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Abstract  Meat proteolytic systems play a crucial role in meat tenderisation. Understanding 
the effects of processing technologies and post-mortem storage conditions on these 
systems is important due to their crucial role in determining the quality characteristics of 
meat and meat products. It has recently been proposed that tenderisation occurs due to the 
synergistic action of numerous endogenous proteolytic systems. There is strong evidence 
suggesting the importance of μ-calpain during the initial post-mortem aging phase, while 
m-calpain may have a role during long-term aging. The caspase proteolytic system is also 
a candidate for cell degradation in the initial stages of conversion of muscle to meat. The 
role of cathepsins, which are found in the lysosomes, in post-mortem aging is controversial. 
Lysosomes need to be ruptured, through aging, or other forms of processing to release 
cathepsins into the cytosol for participation in proteolysis. A combination of optimum 
storage conditions along with suitable processing may accelerate protease activity within 
meat, which can potentially lead to improved meat tenderness. Processing technologies 
such as high pressure, ultrasound, and shockwave processing have been reported to disrupt 
muscle structure, which can facilitate proteolysis and potentially enhance the aging 
process. This paper reviews the recent literature on the impacts of processing technologies 
along with post-mortem storage conditions on the activities of endogenous proteases in 
meat. The information provided in the review may be helpful in selecting optimum post-
mortem meat storage and processing conditions to achieve improved muscle tenderness 
within shorter aging and cooking times. 
  
Keywords  meat, endogenous enzymes, processing, post-mortem storage 

Introduction 

Meat tenderness is generally considered the most important palatability factor 

influencing consumer acceptability, particularly for red meat (Lamare et al., 2002). The 

presence and activity of endogenous enzymes within the muscle cells and the 

extracellular matrix is an important factor controlling muscle proteins and their 
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interactions, and therefore is a significant contributor to the development of tenderness (Huff Lonergan et al., 2010). 

Enzymatic degradation of muscle proteins during post-mortem aging under chilled conditions contributes to the rapid 

tenderisation of meat (Chéret et al., 2007). 

Although there are different viewpoints of how the process occurs, many studies have suggested that the cathepsins, 

calpains, and proteasome enzyme systems are involved in post-mortem proteolysis and tenderisation of meat. Goll et al. 

(2003) and Koohmaraie and Geesink (2006) concluded that post-mortem muscle tenderisation is mainly caused by the action 

of μ-calpain and to a lesser extent the action of m-calpain. The post-mortem pH falls to below 6, which promotes the release 

of cathepsins from the lysosomes and eventually facilitates meat tenderisation (Geesink and Veiseth, 2008; Moeller et al., 

1977). However, as Cathepsin D is active at a pH range from 3 to 5, it has a relatively less important role in muscle 

tenderisation than other cathepsins at a post-mortem pH of 5.5 (Mikami et al., 1987). Cramer et al. (2018), Ouali et al. (2006) 

and Sentandreu et al. (2002), on the other hand, proposed that the process is a multi-enzymatic system, which may also 

involve other proteases such as proteasomes and caspases. Thus, one of the objectives of this paper is to review the recent 

literature to provide an updated viewpoint on the role of various endogenous proteolytic systems in meat tenderisation.  

Various tenderisation technologies, including pulsed electric field (PEF), shockwave processing, and high-pressure 

processing (HPP), when applied to pre- or post-rigor meat have been suggested to decrease meat toughness (Warner et al., 

2016). Electrical stimulation has been observed to accelerate the decline in pH; the release of calcium ions from sarcoplasmic 

reticulum, activating calpains, and also leading to muscle proteolysis by more rapid release of lysosomal enzymes, thus 

helping in the development of meat tenderness during the early post-mortem storage period (Sentandreu et al., 2002). Meat 

tenderisation could possibly be enhanced by employing the action of lysosomal proteolytic enzymes through careful 

manipulation of the sous vide cooking process by including cooking steps at the highest activation temperature of several 

enzymes (calpains, 26S proteasome and cathepsins) (Kaur et al., 2020; Myhrvold et al., 2011; Uttaro et al., 2019). Thus, 

understanding the effects of processing technologies and meat storage conditions on endogenous enzymes is of utmost 

importance, due to their crucial role in determining shelf-life and quality characteristics of meat and meat products. This 

review discusses the impacts of processing technologies along with post-mortem storage conditions on the activities of 

endogenous proteases in meat. Appropriate processing in combination with optimised post-mortem storage conditions is 

important in attaining optimum levels of proteolysis in meat, achieving desired meat tenderness within shorter aging times. 

To our knowledge, no review on this topic has been published so far.   

 

Post-Mortem Storage Conditions, Proteolytic Systems and Meat Tenderness 

The effect of storage conditions on meat quality is of great interest, as storage temperature plays a crucial role in 

determining the shelf-life and quality of the meat. The storage of meat under frozen conditions helps to prolong the product 

shelf-life and this is a crucial factor when meat is exported. However, consumers often have a perception that frozen meat has 

poor eating qualities as compared to “fresh” chilled meat (James and James, 2010; Madhusankha and Thilakarathna, 2020).  

