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Prevalence of Microorganisms and Suggestion for Potential Contribution of 8 

Microorganisms to Volatile Basic Nitrogen Production in Beef at Current Purchase 9 

Stages 10 

 11 

Abstract 12 

This study investigated the prevalence of microorganisms related to meat quality and 13 

analyzed volatile basic nitrogen (VBN) levels in beef samples to suggest potential bacteria 14 

that might contribute to VBN production in current purchase stages with metagenomic 15 

analysis. Seventy beef samples were analyzed for coliform, Escherichia coli, 16 

enterohaemorrhagic E. coli, Listeria monocytogenes, Salmonella, Staphylococcus aureus, 17 

total aerobic bacteria (TAB), Enterobacteriaceae, lactic acid bacteria (LAB), Pseudomonas 18 

spp., yeast and molds (YM), and psychrotrophic bacteria (PB). VBN levels ranged from 0.69 19 

to 22.51 mg%. Microbiota in three samples with the highest VBN levels and three samples 20 

with the lowest VBN levels were analyzed. S. aureus was detected in only one sample at 1.2 21 

Log CFU/g. The cell counts for TAB, coliform, Enterobacteriaceae, LAB, Pseudomonas spp., 22 

YM, and PB were 5.1, 1.7, 2.6, 4.2, 1.9, 2.9, and 5.4 Log CFU/g, respectively. Microbiota 23 

analysis revealed that samples with high VBN levels had high relative abundances of 24 

Lactobacillus and Leuconostoc. This study showed that relatively abundant LAB were 25 

potential bacteria that might contribute to producing more VBN in beef at current purchase 26 

stages. However, the potential bacteria were suggested only by metagenomic analysis with a 27 

limited sample size without considering the endogenous meat enzymes. Therefore, further 28 

research is necessary to identify and isolate these bacteria with a larger sample size while 29 

excluding VBN produced by endogenous enzymes. Additionally, environmental factors not 30 

involved due to the limited objective of this study could also be considered in further research 31 

with the different objectives from this study. 32 
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 36 

1. Introduction 37 

Meat is vulnerable to degradation from oxidation and microbial contamination, given its 38 

nutrient richness and favorable conditions for microorganisms (Lee and Yoon, 2023; Yu et 39 

al., 2018). Meat preservation is associated with food safety and meat spoilage. Thus, various 40 

research aimed to address the microorganisms responsible for these issues (Devlieghere et al., 41 

2004). Meat spoilage occurs because of various microorganisms, depending on storage 42 

temperature, contamination, and packaging conditions. Enzymatic activity in animal muscle 43 

cells is a natural occurrence in animal muscle cells after slaughtering and contributes to meat 44 

spoilage (Dave and Ghaly, 2011). Key enzymes involved in this process include NADPH 45 

oxidase, cyclooxygenase, xanthine oxidase, nitric oxidase, and peroxidases (Bekhit et al., 46 

2021b). Despite the implementation of cold chain systems to mitigate these concerns, 47 

vulnerabilities persist in the meat cold chain (Kwon et al., 2022); also, undesirable changes 48 

(e.g., protein decomposition, lipid oxidation, discoloration, and the growth of spoilage 49 

bacteria) may occur as meat spoilage progresses. 50 

Volatile basic nitrogen (VBN) can be used as an indicator of meat spoilage and to assess 51 

the freshness of fish (Jeong et al., 2015; Huang et al., 2015). Thus, the VBN could be a 52 

critical consideration at the purchase stage. These compounds are produced through the 53 

microbial degradation of protein and non-protein nitrogenous substances, such as amino acids 54 

and nucleotide catabolites (Liu et al., 2013).  55 

With recent advancements in gene analysis technology for identifying and characterizing 56 

microorganisms, it is now possible to predict meat quality based on microbiota (Gagaoua et 57 
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al., 2022). Since meat spoilage is related to microorganisms in the meat, researches have been 58 

conducted to identify potential microorganisms for VBN production (Fang et al., 2022; 59 

