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Abstract  This study investigated if the intake of goat meat affects muscle atrophy and 
changes gut microbiota in animal models. Muscle atrophy-induced mice (C57BL/6N; 5-
week-old) by dexamethasone were treated with a standard chow diet (DEX) and goat 
meat (DEX+G) for 18 d. Muscle atrophy-uninduced mice were treated with the standard 
chow diet (CON). The relative muscle mass (gastrocnemius, soleus, and quadriceps femoris) 
to the body weight of the mice, levels of serum biochemical markers, expression levels of 
muscle atrophy-related proteins, and cross-sectional area (CSA) of muscle fibers were 
measured in the mice. The gut microbiota was also analyzed. The relative mass of the 
gastrocnemius muscle was slightly higher in the DEX+G than in the DEX. However, 
improvement related to muscle mass was not observed in serum biochemical markers. Of 
the three examined proteins in gastrocnemius muscle, muscle RING finger protein 1 
(MuRF1) and growth differentiation factor 8 (GDF-8) expression levels were lower in the 
DEX+G than in the DEX group. The average CSA of gastrocnemius muscle fiber was 
higher in the DEX+G group than in the DEX group, but it was lower in the DEX+G 
group than in the CON group. The goat meat treatment changed the composition of some 
gut bacteria in muscle atrophy-induced mice. In summary, goat meat intake might have a 
slight effect on improving gastrocnemius muscle mass and its CSA only, not in the other 
muscles, and the intake might change gut microbiota. The current findings are only from 
a mouse model, and they indicate that goat meat treatment might have only a slight effect 
on limited factors. Therefore, further research is necessary to assess the more apparent 
effect of goat meat on muscle atrophy, especailly in humans. 
  
Keywords  muscle atrophy, goat meat, gut microbiota, skeletal muscle 

Introduction 

The goat is the most widely distributed livestock species globally, and its numbers 

have steadily increased over the past decade (Food and Agriculture Organization [FAO], 

2020). Global meat consumption is also expected to increase, and the goat industry has 

the potential for similar growth (Mazhangara et al., 2019). In the past, goats were 

recognized mainly as a health supplement, but more recently, they have been consumed   
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for their meat (Hwang et al., 2019). While the functions of goat meat were only described in classical Eastern medical 

literature, the nutritional and physiological activities of goat meat have recently been studied with modern science (Kim et al., 

2019). 

Muscle atrophy is a reduction in the skeletal muscle and may be caused by various factors, including muscle disuse, aging, 

and starvation (Jackman and Kandarian, 2004). In muscle atrophy, the fatigue resistance is lower, and the muscle fiber is 

reduced in diameter (Jackman and Kandarian, 2004). The World Health Organization (WHO) classified sarcopenia, the age-

related loss of muscle, as a disease and suggested that it should be managed (Anker et al., 2016; Cao and Morley, 2016). 

Several meta-analysis studies have found that the prevalence of sarcopenia has increased in older adults around the world 

(Yuan and Larsson, 2023). To prevent muscle atrophy, adequate intake of dietary nutrients and increasing the protein 

anabolic capacity of skeletal muscle are necessary (Bowen et al., 2015; Deutz et al., 2014). 

Wall and van Loon (2013) found that supplementation with dietary protein and essential amino acids can help preserve 

muscle mass during disuse-induced muscle atrophy. Similarly, dietary protein supplementation during muscle disuse atrophy 

in healthy older men did not result in muscle loss during short-term disuse (Dirks et al., 2014). In addition, Thalacker-Mercer 

et al. (2007) suggested that inadequate protein intake during age-related muscle atrophy may downregulate transcripts 

encoding essential muscle proteins and protein synthesis. There is also a possibility of gut microbiota being changed by the 

dietary protein (Albracht-Schulte et al., 2021; Wu et al., 2022). 

Therefore, the objective of this study was to evaluate the effect of goat meat treatment on muscle atrophy and changes in 

gut microbiota in animal models. 

 

Materials and Methods 

Preparation of goat meat diet 
The 12-month-old female goat meat used in the diet preparation was provided by Gaon Agricultural Corporation (Gangjin, 

Korea). Each cut of goat meat (forelegs, hind legs, loin, and ribs) was cubed into 2 cm×2 cm×2 cm, and the cube samples 

were placed into sterilized bags and boiled in an 80℃ water bath until the core temperature reached 77℃ (Son et al., 2014). 