 

Calpains  
The two major muscle protein groups affecting post-mortem meat tenderness are the myofibrils and the connective tissue 

proteins (Kemp and Parr, 2012). The calpains have been widely reported to hydrolyse the myofibrillar proteins (Álvarez et 

al., 2019; Kemp and Parr, 2012; Lana and Zolla, 2016). Recent research has documented degradation of proteins like desmin, 
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titin and nebulin, which are substrates for calpains to be highly associated with meat tenderness (Lomiwes et al., 2014; 

Starkey et al., 2016). This suggests a significant role of calpains, particularly calpain 1 or µ-calpain in post-mortem meat 

tenderisation (Geesink et al., 2006; Huff Lonergan et al., 2010; Koohmaraie and Geesink, 2006). However, the main 

component of the connective tissues, collagen, is not degraded by the calpains (Purslow, 2005). The reason is that the typical 

triple helix structure of native collagen makes it resistant to most common proteases. However, collagenolytic proteases like 

mammalian cysteine proteases, some types of mammalian matrix metalloproteases (MMPs), and a few bacterial proteases 

have been reported to degrade native collagen (Zhang et al., 2015). MMPs, also known as matrixins are also responsible for 

the catabolism of connective tissue. They are a family of structurally related zinc MMPs that are suspected to be implicated in 

apoptosis (Mannello and Gazzanelli, 2001; Parsons et al., 1997). These peptidases are poorly studied by meat scientists 

because collagen doesn’t go through major changes in meat stored at low temperature (0℃–4℃) (Sentandreu et al., 2002). 

Calpastatin, the endogenous inhibitor for both μ-calpain and m-calpain, has been correlated with tenderisation both across 

and within species (Boland et al., 2019; Chéret et al., 2007). Several groups have proposed that μ-calpains play the most 

important role in post-mortem muscle proteolysis and meat tenderisation (Bowker et al., 2010; Koohmaraie and Geesink, 

2006). Riley et al. (2003) reported that variations in μ-calpain activity are evident during post-mortem proteolysis of 

myofibrillar proteins. In contrast to the above, a study by Goll et al. (2003) suggested that less than 10% of calpain is 

activated in the skeletal muscle. The optimal conditions for calpain activity have been estimated to be pH 7.5 at 25℃, with 

activity still detectable at pH 5. Meat tenderisation is known to occur at approximately pH 6.3, at about 6 h post-mortem in 

beef as μ-calpain is activated at low calcium concentrations (10 to 50 μM). The activity of m-calpain is at its optimum in the 

pH range of 6.5 to 8.0 and in the presence of 1 to 2 mM calcium. m-Calpain exhibits its lowest activity at pH 5.5 and 5℃, 

which is the typical condition of the beef carcass at 24 to 48 h post-mortem (Bowker et al., 2010). The activity of m-calpain 

was observed to remain nearly constant throughout post-mortem aging at 1℃ for up to 14 d, but a gradual decrease in μ-

calpain has been observed for bovine Longissimus muscle (Koohmaraie et al., 1987). As activation of calpain leads to 

autolysis, these researchers concluded that μ-calpain, but not m-calpain, might be involved in tenderisation. Bhat et al. 

(2018a) reported that amount of both intact and autolysed μ-calpain decreased with aging time in two different muscles 

(Biceps femoris and Semimembranosus from culled dairy cows). Both intact and autolysed μ-calpain were detected on the 

second day of aging, but not after seven days of aging. In contrast, the amount of native m-calpain decreased with aging time, 

while the amount of autolysed m-calpain increased, with the highest amount observed on the 14th d in both muscle types. 

Similarly, Biswas et al. (2016) observed an optimal µ-calpain induced post-mortem aging time at 48 and 72 h for Biceps 

femoris muscle of Jhakrana and Jamunapari breeds of goat, respectively. Similar results were reported by Colle and Doumit 

(2017), who detected only 5.4% of the initial μ-calpain activity in the bovine Semimembranosus muscle by 2 d of post-

mortem aging while m-calpain remained active in most bovine Semimembranosus and Longissimus lumborum muscles by the 

14 d of aging. These studies proved the contribution of both μ-calpain and m-calpain in the development of post-mortem 

tenderness, with the former contributing to proteolysis of myofibrillar proteins during the early post-mortem stage while the 

latter contributed to additional tenderisation with prolonged aging time. Numerous factors such as calcium, pH, temperature, 

etc., affect the activity of µ-calpain in post-mortem muscle (Mohrhauser et al., 2014). 

A high level of calpastatin is associated with a decrease in meat tenderness (Lana and Zolla, 2016; Lian et al., 2013). 

Calpastatin is a heat-stable, unstructured protein that, in the presence of calcium, can reversibly bind and inhibit four 

molecules of calpain (Hanna et al., 2008). The exact mechanism for the inhibitory action of calpastatin on calpains is 

undefined. However, it has been suggested that calpains degrade calpastatin by cleaving the disordered regions between 
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calpastatin inhibitory domains, forming peptide fragments that are also calpain inhibitors (Lian et al., 2013; Mellgren, 2008). 

A reduction in calpastatin activity was observed under refrigerated storage (Koohmaraie et al., 1987) and at temperatures 

above 25℃ (Geesink et al., 2000). A reduction in calpastatin activity was found to lead to higher myofibrillar degradation in 

porcine Longissimus muscle (Pomponio and Ertbjerg, 2012). Koohmaraie et al. (1991) have shown that the rates of 

tenderisation of muscle from different animals (beef<lamb<pork) were inversely related to the ratio of calpastatin to calpains 

(beef>lamb>pork). De Oliveira et al. (2019) studied the changes in activities of µ- and m-calpains, and calpastatin variants in 

two bovine muscles (Longissimus lumborum and Triceps brachii) during post-mortem aging. One of the two calpastatins had 

a significant effect on µ-calpain activity; and thus their ratio was suggested to be an important contributor determining the 

extent and rate of post-mortem proteolysis (De Oliveira et al., 2019). 