Saenz-Garcia et al., 2020; Wang et al., 2017).  60 

Therefore, the objectives of this study were to investigate the prevalence of 61 

microorganisms and VBN in beef and to suggest potential bacteria that might contribute to 62 

VBN production in current purchase stages with metagenomic analysis. 63 

 64 

2. Materials and Methods 65 

2.1. Analysis of microorganisms and VBN contents in beef  66 

2.1.1. Preparation of beef samples 67 

Seventy beef samples [34 (high grade: 17 and low grade: 17) sirloin (relatively higher 68 

fat content) and 36 (high grade: 19 and low grade: 17) top round (relatively lower fat content) 69 

samples] were collected from the wholesale stage of distribution (17%), butcher's shops 70 

(41%), hypermarkets (17%), and supermarkets (24%) between July and August 2022. These 71 

distribution stages and portions for each retail outlet were determined according to the data 72 

from the Korea Institute for Animal Product Quality Evaluation (KAPE, 2022), and the 73 

distribution stages were also where the consumer purchased beef in current distribution 74 

conditions. All collected beef samples were transported in a cooler and analyzed within 3 h of 75 

purchase. 76 

 77 

2.1.2. Microbiological analysis 78 

According to the analysis method by the Ministry of Food and Drug Safety (MFDS, 79 

2022), for qualitative analysis of Escherichia coli, 25 g of beef samples were aseptically 80 

placed in a filter bag containing 225 mL sterile 0.1% buffered peptone water (BPW; Becton, 81 

Dickinson, and Company, Detroit, MI, USA), and homogenized with a pummeler 82 
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(BagMixer® , Interscience, St. Nom, France) for 1 min. The homogenate was diluted with 83 

0.1% BPW, and 1 mL aliquots of the diluents were placed into 9 mL EC medium (Becton, 84 

Dickinson, and Company) and incubated at 44℃ for 24 h. A positive sample was identified 85 

by turbidity and gas production in the EC medium. Subsequently, a loopful of the positive EC 86 

medium was streaked on eosin methylene blue (EMB; Becton, Dickinson, and Company) 87 

agar and incubated at 37℃ for 24 h. Colonies displaying a green metallic sheen were 88 

subjected to identification through 16S rRNA sequencing. To confirm colony formation of 89 

enterohemorrhagic E. coli (EHEC) with a method by the MFDS (2022) with the 90 

modification, 10 g of the beef sample was aseptically placed in a filter bag containing 90 mL 91 

modified tryptic soy broth (mTSB; MBCell, Seoul, Korea). The sample was placed at 37℃ 92 

for 24 h for the enrichment of EHEC. A loopful of the culture was streaked onto MacConkey 93 

sorbitol agar (Becton, Dickinson, and Company) supplemented with cefixime tellurite 94 

(MBCell) (TC-SMAC), and 5-Bromo-4-Chloro-3-Indolyl-β-D-Glucuronide (BCIG) agar 95 

(Oxoid, Basingstoke, Hampshire, UK). The agar plates were incubated at 37℃ for 24 h. After 96 

the colony formation of EHEC was confirmed, the following experiment was conducted to 97 

detect the DNA of EHEC. To extract DNA from the colonies on the agar plates after 98 

incubation, a method by Fratamico et al. (2000) was used with the modification. Two to four 99 

red colonies on TC-SMAC and turquoise colonies on the BCIG agar were each suspended in 100 

100 μL of sterile distilled water, incubated at 99℃ for 10 min, and the resulting mixture 101 

served as the template DNA for PCR amplification with multiplex PCR. The PowerchekTM 102 

diarrheal E. coli 8-plex detection kit (Kogene Biotech, Seoul, Korea) was used to detect stx1 103 

and stx2, which are specific DNA markers for EHEC. PCR amplification was conducted 104 

according to the manufacturer’s instruction and consisted of initial denaturation at 95℃ for 105 