The cooked meat was stored in a –80℃ deep freezer for one day and freeze-dried for 48 h in a freeze-dryer. The freeze-dried 

meat was ground into powder, and the powdered goat meat mixture of the four cuts (1:1:1:1) was added to the 2018S (2018S 

Teklad Global 18% Protein Rodent Diet; Envigo, Madison, WI, USA) at 8%. It simulated the inclusion of goat meat in a 

regular diet pattern. The concentration of goat meat in the diet corresponds to the average daily intake of red meat per person 

(69.5 g for a 60 kg Korean), according to the 2016 Korea National Health and Nutrition Examination Survey (Korea Centers 

for Disease Control and Prevention [KCDC], 2018). The dose was converted for mice according to the clinical trial 

guidelines of the U.S. Food and Drug Administration (FDA, 2005). 

 

Animal experimental design 
Five-week-old male C57BL/6N mice (Raon Bio, Yongin, Korea) were housed under a 12-h light/dark cycle with a constant 

temperature (23±1℃) and a humidity (55±5%). After one week of acclimation, the mice were treated with an intraperitoneal 

injection of dexamethasone (dissolved in saline; D2915, Sigma-Aldrich, St. Louis, MO, USA) to induce muscle atrophy at 10 

mg/kg/day (Hah et al., 2020), and the other mice were treated with saline for 14 days. The saline-treated mice were then fed 

with a normal diet (2018S) for control (CON; n=8), and the dexamethasone-treated mice were fed with a normal diet (DEX; 
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n=7) and goat meat (DEX+G; n=8) for 18 days. The scheme of the animal experiment is described in Fig. 1, and the 

nutritional information of each diet is shown in Table 1. The animal experiment was approved by the Institutional Animal 

Care and Use Committee of Sookmyung Women’s University (approval number: SMWU-IACUC-2301-025). 
 

Measurement of body weight and relative mass of skeletal muscle 
The body weights of the mice were measured daily during the muscle atrophy induction period and weekly during the 

dietary period. Also, the final weight of the mice was measured on day 18 of the dietary period. After the sacrifice of the mice 

by inhalation of isoflurane (TerrellTM isoflurane, Piramal Critical Care, Bethlehem, PA, USA) after 18-h fasting, skeletal 

muscle tissues were collected from the hindlimbs and weighed. The isolated skeletal muscle tissues were gastrocnemius, 

soleus, and quadriceps femoris. The relative mass of the skeletal muscles to the body weight of the mice were calculated with 

the following equation: relative mass of skeletal muscle to body weight (%) = skeletal muscle weight (g) / body weight (g) × 

100 (Kim et al., 2015). The obtained skeletal muscle tissues were stored at –80℃ for further analysis. 
 

Serum biochemistry analysis 
Blood samples were obtained from the posterior aorta of mice at sacrifice on day 18. The blood samples were left at room 

temperature for 30 min and then centrifuged at 2,339×g and 4℃ for 10 min to separate the serum. The serum was stored at 

 

 

 
Fig. 1. Scheme of animal experimental to examine the effect of goat meat treatment on improving muscle mass in muscle atrophy-
induced mice (five-week-old male C57BL/6N mice) with dexamethasone (10 mg/kg/d). CON: mice intraperitoneally injected with saline, 
followed by treatment with normal diet [standard chow diets (2018S)] during the dietary period; DEX: mice intraperitoneally injected with 
dexamethasone during muscle atrophy induction, followed by treatment with normal diet; DEX+G: mice intraperitoneally injected with 
dexamethasone during muscle atrophy induction, followed by treatment with goat meat during the dietary period. 

Table 1. Nutritional information of 2018S (normal diet) and 2018S supplemented with powdered goat meat diet at 8% (goat meat diet)

Nutrition facts Normal diet Goat meat diet1) 

Calories (kcal/100 g) 338.18 341.29 

Water (%)   5.24   4.81 

Crude protein (%)  17.92  18.47 

Crude fiber (%)   3.26   3.53 

Crude fat (%)   4.93   5.37 

Crude ash (%)   5.18   5.35 
1) Simulation for the inclusion of goat meat in a regular diet pattern. 
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–20℃ until analysis. The levels of serum creatine kinase (CK), lactate dehydrogenase (LDH), and creatinine were measured 

with Hitachi Automatic Biochemical Analyzer (Hitachi 7180, Hitachi, Tokyo, Japan) in the KP&T (Cheongju, Korea). 
 