 

Cathepsins  
The role of cathepsins in post-mortem tenderisation is controversial, primarily because they are found in the lysosomes, 

which limits substrate accessibility. Due to the decline in pH and temperature throughout the post-mortem storage, the 

membranes of the lysosomes ruptures and causes the release of cathepsins into the cytosol (Bowker et al., 2010; Lana and 

Zolla, 2016). Cathepsins are acidic lysosomal proteins and they must be released from the lysosomes to participate in post-

mortem proteolysis of myofibrils (Bowker et al., 2010; Kemp et al., 2010).  

Cathepsin B, D, H, and L are the most abundant in muscle fibres and they have been claimed to be involved in the 

degradation of proteins during post-mortem aging (Boland et al., 2019; Bowker et al., 2010). Chéret et al. (2007) showed that, 

in meat, both calpains and cathepsins act synergistically while an earlier study by Hopkins and Thompson (2001) reported 

that the inhibition of cathepsins B and L was not found to have any effect on meat tenderness. Cathepsin D has been reported 

to remain active only within a narrow pH and temperature range (Zeece et al., 1986), suggesting that this enzyme might not 

play a major role in the post-mortem tenderisation process. 
 

Proteasomes 
Several studies have indicated that caspases and bovine proteasomes are involved in the proteolysis of myofibrillar 

proteins, including myosin and actin (Kemp and Parr, 2008). A study conducted by Dutaud et al. (2006) elucidated the 

physico-chemical characteristics of 20S proteasome in relation to the post-mortem conditions (pH, temperature, osmolarity, 

etc.). The activity loss of 20S proteasome was found to be less affected by these conditions in post-mortem bovine muscle. 

Depending on the muscle type, the estimated value of remaining intact proteasome concentration in meat stored for 16 d at 

0℃–4℃ was about 30%–48%. Consequently, they concluded that under similar conditions, the 20S proteasome was very 

likely to have more proteolytic activity than μ-calpain.  
 

Caspases  
The caspases, which are neutral cysteine proteinases, have been suggested to interact with the calpains/calpastatin enzyme 

system that might affect post-mortem proteolysis (Bowker et al., 2010; Huff-Lonergan, 2014). In a study conducted by Kemp 

et al. (2006) using post-mortem porcine Longissimus muscle, caspase 3/7 and caspase 9 exhibited the highest activity at 2 h 

post-mortem and their activity decreased with post-mortem time. In the same study, it was also found that caspase activity 

was negatively correlated with Warner-Bratzler shear force (WBSF) measurements, thus suggesting a role of caspases in 

meat tenderisation. Kemp et al. (2009) reported a decline in activities of caspase 3/7 and caspase 9 in three different muscles 



 Endogenous Enzymes and Meat Tenderness 

593 

including the Longissimus, Semimembranosus and Infraspinatus muscle during post-mortem conditioning period of callipyge 

and normal lambs. The activity of caspase 9 was declined faster as compared to the caspase 3/7. Additionally, a positive 

correlation was noticed between the initiator (caspase 9) and executioner (caspase 3 and 7) isoforms. This correlation was 

consistent with the observation that caspase 9 was responsible for the breakdown and activation of caspase 3/7 downstream.  
It seems clear from the above-discussed studies that proteolysis, in part, is one of the major contributors to post-mortem 

meat tenderisation (Álvarez et al., 2019). An important point to mention is that pH decline and high ionic strength are closely 

related to the rate and extent of myofibrillar proteolysis (Barbut et al., 2008). Changes in the ionic strength, pH and 

temperature can change the conformation of the proteolytic enzymes, which can activate them to hydrolyse the protein 

substrate (Melody et al., 2004). These alterations occur in parallel with the development of rigor and further influence the rate 

of meat tenderisation (Huff Lonergan et al., 2010; Lian et al., 2013; Simmons et al., 2008).  
 

Effect of the post-mortem storage on the proteolytic systems and meat tenderness  
Storage of meat above freezing temperature results in more tender meat (James and James, 2010). In the slaughterhouse, 

dry aging is carried out by hanging beef carcasses for a period of at least 2 weeks in a controlled environment at a 

temperature ranging from −1℃ to 5℃ (James and James, 2010; Lian et al., 2013). The purpose is to provide adequate time 

for the meat to tenderise by allowing the degradation of intracellular muscle protein by the proteolytic systems. It has been 

suggested that freezing helps to improve the tenderness in beef even without the aging step. The formation of intracellular ice 

crystals during frozen storage leads to the physical disruption of muscle cells and the rupture of connective tissue. This 

phenomenon could possibly be an explanation for the improved tenderness (Faridnia et al., 2015). Ice crystal formation could 

also contribute to the rupture of lysosomes, which facilitates the release of cathepsins into the cytosol. This would enable 

cathepsins to participate in post-mortem proteolysis. Shanks et al. (2002) also revealed that freezing could significantly 

reduce the WBSF values for Longissimus beef steaks during various aging periods (post-mortem 1, 2, 3, 4, 6, 7, 10, 14, and 

35 d). However, Wheeler et al. (1990) observed no significant differences in tenderness of steaks prepared from fresh and 

frozen subprimals after comparable aging time periods. 