12 min, followed by 32 cycles of 95℃ for 30 sec, 60℃ for 45 sec, 72℃ for 60 sec, and a 106 
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final extension at 72℃ for 10 min. The PCR products were electrophoresed on 2% agarose 107 

gel, and DNA bands were visualized under UV light.  108 

The homogenates previously prepared for qualitative analysis of E. coli were diluted in 9 109 

mL of 0.1% BPW and used for quantitative analysis of microorganisms. The diluents were 110 

plated on PetrifilmTM E. coli/Coliform Count Plates (3M, Saint Paul, MN, USA), Palcam agar 111 

(Oxoid), xylose lysine deoxycholate agar (XLD; Becton, Dickinson, and Company), Baird-112 

Parker agar (BPA; MBcell) supplemented with egg yolk tellurite (MBcell), PetrifilmTM 113 

Aerobic Count plates (3M), PetrifilmTM Enterobacteriaceae Count Plates (3M), de Man, 114 

Rogosa, and Sharpe agar (MRS agar; Becton, Dickinson, and Company), cetrimide agar 115 

(Becton, Dickinson, and Company), plate count agar (PCA; Becton, Dickinson, and 116 

Company), and PetrifilmTM Yeast & Mold Count Plates (3M) for E. coli and coliform, 117 

Listeria monocytogenes, Salmonella, Staphylococcus aureus, total aerobic counts, 118 

Enterobacteriaceae, lactic acid bacteria, Pseudomonas spp., psychrotrophic bacteria, and 119 

yeast and mold, respectively. PetrifilmTM E. coli/Coliform Count Plates, BPA supplemented 120 

with egg yolk tellurite, and PetrifilmTM Aerobic Count plates were incubated at 37℃ for 48 h. 121 

Palcam agar and cetrimide agar were incubated at 30℃ for 48 h. XLD and MRS agar were 122 

incubated at 37℃ for 24 h. PetrifilmTM Enterobacteriaceae Count Plates were incubated at 123 

37oC for 48 h. PCA and PetrifilmTM Yeast & Mold Count Plates were incubated at 7℃ for 10 124 

d and at 25℃ for 5 d, respectively. The cell counts of the following bacteria were determined 125 

based on the colonies identified through the following methods and 16S rRNA sequencing. 126 

For the identification of E. coli, blue colonies that produced gas on PetrifilmTM E. 127 

coli/Coliform Count Plates were streaked onto EMB agar. Colonies exhibiting a green 128 

metallic sheen after 24 h of incubation at 37℃ were isolated. For L. monocytogenes, colonies 129 

presumptively identified on Palcam agar plates were streaked to CHROMagar™ Listeria 130 

(CHROMagar, Paris, France) and incubated at 37℃ for 24 h. Colonies appearing blue with a 131 
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diameter of less than 3 mm and displaying a regular white halo on CHROMagar™ Listeria 132 

were isolated. Since no colonies indicative of Salmonella were observed, no further analysis 133 

was conducted for this bacterium. For S. aureus, colonies presumptively identified on BPA 134 

supplemented with egg yolk tellurite were streaked onto CHROMagar™ Staph aureus 135 

(CHROMagar) and incubated at 37℃ for 24 h. Pink to mauve colonies were isolated. For 136 

Pseudomonas spp., colonies on cetrimide agar were streaked onto CHROMagar™ 137 

Pseudomonas (CHROMagar) and incubated at 30℃ for 24-36 h. Blue-green colonies were 138 

isolated. All the isolated colonies were then subjected to the 16S rRNA sequencing. The 16S 139 

rRNA sequencing was performed by BIONICS (BIONICS Co., Ltd, Seoul, Korea) using 140 

universal primers 27F and 1492R. The resulting sequences were analyzed by comparing them 141 

with microbial sequences in the NCBI GenBank database 142 

(https://blast.ncbi.nlm.nih.gov/Blast.cgi) using the BLAST (Basic Local Alignment Search 143 