Protein analysis 
The protein of mouse gastrocnemius muscle tissue was extracted with PRO-PREPTM protein extraction (iNtRON 

Biotechnology, Seongnam, Korea), and protein concentration was quantified with DCTM Protein Assay Kit I (BioRad, 

Hercules, CA, USA) according to the manufacturer's instructions. The 15 μg of total protein samples were electrophoresed on 

12% sodium dodecyl sulfate polyacrylamide gel at 120 V for 1 h, and the separated proteins were transferred to a 

polyvinylidene difluoride membrane (Cytiva, Marlborough, MA, USA) at 60 V for 2 h 30 min. The membranes were 

incubated in 5% skim milk in Tris-buffered saline with 0.1% Tween-20 at 25℃ for 1 h for blocking. The proteins were then 

treated with the primary antibodies of glyceraldehyde 3-phosphate dehydrogenase (GAPDH; GTX100118, GeneTex, Irvine, 

CA, USA), muscle RING finger protein 1 (MuRF1; sc-398608, Santa Cruz Biotechnologies, Santa Cruz, CA, USA), muscle 

atrophy F-box (MAFbx; sc-166806, Santa Cruz Biotechnologies), and growth differentiation factor 8 (GDF-8; myostatin; sc-

134345, Santa Cruz Biotechnologies) at 4℃ for overnight, followed by the treatment of goat anti-mouse IgG (H+L)-HRP 

(Invitrogen, Carlsbad, CA, USA) and goat anti-rabbit IgG (H+L)-HRP (GenDEPOT, Katy, TX, USA) as the secondary 

antibodies. The antigen/antibody complexes were detected using enhanced chemiluminescence solution (Dongin LS, Seoul, 

Korea) at room temperature for 1 min and then visualized by a biomolecular imaging system (AmershamTM ImageQuantTM 

800, Cytiva). The intensity of the bands was quantified with GelQuant software v.2.7 (DNR Imaging System, Jerusalem, 

Israel), and the concentrations of each protein were normalized to the expression level of GAPDH. 
 

Histological analysis  
For histological analysis, three mice, which had results closed to the average of relative mass of gastrocnemius muscle and 

expression levels of muscle atrophy-related proteins in gastrocnemius muscle in each treatment, were selected with 

comprehensive analysis. The gastrocnemius muscles (n=3/group) were frozen-sectioned and stained with hematoxylin and 

eosin. The stained tissues were observed using a digital slice scanner (PANNORAMIC SCAN II, 3DHISTECH, Budapest, 

Hungary), and the cross-sectional area (CSA; μm2) of 100–200 fibers for each sample was measured with the image analysis 

program (Image-Pro®, Media Cybernetics, Silver Spring, MD, USA). The average CSA of muscle fibers in each group was 

then calculated. This analysis was performed in T&P BIO (Gwangju, Korea). 
 

Gut microbiota analysis  
Fecal samples were collected directly from the anus into sterilized tubes after immobilizing the mice with a hand on day 0 

of the dietary period. The fecal samples on day 0 and fecal samples from the cecum after sacrifice on day 18 of the dietary 

period were used for DNA extraction with DNeasy PowerSoil Pro Kit Protocol (QIAGEN, Hilden, Germany) according to 

the manufacturer’s instructions. Quant-iTTM PicoGreenTM dsDNA Assay Kit (Invitrogen) was used to quantify the extracted 

DNA. From the extracted DNA sample, the V3-V4 regions of the 16S rRNA region in genomic DNA were amplified by PCR 

with Illumina 16S Metagenomic Sequencing Library Preparation protocols, and the pair-end (2×300 bp) sequencing was 

performed with the MiSeqTM platform (Illumina, San Diego, CA, USA) in Macrogen (Seoul, Korea). The sequencing adapter 

and primer forward/reverse sequences were trimmed with the Cutadapt (v.3.2) program. The DADA2 (v.1.18.0) package in 

the R (v.4.0.3) program was used to correct errors in amplicon sequencing. The consensus method of DADA2 was then used 
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to remove chimeric sequences and construct amplicon sequence variants (ASVs). The ASVs sequences were assigned 

taxonomy information for the most similar organisms based on the reference DB (NCBI 16S Microbial DB) using BLAST+ 