Several studies have been conducted to evaluate the effects of storage conditions on different endogenous proteases and 

their inhibitors (Table 1). Pomponio and Ertbjerg (2012) investigated the effects of post-mortem storage temperature (2℃, 

15℃, 25℃, and 30℃) on calpain activity for porcine Longissimus muscle. It was discovered that μ-calpain was activated 

earlier than m-calpain at all temperatures. Autolyzed m-calpain was reported after 5 d at 2℃ storage temperature. The 

experimental results also indicated that the activity of calpastatin and the myofibril particle size (myofibrillar fragmentation 

was analysed using a Malvern Mastersizer) decreased with increasing incubation time (2 h post-mortem to 120 h post-

mortem) and temperatures (2℃–30℃). From these observations, the authors suggested that both μ- and m-calpain are 

involved in proteolytic tenderisation of meat (Pomponio and Ertbjerg, 2012). In contrast, at refrigerated temperatures (4℃), 

the autolysis of m-calpain during aging has been observed in neither bovine (Camou et al., 2007) nor ovine muscle (Veiseth 

et al., 2001). In another study by Xu et al. (2012), the μ-calpain activity in porcine Longissimus dorsi muscle was undetected 

after 1d post-mortem storage at refrigerated conditions (0℃ to 4℃). 

 

Meat Processing Technologies, Meat Tenderness and Proteolytic Systems 

Several techniques to improve the meat tenderness have been proposed in many studies and their effects on meat are 

elaborated in the following sections (Table 2). 



Food Science of Animal Resources  Vol. 41, No. 4, 2021 

594 

High pressure processing (HPP) 
In the meat industry, high pressure processing (HPP) is applied to a product at or above 100 MPa using a liquid transmitter 

(Simonin et al., 2012). HPP has been reported to alter the texture and gel-forming properties of myofibrillar proteins, and thus 

it has been proposed as a physical and additive-free tenderiser for meat products (Buckow et al., 2010). Application of high 

Table 1. Some studies showing the effects of post-mortem aging/storage conditions on endogenous proteases in meat from different 
animal sources 

Source Muscle type Post-mortem storage 
conditions Results References 

Beef 
 
 

Longissimus muscle 
 
 

14 d at 1℃ 
 
 

- m-Calpain activity remained nearly 
constant 

- μ-Calpain activity decreased gradually 

Koohmaraie et al. 
(1987) 

 

 

Semimembranosus and 
Longissimus lumborum 

steaks muscles 
 
 
 
 
 
 

84 d at −75℃ 
 
 
 
 
 
 
 
 

- Only 5.4% of the initial µ-calpain activity 
remained in bovine Semimembranosus 
muscles after 2 d of post-mortem aging 

- m-Calpain was activated in most bovine 
Semimembranosus and Longissimus 
lumborum steaks muscles by the 14 d of 
aging 

- The procaspase-3 activity was noticed in 
the bovine muscles up to 7 d of storage 

Colle and Doumit 
(2017) 

 
 
 
 
 
 
 

 
Longissimus thoracis 

 
7 d at 4℃ 

 
- Active caspase-3-isoforms and their levels 

decreased with post-mortem aging 
Huang et al. (2016) 

 

 

Semimembranosus, 
Longissimus lumborum, 

Longissimus thoracic, Psoas 
major, and Triceps brachii 

7 d at 4℃ 
 
 
 

- No autolysis of m-calpain was noticed 
during the aging period 

 
 

Camou et al. (2007)
 
 
 

Pork 
 
 
 
 
 
 
 
 

Longissimus muscle 
 
 
 
 
 
 
 
 

5 d at different 
temperatures (2℃, 

15℃, 25℃, and 30℃)
 
 
 
 
 
 

- μ-Calpain was activated earlier than m-
calpains at all temperatures 

- Autolyzed m-calpain was reported after 5 
d at 2℃ storage temperature 

- The activity of calpastatin and myofibril 
particle size decreased with increasing 
incubation time (2 h post-mortem to 120 h 
post-mortem) and temperatures (2℃ to 
30℃) 

Pomponio and Ertbjerg 
(2012) 

 
 
 
 
 
 
 

 
Longissimus dorsi 

 
 

1 d post-mortem 
storage  

(4°C and 25 °C) 

- μ-Calpain activity was undetected after 1 d 
post-mortem storage 
 

Xu et al. (2012) 
 
 

 

Longissimus muscle 
 
 
 

192 h after slaughter 
(temperature not 

mentioned) 
 

- Caspase 3/7 and caspase 9 exhibited the 
highest activities at 2 h post-mortem, and 
their activities decreased with post-mortem 
time 

Kemp et al. (2006) 
 
 
 

Lamb 
 
 
 
 

Longissimus, 
Semimembranosus and 
Infraspinatus muscles 

 
 

21 d post-mortem 
storage at 4°C 

 
 
 

- The activity of caspase 9 was observed to 
decline faster in contrast to caspase 3/7 in 
lamb Longissimus, Semimembranosus and 
Infraspinatus muscles during post-mortem 
storage 

Kemp et al. (2009) 
 
 
 
 

Goat 
 
 

Biceps femoris 
 
 

96 h post-mortem 
storage at 4°C 

 

- The optimised μ-calpain mediated aging 
was achieved after 48 to 72 h post-mortem 
storage 

Biswas et al. (2016)
 
 

Chicken 
 
 

Chicken Pectoralis 
superficialis muscle 

 

72 h post-mortem 
storage at 4°C 

 

- After 6 h post-mortem, μ-calpain activity 
in the chicken Pectoralis superficialis 
muscle was hardly detectable 

Lee et al. (2008) 
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pressure has been reported to possibly induce membrane damage, which may affect enzymatic reactions in both positive 

and/or negative way (Sikes and Warner, 2016). The synergistic action of proteolytic systems, particularly cathepsins, could 

be responsible for the meat tenderisation under pressure. The pressure treatment (100–500 MPa at ambient temperature for 10 

min) of beef rounds caused pressure-induced endogenous proteolytic activity due to the release of enzymes from lysosomes, 

the denaturation of muscle proteins and the increased susceptibility of these proteins to proteolysis (Ohmori et al., 1991). The 