Tool) to identify the bacteria. In this experiment, the presumptive colonies on the media 144 

where the homogenates were plated were streak-plated on the second media with higher 145 

selectivity, and isolated colonies on the second media were identified by 16S rRNA 146 

sequencing. Based on this identification, only identified colonies of the presumptive colonies 147 

were counted.  148 

 149 

2.1.3. Analysis of VBN content 150 

VBN contents were also analyzed for samples corresponding to microbiological 151 

analysis. VBN content was evaluated with the micro-diffusion method (Conway and 152 

O’Mally, 1942; MFDS, 2022). In brief, a sample bag containing 5 g beef and 25 mL distilled 153 

water was homogenized with a pummeler for 1 min, and the homogenate was left at room 154 

temperature for 30 min. The homogenate was then filtered using Qualitative Filter Papers 155 

No.131 (Advantec, Tokyo, Japan). Subsequently, 1 mL of 0.01 N sulfuric acid (H2SO4) 156 
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(Daejung Chemicals & Metals Co. Ltd., Siheung-si, Gyeonggi-do, Korea) was placed into the 157 

inner chamber of the Conway diffusion cell (Daihan Scientific Co., Wonju, Gangwon-do, 158 

Korea), and 1 mL of the filtrate and 1 mL of a saturated K2CO3 solution (Samchun 159 

Chemical Co., Ltd., Seoul, Korea) were placed into the outer chamber. The Conway diffusion 160 

cell was sealed with glycerin and incubated at 25℃ for 1 h. After incubation, the VBN-161 

captured H2SO4 solution was titrated with 0.01 N sodium hydroxide (Daejung 162 

Chemicals & Metals Co. Ltd., Siheung-si, Gyeonggi-do, Korea) with the addition of 10 μL 163 

indicator solution to the inner chamber. To prepare the indicator solution, 0.1 g of methyl red 164 

(Duksan Pure Chemicals, Ansan, Gyeonggi-do, Korea) and 0.1 g of methylene blue (Sigma-165 

Aldrich, St. Louis, MO, USA) were each dissolved in 100 mL of ethanol, filtered, and mixed 166 

in a 2:1 ratio (v/v). The following equation was used to calculate the concentration of VBN 167 

(MFDS, 2022). 168 

Volatile basic nitrogen (mg%) =  169 

W = sample weight, a =blank, b =sample, f = factor of 0.01N NaOH, DW = distilled water 170 

volume 171 

 172 

2.2. Microbiota analysis in beef 173 

To analyze microbiota in beef corresponding to changes in VBN content, of 70 samples, 174 

three samples with the highest VBN content (VBNH) and three samples with the lowest VBN 175 

content (VBNL) were selected. To extract DNA from the sample, a method by Li et al. 176 

(2020) was used with some modifications. Each sample (25 g) was placed in a sample bag 177 

containing 225 mL sterile 0.1% BPW and pummeled for 1 min. Ten milliliters of the 178 

homogenate were spun down for 10 min, and the supernatant was transferred to a conical 179 

tube. The supernatant was then centrifuged at 5,000×g for 15 min at 4℃, and the pellet was 180 

resuspended with 10 mL of phosphate-buffered saline (PBS; pH 7.4; KH2PO4 0.2 g, 181 
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Na2HPO4 1.5 g, NaCl 8.0 g, KCl 0.2 g/distilled water 1 L). The suspension was centrifuged at 182 

5,000×g at 4℃ for 15 min. The pellet was then used for genomic DNA extraction. Genomic 183 

DNA was extracted from the pellet according to the manufacturer’s instructions using a 184 

