2017), Mongolian and Small-Tail Han crossbreed lamb (Xiao et al., 2020) and other lamb breeds (Geesink et al., 2011; 

Lawrie and Ledward, 2017) observed that the pH of lamb muscle declined from 6.5–7.0 to 5.6–6.0 during the onset of rigor 

mortis, and then remained stable during subsequent aging process, which were in agreement with this study. The extent and 

rate of pH decline postmortem could affect the WHC and color of meat (Pearce et al., 2011). In the rigor mortis phase, the pH 

close to the isoelectric point of myofibrillar proteins and the net charges between myofibrillar proteins decrease to near zero, 

which results in the less ability of myofibrillar proteins to bind water molecules and the increase of free extra-myofibrillar 

water within muscle (Ijaz et al., 2020). The high level of free water could be associated with the increase of water loss and the 

decrease of WHC (Khan et al., 2019). Under a low pH, the denaturation of sarcoplasmic proteins, as well as the increase of 

free water could facilitate light scattering and reflectance, which could result in the high level of L* values in rigor mortis and 

post-rigor cuts (Hughes et al., 2020; Ijaz et al., 2020). Dai et al. (2013) reported that the denaturation and precipitation of 

sarcoplasmic proteins to the myofibrils resulted in a decrease of WHC and an increase of lightness in pork M. longissimus 

dorsi muscle. 

 
Various muscle contraction in pre-rigor, rigor mortis and post-rigor generate the variety of meat quality 
Postmortem glycolysis and pH decline result in the longitudinal shortening of sarcomeres and lateral shrinkage of myofibrils 

(Ertbjerg and Puolanne, 2017; Hughes et al., 2020; Lana and Zolla, 2016). From pre-rigor to rigor mortis, the diameter of 

muscle fiber of oyster cut, short loin, knuckle and silverside decreased by 11.53%, 23.32%, 23.25%, and 36.45%, respectively; 

similarly, sarcomere length in those cuts decreased by 22.10%, 15.11%, 13.29%, and 19.89%, respectively. The sarcomere 

length of ovine longissimus thoracis et lumborum and bovine semitendinosus decreased by 24.55% Wheeler and Koohmaraie 

(1994) and 55.56% Stromer et al. (1967) during the onset of rigor mortis, which were in agreement with this study.  

The structure of the muscle could affect the achromatic color of meat through affecting the extent of scattering, reflectance, 

transmission and absorption of light when the light passes through muscle fibers. The more scattering and reflection of light, 

meanwhile, the less absorption and transmission into the muscle structure contributing to pale meat (Hughes et al., 2020). In 

this study, L* values increased gradually from pre-rigor to post-rigor. Rigor mortis and post-rigor cuts had higher L* values 

than pre-rigor cuts. The increase of L* could be related to transverse shrinkage of muscle fibers, extracellular space formation 

and light scattering increase (Ertbjerg and Puolanne, 2017; Hughes et al., 2020; Pearce et al., 2011). Offer and Cousins (1992) 

observed that the gaps between beef sternomandibularis muscle fibers formed and enlarged at 24 to 48 h postmortem, which 

was consistent with this study. Hughes et al. (2020) reported that the shrinkage of muscle fibers had a positive effect on the 

increase of light scattering. Ijaz et al. (2020) reported that the increase of L* value in beef longissimus thoracis et lumborum 

during postmortem storage period might attribute to the degradation of proteins by enzymes, which caused a weaken of 
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protein structure and increased light dispersion. The increase of b* and hue angle values from pre-rigor to post-rigor in this 

study could be due to myoglobin oxidation and metmyoglobin accumulation, which was associated with brown and 

unattractive color of meat (Jeong et al., 2009; Suman and Joseph, 2013). Post-rigor cuts had high level of b* and hue angle 

values, which could cause a deviation of red hue and less desirable color of meat.  