Table 2. Some highlights of the effects of different processing technologies on the activities of endogenous enzymes 

Processing 
technologies Proteolytic system Effect on endogenous proteases References 

High pressure 
processing 
 
 
 
 
 
 
 
 
 
 

Lysosomal 
proteases 

 
 
 
 
 
 
 
 
 
 

- Releases and increases the activities of lysosomal 
proteases 

- Increased cathepsin D activities observed in 
pressure treated (520 MPa, 10℃ for 260 s) 2 d post-
rigor bovine (Biceps femoris and Longissimus dorsi)
muscles throughout storage at 4℃ for up to 20 d 
post-mortem 

- Pressure induced higher endogenous proteolytic 
activity due to the release of enzymes from 
lysosomes (between 100–200 MPa), denaturation of 
muscle proteins and enhanced susceptibility of these 
proteins to proteolysis 

- Jung et al. (2000), Kubo et al. (2002) 
 

- Jung et al. (2000) 
 
 
 
 
- Ohmori et al. (1991) 
 
 
 
 

 
Calpains 

 
 

- Activates calpains under moderate pressure and 
with the release of calcium ions from the 
sarcoplasmic reticulum

- Bessiere et al. (1999), Homma et al. (1996)
 
 

Pulsed electric 
field 

Lysosomal 
proteases 

- Releases lysosomal proteases from lysosome 
 

- Faridnia et al. (2015) 
 

 
Calpains 

 
- Releases calcium ions which activates μ-calpain 
- Promotes the autolysis of calpains which enhances 

the proteolysis during aging

- Alahakoon et al. (2016) 
- Bhat et al. (2018c), Bhat et al. (2019) 

 

Shockwave 
processing 

Cathepsins 
 

- No improvement in the cathepsin and peptidase 
activities 

- Bolumar et al. (2014) 
 

Ultrasound 
processing 
 
 

Calpains 
 
 
 

- Releases calcium ions, which activate μ-calpain 
 

- Increases calpains autolysis and enhance proteolysis 
during maturation 

- Alarcon-Rojo et al. (2015), Roncalés et al. 
(1993) 

- Roncalés et al. (1993), Wang et al. (2018) 
 

 Cathepsins - Releases cathepsin from lysosomes - Roncalés et al. (1993) 

Thermal 
processing 
(Sous vide 
cooking) 
 
 
 
 

Cathepsins 
 
 
 
 
 
 
 

- Mild heating promotes the activity of cathepsins by 
rupturing of lysosomes 

- Cathepsins B+L are most active when being held at 
55℃, remain active at 63℃ for 19.5 h 

- Cathepsin H has highest activity at 20℃ and lost 
most of its activity at temperatures above 40℃ 

- Cathepsin B+L activity increased at 50℃ after one 
hour of cooking 

- Dominguez-Hernandez et al. (2018), 
Ertbjerg et al. (2012) 

- Christensen et al. (2013), Ertbjerg et al. 
(2012), Wang et al. (2013) 

- Wang et al. (2013) 
 
- Kaur et al. (2020) 
 

 Calpains 
 

- Calpains starts to be inactivated from 55℃ and 
there was no extractable activity at 60℃ 

- Ertbjerg et al. (2012), Wang et al. (2013) 
 

Electrical 
stimulation 
 
 

Calpains 
 
 
 

- Early activation of calpains which accelerate muscle 
proteolysis 

 
 

- Abbasvali et al. (2012), Ferguson et al. 
(2000), Lee et al. (2000), Li et al. (2012), 
Pouliot et al. (2014), Uytterhaegen et al. 
(1992) 

 
Lysosomal 
proteases 

 

- Increases the activity of lysosomal enzymes such as 
β-glucuronidase, cathepsin C and cathepsin B+L & 
cathepsin D, in most of the cases 

- Dutson et al. (1980), Li et al. (2012), 
Pommier et al. (1987) 
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magnitude of pressure inducing the release of cathepsins from the lysosomes of bovine liver was different for different 

enzymes. High pressure such as more than 200 MPa is required to release cathepsins B and H, whereas cathepsins D released 

at a lower pressure of 100 MPa (Ohmori et al., 1992). Pre-rigor Longissimus thoracis rabbit muscles treated at 100 MPa 

caused the disruption of lysosome membranes and consequently the release of cathepsins into the cytosol (Kubo et al., 2002). 

As such, cathepsins become accessible to the myofibrils and can participate in post-mortem proteolysis (Buckow et al., 2010; 

Kubo et al., 2002). It has been suggested that certain combinations of temperature and pressure accelerate the activity of the 

cathepsins (Buckow et al., 2010). The activities of cathepsin D and acid phosphatase have also been found to increase in 

pressure-treated (520 MPa, 10℃ for 260 s) 2 d post-rigor bovine muscles (Biceps femoris and Longissimus dorsi) throughout 

storage at 4℃ for up to 20 d post-mortem (Jung et al., 2000). 