DNeasy PowerSoil Pro Kit (Qiagen, Hilden, NRW, Germany). For sequence library 185 

preparation, the Illumina 16S Metagenomic sequence libraries were prepared according to the 186 

Illumina 16S Metagenomic Sequencing Library protocols, and the V3 and V4 regions were 187 

amplified. Library preparation and paired-end sequencing were performed at Macrogen 188 

(Seoul, Korea) with the MiSeq™ platform (Illumina, San Diego, CA, USA). Sequencing 189 

results in FASTQ files were subsequently processed and analyzed with the 16S based 190 

microbiome taxonomic profiling (MTP) pipeline of the EzBioCloud (CJ Bioscience, Inc., 191 

Seoul, Korea) for microbial community and diversity analysis. The PKSSU 4.0 version of the 192 

EzBioCloud was used as the reference database for the classification and identification of 193 

bacteria with a cut-off percentage set at 0.5% to exclude low-abundance taxa. 194 

Microorganisms identified below this threshold were classified into the et cetera (ETC) 195 

group. The cut-off was used to avoid the complexity in data analysis caused by including 196 

very low-abundance microorganisms, which may often result from sampling errors or other 197 

technical variances (Brumfield et al., 2020; Sadurski et al., 2024). Metagenomic analysis for 198 

yeast and mold was not conducted because they were analyzed with 16S rRNA, and thus, it 199 

was not appropriate to compare the relative abundance with bacteria. Additionally, yeast and 200 

mold populations were much lower than those of bacteria in beef samples. 201 

 202 

3. Results and discussion 203 

3.1. Prevalence in beef 204 

3.1.1. Microorganisms 205 
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Qualitative analysis showed no presence of E. coli and EHEC in beef (data not shown). 206 

Quantitative analysis also showed that E. coli, Salmonella spp., and L. monocytogenes counts 207 

were below the detection limit (<1.0 Log CFU/g) (Table 1). Coliform counts were 1.7-2.1 208 

Log CFU/g. S. aureus was detected at 1.2 Log CFU/g in only one out of 70 samples. 209 

Regardless of part, distribution channel, and grade, total aerobic bacteria levels were 210 

observed between 4.5 and 5.7 Log CFU/g, while Enterobacteriaceae ranged from 2.0 to 3.3 211 

Log CFU/g. Lactic acid bacteria counts varied from 3.8 to 4.4 Log CFU/g. Pseudomonas spp. 212 

counts were in a range of 1.7 to 2.4 Log CFU/g. Psychrotrophic bacterial counts ranged from 213 

4.7 to 6.2 Log CFU/g. Yeast and mold counts were from 2.9 to 3.3 Log CFU/g. 214 

The cold chain system is used to delay meat spoilage by maintaining low temperatures 215 

during various stages, including post-slaughter carcass storage, cut handling, meat transport 216 

to distributors, and storage at retail sites (Ercolini et al., 2009). These practices might be 217 

related to the higher levels of psychrotrophic bacteria than those of other microorganisms in 218 

meat, as these bacteria could proliferate at refrigeration temperature. In contrast, the growth 219 

of microorganisms with higher optimal growth temperatures was inhibited under these 220 

conditions (Anas et al., 2019). This reason might cause somewhat higher psychrotrophic 221 

bacterial cell counts than the other bacteria. Some lactic acid bacteria in meat are 222 

psychrotrophic (Yost and Nattress, 2002; Ercolini et al., 2009), and Pseudomonas spp. are 223 

also psychrotrophic (Gill and Newton, 1978; Ledenbach and Marshall, 2009; Kim et al., 224 