(v.2.9.0). The abundance and taxonomy information of the ASVs were used to analyze the diversity of the gut microbiota 

with QIIME (v.1.9). The alpha diversity was analyzed by the Shannon index and Chao1 values (Finotello et al., 2018). The 

beta diversity was analyzed based on weighted and unweighted UniFrac distance and visualized by principal coordinate 

analysis plot (Lozupone et al., 2011). To analyze the differences in gut microbiota among the groups on day 18, linear 

discriminant analysis effect size (LEfSe) analysis was performed with the phyloseq package in R (v.4.3.1) software at a 

significance level of p<0.05 and a linear discriminant analysis (LDA) score threshold of >2.0. 

 

Statistical analysis 
Statistical analysis of the data was performed with SAS® OnDemand for Academics (SAS Institute, Cary, NC, USA). For 

weekly body weight of mice, relative mass of skeletal muscle to body weight, serum biochemical markers, protein expression 

levels, histological analysis, and diversity and abundance of gut microbiota, differences among the three groups (CON, DEX, 

and DEX+G) were determined by pairwise t-test comparing least squares means at α=0.05 with the general linear model. In 

addition, the data between pairs of two groups (CON vs. DEX, CON vs. DEX+G, and DEX vs. DEX+G) were compared with 

the student’s t-test or Wilcoxon rank-sum test, depending on the normality of the data. A comparison of the relative 

abundance of gut microbiota within each group between day 0 and day 18 was evaluated using a paired t-test and Wilcoxon 

signed-rank test, depending on the normality test of the data. 

 

Results and Discussion 

Relative mass of skeletal muscle to body weight 
Because dexamethasone used to induce muscle atrophy decreased skeletal muscle mass and weight loss (Choe, 2005; Lee 

et al., 2023), the weights of mice were measured. The weights of mice were significantly decreased (p<0.05) in the muscle 

atrophy-induced groups compared to the CON group during muscle atrophy induction with dexamethasone. On day 7 of the 

dietary period, both the DEX and DEX+G groups had similar body weight to the CON group, and all groups had similar body 

weight at the end of the dietary period (Fig. 2A). This result indicates that dexamethasone administration caused weight loss, 

but it was recovered during the dietary period. 

About 40% of the human body mass is composed of skeletal muscle, and it has an important role in physical activity and 

energy expenditure (Wang and Pessin, 2013). In particular, the gastrocnemius muscle is often analyzed in studies of skeletal 

muscle function because it could be a representative of the strength and skeletal muscle mass of the body (Edström and 

Ulfhake, 2005; Xie et al., 2021). Also, the soleus and quadriceps femoris muscles that make up the hindlimb are often 

analyzed in animal models of muscle atrophy (Sakai et al., 2019; Yamamoto et al., 2010). The relative mass of skeletal 

muscles (gastrocnemius, soleus, and quadriceps femoris muscle) to body weight are shown in Figs. 2B, C, and D. The 

relative mass of the gastrocnemius muscle to body weight was lower (p<0.05) in the DEX (1.30±0.11%) group than the CON 

(1.41±0.05%) group, and it became slightly higher (p<0.05) in the DEX+G (1.45±0.07%) group compared to the DEX group 

(Fig. 2B). The relative mass of gastrocnemius muscle was similar to the CON (Fig. 2B). For soleus muscle, there were no 

differences in the relative mass among the treatments (Fig. 2C). The relative mass of quadriceps femoris muscle of the DEX 

(0.94±0.18%) group was lower (p<0.05) than that of the CON (1.22±0.18%) group, but the relative mass of the DEX+G 
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(1.16±0.26%) group was not different from that of the DEX group (Fig. 2D). However, the relative mass of quadriceps 

femoris muscle in DEX+G was similar to that of the CON (Fig. 2D). This result shows that dexamethasone induced muscle 

atrophy in the gastrocnemius and quadriceps femoris muscles, and goat meat treatment in the muscle atrophy-induced group 

(DEX+G) made the relative mass slightly higher than the DEX only in the gastrocnemius muscle. Therefore, this result 

suggests that consumption of goat meat might help slightly restore muscle mass only in gastrocnemius muscle, not in the 

other muscles, in muscle atrophy-induced mice. 
 