The release of calcium ions from the sarcoplasmic reticulum during HPP of rabbit meat at 200 MPa resulted in the 

activation of calpains and inactivation of the inhibitor calpastatin (Homma et al., 1996). On the contrary, in an in vitro study, 

using an in-house built bioreactor, the activity of calpain purified from rabbit skeletal muscle was observed to be enhanced at 

a moderate pressure of 50 MPa (for μ-calpain) and 75 MPa (for m-calpain). Both μ- and m-calpains were inhibited at 

pressures above 100 MPa, with m-calpain being more pressure-resistant than μ-calpain (Bessiere et al., 1999). Similar 

observations have been reported where the level of μ-calpain activity in HPP-treated meat was markedly reduced during 

aging. Both μ-calpain and m-calpain were reported to be partially inactivated at 200 MPa and completely inactivated at 400 

MPa due to pressure-induced denaturation (Cheftel and Culioli, 1997). However, the increased catheptic activity was not 

adequate to compensate for the loss of calpains and structural changes in myofibrils at higher pressure (>400 MPa), resulting 

a reduced effect on tenderness. In a recent study, Morton et al. (2018) have found that HPP of bovine pre-rigor muscles at 175 

MPa caused substantial increases in tenderness but with a decrease in μ-calpain activity, evidence that the primary effect of 

HPP on pre-rigor meat may be physical rather than enzymatic. 

 

Thermal processing (sous vide cooking) 
Sous vide is a popular form of low temperature long time (LTLT) cooking, where the temperature is often close to or lower 

than 60℃ and the product is cooked for an extended period of time (Dominguez-Hernandez et al., 2018). The sous vide 

cooking temperature in achieving optimum meat tenderisation should be high enough to solubilise the collagen and inactivate 

microorganisms while having minimum myofibrillar shrinkage (Boland et al., 2019; Zhu et al., 2018). Some studies have 

reported that cooking at 60℃ for 4 h improved the tenderness of bovine Semimembranosus muscle (Dominguez-Hernandez 

et al., 2018) and a consensus was reached that LTLT cooking has a positive impact on meat tenderness (Dominguez-

Hernandez et al., 2018). Cathepsins have been demonstrated to be thermally stable at sous vide cooking temperatures (below 

60℃), thus they were suggested to be involved in the proteolysis of collagen during LTLT treatment (Dominguez-Hernandez 

et al., 2018). Thus, their proteolytic action may contribute to the tenderising effect during sous vide cooking of meat.  

According to the research studies, the cathepsins have the ability to destabilise native collagen and to breakdown thermally 

weakened collagen into peptides, which may be further hydrolysed by other enzymes (Solvig, 2014). Hence in LTLT 

treatments, proteolysis could act synergistically with heat denaturation to cause enhanced weakening of collagen and 

tenderisation. Collagen denaturation has been suggested to be a heating rate-dependent, multistep process that can occur at 

55℃–60℃ in slow heating regimes. Wang et al. (2013) examined the relationship between duck breast meat tenderness, 

actomyosin degradation and endogenous enzyme activities (calpain, cathepsin B, L, and D) at cooking temperatures ranging 

from 30℃ to 90℃. It was reported that the shear force decreased from 50℃ to 70℃. At 60℃, calpains lost most of their 
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extractable activity whereas cathepsin B and L remained active. There was no significant change in cathepsin D activity at 

temperatures below 70℃ and this observation was strongly correlated with the degree of actomyosin degradation. The 

authors suggested that cathepsin D could contribute to actomyosin degradation and thus improve the tenderness of duck meat 

during the cooking process (He et al., 2019; Wang et al., 2013).  

Ertbjerg et al. (2012) documented that cathepsins B+L achieved their maximum activity in porcine Longissimus muscle 

after heating for 1.5 h at 55℃, while calpains were rapidly inactivated at this temperature. The authors suggested that part of 

cathepsin B and L may exist in the form of a proenzymes that are activated by heat. Cathepsin B+L activity was also detected 

in the Semitendinosus muscle from cows and young bulls after 19.5 h of cooking at 63℃ by Christensen et al. (2013), 

suggesting that cathepsin B and L play a major role in tenderisation during extended cooking at lower temperature (53℃–

63℃).  

The influence of thermal activation of enzymes on shear force and deformation of bovine Supraspinatus and Rectus 

femoris muscles was evaluated by Uttaro et al. (2019), by treating the muscles with different cooking treatments: the single- 

and multistage sous vide cooking and water bath cooking. The cooked samples were stored at two different storage conditions 

(one week at 2℃ and two weeks at –1.5℃) before reheating the meat at 55℃. A 17%–21% reduction in shear force was 

observed after a single stage sous vide cooking process (at 59℃ for 4 h). This was suggested to be due to the activation of 

cathepsins B & L and 20S proteasome by heat that might affect both myofibrillar and collagen components of meat. 

Multistage sous vide cooking (1 h at 39℃, 1 h at 49℃ and 4 h at 59℃) caused a further 5%–6% decrease in shear force that 

was suggested to be due to degradation of primarily myofibrillar proteins possibly through activation of the m-calpain. No 

significant effects of post-cooking storage were reported (Uttaro et al., 2019). 

In a recent study on beef brisket, cathepsin B and L were observed to be more heat stable under sous vide temperature 

conditions in contrast to Cathepsin H (Kaur et al., 2020). An increase in the cathepsin B+L activity at 50℃ after 1 h of 

cooking suggested that these enzymes could exist as pro-enzymes that were activated during heating. Therefore, higher 

activities of these enzymes (Cathepsin B+L), at the above-mentioned temperature are likely to contribute to proteolysis and 

tenderness in sous vide cooked brisket meat.  
 