2013). Thus, their cell counts might contribute to relatively higher cell counts of 225 

psychrotrophic bacteria and total aerobic bacteria.  226 

 227 

3.1.2. VBN 228 

VBN serves as an indicator of protein or amine degradation, and its value was assessed to 229 

measure the freshness of beef (Bekhit et al., 2021a). On average, sirloin and top rounds 230 
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exhibited 8.51±4.44 mg% and 8.15±5.33 mg% of VBN values, respectively (Fig. 1A). In 231 

distribution, the VBN values were 8.01±4.75 mg% and 8.39±4.95 mg% for meat packaging 232 

plants and retail shops, respectively (Fig. 1B). High-grade samples showed 10.33±5.04 mg% 233 

of VBN values, and low-grade samples had 6.26±3.79 mg% (Fig. 1C). In summary, VBN 234 

values did not depend on parts, distribution channels, and grades. However, it may vary 235 

depending on the sampling season, the number of samples, and the geographic region of 236 

sampling. In the other study, raw beef had a VBN content of 8.70±0.40 mg% (An et al., 2020), 237 

which is similar to the findings in our study. Based on this result, three VBNH samples and 238 

three VBNL samples were selected from 70 samples; their VBN values were 1.06±0.64 mg% 239 

and 20.73±2.79 mg% for VBNH and VBNL samples, respectively. 240 

 241 

3.2. Microbiota in beef 242 

To compare the differences in beef microbiota by alpha diversity, the Chao1 (species 243 

richness) and Shannon (species diversity) indices were calculated (Chao et al., 2014) (Fig. 2A 244 

and 2B). The Chao1 index did not reveal a significant difference between the VBNH and 245 

VBNL groups. However, the Shannon index was higher in the VBNL group than in the 246 

VBNH group, indicating higher species diversity in these samples. Beta diversity (the 247 

variation in species composition) using the Principal Coordinate analysis (PCoA) was 248 

conducted to compare microbial distribution (Legendre et al., 2005) (Fig. 2C). Different 249 

microbial community cluster patterns were observed between the VBNH and the VBNL 250 

groups. The PCoA analysis showed that more spread was observed in the VBNL group, and 251 

it indicates a higher diversity in microbial composition. Specifically, the VBNL samples 252 

displayed a wider spread along the principal coordinate (PC), particularly PC1 and PC2.  253 

At the phylum level, Firmicutes and Proteobacteria were identified as common phyla in 254 

all samples (Fig. 3A). The VBNH group comprised 96.6% Firmicutes, a minor presence of 255 
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Proteobacteria, and other phyla of the total composition. Conversely, the VBNL group 256 

showed a more diverse microbiota composition: Firmicutes accounted for approximately 257 

68.7%, Actinobacteria accounted for about 19.8%, and smaller proportions of Proteobacteria 258 

and other phyla. At the genus level, microbiota was also more varied in the VBNL group than 259 

in the VBNH group, and the VBNH group had relative abundance in order of Lactobacillus 260 

(61.3%) > Leuconostoc (17.9%) > Lactococcus (11.4%) > Carnobacterium (5.7%) > 261 

Pseudomonas (2.6%), and their relative abundances were higher compared to the VBNL 262 

group (Fig. 3B). These genera, Lactobacillus, Leuconostoc, Lactococcus, and 263 

Carnobacterium, are all lactic acid bacteria (Ringø et al., 1998). Lactic acid bacteria belong 264 

to the family of Firmicutes (Liu et al., 2010). Hence, this result may correspond to the 265 

comparison for Firmicutes and Proteobacteria, as the VBNH group showed a high relative 266 

abundance of Firmicutes with lactic acid bacteria. Among the Lactobacillus species, which 267 

were found in high proportions in both VBNH (61.3%) and VBNL (39.1%) groups, most of 268 

them frequently isolated from meat and meat products are psychrotrophic bacteria (Ercolini et 269 

al., 2009; Morishita and Shiromizu, 1986). Similarly, certain Leuconostoc species, such as 270 

Leuconostoc gelidum and Leuconostoc gasicomitatum were also psychrotrophic bacteria 271 

frequently isolated from meat (Comi et al., 2024; Johansson et al., 2022; Mun et al., 2021; 272 