In this study, higher WBSF value was observed in rigor mortis cuts than in pre-rigor and post-rigor cuts. Sarcomere length 

is a critical indicator of meat tenderness, the decrease of sarcomere length leads to the increase of meat toughness (Chaosap et 

al., 2020). Wheeler and Koohmaraie (1994) observed that the WBSF of ovine longissimus thoracis et lumborum increased 

from 5.1 kg at 3 h postmortem to 8.66 kg at 24 h postmortem, while the sarcomere length decreased from 2.24 μm to 1.69 

μm. Xiao et al. (2020) reported that the WBSF values of roasted topsides of Mongolian and Small-Tail Han crossbreed lamb 

increased gradually from 8.74 kg to 11.38 kg during the onset of rigor mortis and then decreased to 4.58 kg at 7 d 

postmortem. The shrinkage of muscle fibers was related to higher amount of myofibrillar proteins and collagen per unit area 

of shear therefore tough meat (Fabre et al., 2018).  

Rigor mortis cuts had higher TML than pre-rigor and post-rigor cuts, the TL of rigor mortis cuts were almost twice as much 

as their pre-rigor counterparts in this study. The low level of WHC in rigor mortis cuts could associate with the contraction of 

muscle during the postmortem period. The lateral shrinkage of myofibrils as the muscle entered rigor caused a decrease of 

myofilament lattice spacing (Huff-Lonergan and Lonergan, 2005). The decrease of space among the myofilaments results in 

an expulsion of water from intra-myofibrillar to extra-myofibrillar, where the water could be easily lost from meat (Ertbjerg 

and Puolanne, 2017; Ijaz et al., 2020; Pearce et al., 2011). However, the degradation of cytoskeletal proteins and swelling of 

the muscle cells during subsequent aging could improve WHC of post-rigor cuts (Hughes et al., 2014; Pearce et al., 2011).  

 

Distinct water states in pre-rigor, rigor mortis and post-rigor result in different meat quality 
The various distribution and mobility of myowater during the conversion of muscle to meat is a possible reason of the 

dissimilarities of the WHC in pre-rigor, rigor mortis and post-rigor cuts (Pearce et al., 2011). In this study, rigor mortis cuts 

had lower T21 relaxation time constant and WHC compared with pre-rigor and post-rigor cuts. The proton populations of 

immobilized water (P21) in rigor mortis oyster cut, short loin and silverside were lower than their pre-rigor and post-rigor 

counterparts, whereas the proton population of free water (P22) increased during the onset of rigor mortis. These results were 

in agreement with Wu et al. (2006) who reported that the decrease of T21 in pork longissimus dorsi muscle was associated 

with the shrinkage of myofibrils and the loss of water. Wu et al. (2007) reported a link between WHC and T21 in pork meat. 

The higher percentage of CL, whereas lower T21 were observed in PSE (pale, soft, and exudative) meat than in normal and 

DFD (dry, firm, and dark) meat. Transverse relaxation time constant of water proton associated with the interaction between 

water molecules and proteins or other macromolecules in the muscle structure. Lower T2 of proton suggests higher potential 

to reach a proton sink for the water molecules and lower mobility of water (Pearce et al., 2011; Shao et al., 2016). The 

partially shift of immobilized water to free water and repulsion from the intra-myofibrillar space to the extracellular space 

could be a possible reason for the low level of T21 and P21 of meat (Bertram et al., 2002; Khan et al., 2014; Wu et al., 2007). 

The increase of P22 indicates the increase of free extra-myofibrillar water in muscle (Pearce et al., 2011). It is hypothesized 

that the myowater volume in extra-myofibrillar space increased 1.6-fold during the onset of rigor mortis (Huff-Lonergan and 

Lonergan, 2005). The increase of the amount of free water within muscle resulted in an accumulation of water on the cut 

surface and lower WHC in rigor mortis meat than in pre-rigor meat (Devine et al., 2014).  
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Conclusion 

Pre-rigor lamb meat had lower L*, b*, hue angle and WBSF values, whereas higher WHC than rigor mortis and post-rigor 

lamb meat. Oyster cut and knuckle had higher ultimate pH, L* and WHC than short loin and silverside. Distinct glycolysis, 

muscle contraction and water mobility could partially explain the differences of quality properties of lamb meat in different 

stages of postmortem. Therefore, pre-rigor lamb meat with short postmortem conditioning time had good tenderness, color 

and WHC. The results of this study could provide some theoretical references for lamb meat sector to produce high quality 

meat, meanwhile, to reduce cooler space and energy consumption and accelerate the turnover of meat. 
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