Ultrasound treatment 
Ultrasound is a form of mechanical vibration energy in a solid or fluid at a frequency of 20 kHz and above and can be 

applied to foods either in a non-destructive (low intensity ultrasound) or a destructive way (high intensity ultrasound) 

(Alarcon-Rojo et al., 2015; Jayasooriya et al., 2004). The low intensity ultrasound is mainly used as an analysis tool whilst 

the high intensity ultrasound is used to modify the properties of food.  

For meat and meat products, the application of ultrasound to induce physical and chemical changes has been a subject of 

interest over previous few decades (Jayasooriya et al., 2004). Ultrasonic treatment is a physical method that could be an 

alternative to chemical and thermal treatment. The disruption of the cellular membranes of the muscle due to ultrasonication 

could release calcium into the extracellular space, increasing its availability for the activation of calpains (Alarcon-Rojo et al., 

2015). Wang et al. (2018) observed a significant increment in the degree of autolysed 76 kDa calpain subunits in 

ultrasonicated (intensity of 25 W/cm2 at 5±1℃ for 20 and 40 min) bovine Semitendinosus muscles after one day of post-

ultrasonication storage at 4℃. This was accompanied by an enhanced desmin and troponin degradation during the subsequent 

aging process at 4℃ for up to 7 d. Roncalés et al. (1993) documented the appearance of 30 kDa peptides with an increase in 

proteolytic activity in lamb muscles treated with ultrasound (57 and 62 W for 10–180s). Thereby, a strong correlation was 
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noticed between these peptides and meat tenderness (Roncalés et al., 1993). The authors suggested that this may be a result of 

the mechanical effects of cavitation that release the cathepsins from lysosomes and/or calpain activation by increased calcium 

release from the sarcoplasm upon ultrasound treatment (Roncalés et al., 1993). Lysosomes have been reported to be damaged 

by slow freezing or the use of low frequency-high power ultrasound treatments (McGann et al., 1988; Weiss et al., 2011). 

Cathepsin D was released from the lysosomes following multiple freezing-thawing treatments, high-power ultrasound 

treatments and mechanical homogenisation in case of fish muscles (Szymczak, 2016). These treatments led to an increase of 

170%–300% in its activity. In another study, significant changes in collagen characteristics were observed after ultrasound 

treatment (40 kHz; 1,500 W; 10–60 min) of bovine Semitendinosus muscle (Chang et al., 2012). Collagenous fibres were 

disordered and staggered loosely, and with an increase in the ultrasound exposure times, granulation and aggregation of 

denaturing collagen fibres were found in the extracellular space. These observations suggested that low frequency and high 

power ultrasonication resulted in a significant effect on collagen characteristics and meat texture (Chang et al., 2012). 

Various studies have documented that the application of power-ultrasound favourably enhanced the tenderisation of meat 

from beef (Stadnik and Dolatowski, 2011; Wang et al., 2018), chicken (Chen et al., 2015), pork (Ozuna et al., 2013), and 

goose breast (Zou et al., 2018). Contrary to the above-mentioned studies, no significant improvement in meat tenderness was 

observed after low intensity ultrasound treatment for bovine Semitendinosus, Biceps femoris and Pectoralis muscles (Lyng et 

al., 1997; Pohlman et al., 1997a; Pohlman et al., 1997b).  

 

Electrical stimulation   
Electrical stimulation is a post-slaughter treatment used in preventing carcass cold-shortening and facilitating muscle 

maturation processes (Allahodjibeye, 2019). This process leads to an increase in the rate of pH fall, due to increased muscle 

glycolysis, accelerating the onset of muscle rigor mortis before reaching a temperature that is low enough for cold shortening 

to occur (Devine et al., 2014). Electrical stimulation has also been observed to result in physical modification of muscle 

structure, such as the formation of stretched contracture bands and disruption of sarcomeres, which is likely to play an 

important role in meat tenderisation (Bekhit et al., 2014a; Kadim et al., 2009; Li et al., 2012; Zhang et al., 2019). 

Several studies have shown that electrical stimulation resulted in early activation of calpains, accelerated proteolysis of the 

muscle proteins and increased muscle tenderness in Longissimus dorsi muscle of fat-tailed sheep (Abbasvali et al., 2012), and 

Longissimus lumborum muscle of cattle (Ferguson et al., 2000; Li et al., 2012) and lamb (Pouliot et al., 2014). However, Kim 

et al. (2013) reported that tenderness and proteolysis of the Longissimus dorsi muscles from calves stimulated by low voltage 

remained unaffected. These conflicting observations might be due to the differences in the voltages applied, the muscle types, 

and the age of the animals at slaughter. Interestingly, electrical stimulation of bovine Longissimus dorsi muscle at a very early 

stage of post-mortem (3 min) reduced the effectiveness of tenderisation due to significant reduction in the early levels of 

activity of µ-calpain, which was negatively correlated to the tenderness (Hwang and Thompson, 2001). 