Shaw and Harding, 1984). At the species level, microbiota was more varied in the VBNL 273 

group than in the VBNH group (Fig. 3C). Lactobacillus spp. in the VBNH group were 274 

predominantly represented by Lactobacillus algidus and Lactobacillus sakei (Fig. 3C). The 275 

other notable species were Leu. gelidum and Lactococcus piscium. L. algidus is known as 276 

Dellaglioa algida (Poirier et al., 2018; Sun et al., 2015; Zheng et al., 2020), and it grows 277 

within a temperature range of 0-25℃ (Kato et al., 2000). L. algidus has been isolated from 278 

various meat and dairy products, including cattle milk, cured seasoned pork, cured ripened 279 

sausages, cooked cured or seasoned pork, and bovine meat (Parente et al., 2023; Pothakos et 280 
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al., 2014; Sakala et al., 2002; Stoops et al., 2015). L. sakei is also a psychrotrophic lactic acid 281 

bacteria commonly found in fresh meat and fish (Chaillou et al., 2005). Vihavainen and 282 

Björkroth (2007) identified Leu. gelidum and L. sakei as predominant populations in the 283 

lactic acid bacteria in packaged spoiled beef. This result shows that microbiota differs 284 

between the samples with high and low VBN, especially for lactic acid bacteria such as 285 

Lactobacillus and Leuconostoc which are the first and second most. These bacteria are known 286 

to have proteolytic activity (García-Cano et al., 2019; Kieliszek et al., 2021), which may lead 287 

to protein degradation and the production of volatile nitrogenous compounds (Thorn and 288 

Greenman, 2012; Bekhit et al., 2021b). Thus, they might be related to producing more VBN 289 

contents in the VBNH samples in this study. However, this is just a potential suggestion 290 

because this result is based only on metagenomic analysis. The results of the metagenomic 291 

analysis show the relative plentifulness of certain bacteria rather than indicating an absolute 292 

relation of the higher relative abundance to the higher VBN production. Meat contains 293 

calpain, cathepsin, and caspases, which function as proteases, and alanine aminopeptidase, 294 

arginine aminopeptidase, and serine aminopeptidases which function as peptidases (Toldrá 295 

and Flores, 2000; Sentandreu et al., 2002). Decarboxylases in meat may be involved in the 296 

decarboxylation of amino acids, leading to the formation of VBN (Halász et al., 1994; 297 

Tosukhowong et al., 2011). These enzymes may act as endogenous factors which contribute 298 

to the increase in VBN. Thus, there is a possibility that VBN detected in the beef samples 299 

may not be solely caused by the lactic acid bacteria suggested by metagenomic analysis. 300 

Because of these reasons, further research is necessary to clarify the results of this study. 301 

 302 

4. Conclusion 303 

Total aerobic bacteria, Enterobacteriaceae, lactic acid bacteria, Pseudomonas spp., yeast 304 

and molds, and psychrotrophic bacteria were primarily detected in beef samples collected in 305 
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current distribution conditions, and their populations varied among the samples. VBN 306 

contents also varied among the beef samples. As samples were categorized with VBNH and 307 

VBNL, the metagenomic analysis showed that VBNH samples had a high relative abundance 308 

of Lactobacillus and Leuconostoc mostly. Therefore, these results suggest that 309 

microorganism populations and VBN varied among beef samples, but specific lactic acid 310 

bacteria might be potential bacteria contributing to the production of more VBN in beef. 311 

However, the number of samples used was limited and potential VBN production-related 312 

bacteria were suggested only by metagenomic analysis, and storage period and storage 313 

methods, which may affect the composition of microorganisms, were not examined in this 314 

study. Additionally, endogenous enzymes in meat could also contribute to VBN production. 315 