The activity of lysosomal enzymes such as β-glucuronidase, cathepsin C and cathepsin B+L in the muscles has been 

reported to be enhanced significantly after electrical stimulation (Li et al., 2012). Uytterhaegen et al. (1992) reported an 

improvement in tenderness in electrically stimulated bovine Longissimus dorsi along with increased activity of the calpains, 

but not cathepsin B+L. Pommier et al. (1987) found no improvement in the tenderness of electrically stimulated calf 

Longissimus dorsi muscle despite an increase in the activity of cathepsin D. Thus, the improvement in tenderness might not 

be directly correlated to the activity of lysosomal enzymes in electrically-stimulated muscles. 
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Pulsed electric fields (PEF) 
PEF is a non-thermal technique that permeabilises cell and organelle membranes by the application of high-voltage pulses 

on food using two conductive electrodes (electroporation), which has been explored for meat tenderisation (Bhat et al., 

2018b; Warner et al., 2017). PEF treatment could potentially improve meat tenderness by causing the physical disruption of 

myofibrils, the early activation of the calcium-dependent μ-calpain by releasing of calcium ions from the cellular organelles, 

and/or facilitating the release of proteolytic enzymes (such as cathepsins B and L) from the lysosomes. Moreover, PEF has 

been hypothesised to facilitate glycolysis (generally identified through the ultimate muscle pH, pHu) in pre-rigor meat, which 

is associated with enhanced proteolysis (Bekhit et al., 2014b). However, the effect of PEF on meat tenderness reported in the 

current literature varies. This might be due to variation in the processing parameters (electric field strength and specific 

energy), the properties of meat samples (muscle cuts, hot or cold-boned, and dielectric properties) and the conditions of pre- 

(freezing) or post- (aging) PEF treatments (Alahakoon et al., 2016). For instance, Suwandy et al. (2015a) noticed an increase 

in toughness in the hot-boned bovine Longissimus lumborum and a decrease in shear force of the hot-boned bovine 

Semitendinosus muscles after PEF treatment. On the other hand, PEF treatment tenderised cold-boned bovine Semitendinosus 

muscles but did not affect the tenderness of cold-boned Longissimus lumborum muscles (Suwandy et al., 2015b). Both PEF 

experiments was conducted using the same processing parameters (Suwandy et al., 2015a; Suwandy et al., 2015b). These 

observations suggested that the tenderising effect of PEF varies between muscle cuts and post-mortem handling of muscles. 

Different muscle cuts have different protein (myofibrillar and collagen) and fat compositions which could affect the 

tenderising effect of PEF treatment (Alahakoon et al., 2016). The hot-boning treated muscles are removed from the carcass in 

a pre-rigor state and thereby experiences a higher degree of contraction and shortening than cold-boned muscles and produces 

a tougher meat (White et al., 2006). Faridnia et al. (2015) reported that freezing and thawing prior to PEF improved the 

tenderness of bovine Semitendinosus muscles but PEF treatment alone had no effect. The reasons could possibly be the 

physical disruption of muscle cells by freezing and rupturing of connective tissue, leading to tenderisation, and the disruption 

of the lysosomes due to freezing, leading to the release of cathepsins for participation in proteolysis. PEF treatment has been 

reported to enhance the autolysis of calpains (both µ and m types) and improve proteolysis during the aging process of cold-

boned beef, but opinions on the cause of the tenderising effect has been non-unanimous (Bhat et al., 2018c; Bhat et al., 2019). 

The effect of PEF on the activity of calpains in hot-boned meat and on the activity of lysosomal proteases in meat has not 

been reported. 

 

Shockwave processing 
Shockwave hydrodynamic processing (HDP) involves the generation of pressure waves up to 1 GPa in fractions of 

milliseconds by either explosive or electrical discharge (Bolumar et al., 2013). It has been reported that HDP improved the 

meat tenderness by up to 70%, where the electrical HDP treatment showed a milder effect with only 10 to 30% shear force 

reduction (Bolumar et al., 2013; Hopkins, 2014). The mechanism to explain this observation has not been established. 

Hopkins (2014) suggested the tenderisation effect of HDP was due to the physical destruction of the muscles and the release 

and activation of endogenous enzymes caused by disruption of the muscle structure. In contrast, Bolumar et al. (2014) 

speculated that the tenderising effect was mainly due to the disruption of muscle structure, as no activation of the cathepsins 

or peptidases was observed in the electrical discharge HDP-treated muscle. The tenderisation effect of HDP might be due to 

an enhanced aging process as a result of disordered muscle structure, which facilitates the contact of endogenous proteases 

with their substrate. The effect of explosive HDP treatment on endogenous enzymes in meat has not been reported. The more 
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intense treatment from explosive HDP will presumably have had more impact on muscle structure, which might aid in the 

release and activation of lysosomal proteases. 

 

Conclusion 

Various studies have suggested that the endogenous proteases act synergistically in the proteolytic tenderisation of meat. 

The activity of m-calpain remains nearly constant throughout post-mortem aging at refrigerated temperatures but a gradual 

decrease in μ-calpain has been observed for bovine, ovine and porcine muscles. There is increasing evidence to suggest that 

the caspases and the calpain system may interact throughout post-mortem aging, indicating the role of caspases in post-

mortem proteolysis. The proteasome has been found to be less susceptible to post-mortem meat storage conditions and 

therefore has been suggested by some studies to have more proteolytic activity than μ-calpain.  

Post-slaughtering treatments and processes such as electrical stimulation have been reported to cause early activation of 

calpains and increase the activity of many lysosomal proteases. Similarly, HPP (at relatively low pressures), PEF, and 

ultrasound processing have been reported by many studies to help release and increase the activities of lysosomal proteases 

such as the cathepsins and acid phosphatase and to activate m-calpain through the release of calcium ions from the 

sarcoplasmic reticulum. Mild heating has been shown to increase the activity of cathepsins, particularly cathepsins B+L 

(when held at 55℃), whereas calpains start to be inactivated from 55℃. The information reviewed in this paper may be used 

to design optimum post-mortem meat storage and processing conditions in order to achieve improved muscle tenderness 

within shorter post-mortem aging and cooking times. However, more research is required to address the effect of different 

animal species, muscle cuts, age and hot/cold boning, etc., on the achievement of meat tenderness through the use of different 

processing technologies. 
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