Therefore, further research is necessary to identify and isolate these bacteria. This research 316 

may involve the inoculation of potential bacteria based on the metagenomic analysis into a 317 

larger sample size, followed by the analysis of their VBN production while excluding VBN 318 

production by endogenous factors. In further research, an investigation of the bacteria 319 

contributing to VBN production under different storage methods and storage periods may 320 

also be necessary followed by a comparison of the result with the one in this study. If the 321 

design of the research needs to contain additional factors such as temperature, hygiene 322 

practices, sanitary conditions in the production process, etc., affecting the compositions of 323 

microorganisms in beef that are related to VBN production, the research needs to be 324 

conducted with experimental designs of setting levels of these factors with objective standard 325 

and with sufficient sample size.  326 
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Figure Legends 497 

Fig. 1. Volatile basic nitrogen (VBN) contents according to parts (A), distribution channel (B), 498 

and grade (C) in beef sample. 499 

 500 

Fig. 2. Microbiota diversity with Chao indices (A), Shannon indices (B), and PCoA (C) in beef 501 

samples with high volatile basic nitrogen (VBN) contents (VBNH) and beef samples with low 502 

VBN contents (VBNL). PCoA: principal coordinate analysis, PC: principal coordinate. 503 

 504 

Fig. 3. Comparison of microbiota compositions at phylum (A), genus (B), and species levels 505 

(C) in beef samples with high volatile basic nitrogen (VBN) contents (VBNH) and beef 506 

samples with low VBN contents (VBNL). ETC group: et cetera group.507 
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Table 1. Prevalence [populations (mean ± standard deviation; log CFU/g) (the number of positive samples/the number of analyzed samples)] of 508 

food spoilage microorganisms in beef 509 

 

Part Distribution stages Grade 

Sirloin Top round 
Meat packaging 

plant 
Meat retail High Low 

Escherichia coli -1) (0/34) - (0/36) - (0/12) - (0/58) - (0/36) - (0/34) 

Coliform 2.1±0.9 (28/34) 1.7±0.7 (21/36) 1.9±0.8 (12/12) 1.9±0.9 (19/58) 1.9±0.7 (0/36) 2.0±0.9 (0/34) 

Listeria monocytogenes - (0/34) - (0/36) - (0/12) - (0/58) - (0/36) - (0/34) 

Salmonella spp. - (0/34) - (0/36) - (0/12) - (0/58) - (0/36) - (0/34) 

Staphylococcus aureus 1.2 (1/34) - (0/36) - (0/12) 1.2 (1/58) - (0/36) 1.2 (1/34) 

Total aerobic bacteria 5.7±1.3 (34/34) 4.5±1.1 (36/36) 5.1±1.3 (12/12) 5.1±1.6 (58/58) 5.0±1.2 (36/36) 5.2±1.4 (34/34) 

Enterobacteriaceae 3.3±1.1 (30/34) 2.0±0.8 (33/36) 2.6±1.1 (11/12) 2.9±1.3 (52/58) 2.5±0.9 (30/36) 2.8±1.3 (33/34) 

Lactic acid bacteria 4.4±1.2 (34/34) 3.9±0.9 (34/36) 4.3±1.0 (12/12) 3.8±1.4 (56/58) 4.0±1.0 (34/36) 4.4±1.1 (34/34) 

Pseudomonas spp. 2.4±1.3 (9/34) 1.9±0.9 (16/36) 2.3±1.1 (4/12) 1.7±0.6 (21/58) 2.0±1.0 (14/36) 2.4±1.1 (11/34) 

Psychrotrophic bacteria 6.2±1.4 (34/34) 4.7±1.3 (34/36) 5.4±1.5 (12/12) 5.5±1.8 (58/58) 5.3±1.4 (36/36) 5.6±1.6 (34/34) 

Yeast and molds 3.1±1.1 (34/34) 2.9±0.8 (33/36) 2.9±0.9 (12/12) 3.3±0.9 (57/58) 2.9±1.0 (35/36) 3.0±0.8 (34/34) 

1) Below detection limit. 510 
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