Levels of biochemical markers in mice serum 
According to Brancaccio et al. (2010), CK and LDH are enzymes that are released into the blood when muscle tissue is 

damaged and can be used as serum biomarkers to identify muscle damage. Creatinine is a product of the breakdown of 

creatine phosphate in the muscle (Patel et al., 2013). Thus, the levels of these biochemical markers in blood were measured 

and are presented in Figs. 3A, B, and C. The levels of CK, LDH, and creatinine in the DEX+G group were not different from 

those in the DEX group. The level of CK was higher (p<0.05) in the CON group than those in DEX and DEX+G groups (Fig. 

3A). This result might be caused by variation among individual mice and hemolysis that occurred in the mice during blood 

collection. In hemolyzed samples, adenylate kinase released from red blood cells during their destruction might have 

 
Fig. 2. Changes in body weight of mice during the experimental period (A), relative mass of gastrocnemius (B), soleus (C), and
quadriceps femoris (D) muscles to body weight in mice. a,b Different letters indicate a significant difference (p<0.05) among treatments, 
and * significant difference between two groups was indicated with asterisk symbol (p<0.05). CON: mice intraperitoneally injected with 
saline, followed by treatment with normal diet [standard chow diets (2018S)] during the dietary period; DEX: mice intraperitoneally 
injected with dexamethasone during muscle atrophy induction, followed by treatment with normal diet; DEX+G: mice intraperitoneally 
injected with dexamethasone during muscle atrophy induction, followed by treatment with goat meat during the dietary period. 
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interfered with the measurement of CK (Greenson et al., 1989). Meanwhile, the levels of LDH and creatinine were not 

different among the treatments (Figs. 3B and C). Even though the differences in relative mass of gastrocnemius muscle were 

observed between DEX and DEX+G, the levels of biochemical markers were not different between the groups. It might be 

caused by variation among individual mice or insufficient muscle damage to cause the production of the biomarkers beyond 

the threshold. 
 

Protein expression level in gastrocnemius muscle 
The expression levels of proteins associated with muscle atrophy were analyzed in mouse gastrocnemius muscle (Figs. 4A, 

B, and C). The expression of MuRF1 was not different between CON and DEX, but it was lower (p<0.05) in the DEX+G 

group compared to the DEX group (Fig. 4A). The expression of MAFbx was not different among all treatments (Fig. 4B). 

The expression of GDF-8 protein was lower (p<0.05) in the DEX+G group compared to the DEX group, and it was similar to 

that of the CON group (Fig. 4C). MuRF1 and MAFbx are E3 ubiquitin ligases that are major factors in causing atrophy of 

skeletal muscle by promoting the degradation of proteins (Bonaldo and Sandri, 2013; Kang et al., 2023). These proteins 

promote skeletal muscle atrophy under various stress conditions, including aging, increased glucocorticoids, inflammatory 

 
Fig. 3. Levels of creatine kinase (A), lactate dehydrogenase (B), and creatinine (C) in mice serum. a,b Different letters indicate a significant
difference (p<0.05) among all treatments. CON: mice intraperitoneally injected with saline, followed by treatment with normal diet
[standard chow diets (2018S)] during the dietary period; DEX: mice intraperitoneally injected with dexamethasone during muscle atrophy 
induction, followed by treatment with normal diet; DEX+G: mice intraperitoneally injected with dexamethasone during muscle atrophy
induction, followed by treatment with goat meat during the dietary period. 
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cytokine expression, and oxidative stress at the cellular level (Bodine and Baehr, 2014). Kim et al. (2021) found increased 

protein expression of MuRF1 and MAFbx in the muscle atrophy-induced group with dexamethasone compared to the control 

group. However, Alev et al. (2022) showed that rats induced with muscle atrophy using dexamethasone and then subjected to 

passive recovery tended to regain muscle mass. In our study, the mice in the DEX group were fed a normal diet without 

continuous dexamethasone treatment during the dietary period, which may have passive recovery and influence the 

expression of MuRF1 and MAFbx. In addition, the expression of MuRF1 and MAFbx might not be influenced by the applied 

concentration of dexamethasone. These reasonings might explain why there was no difference in the protein expression of 

MuRF1 and MAFbx between the CON and DEX groups. GDF-8, a member of the transforming growth factor-β family, is a 

factor that regulates skeletal muscle growth by decreasing Akt/mTOR/p70S6K signaling (Sharma et al., 2001). Inactivation 

of GDF-8 can lead to skeletal muscle hypertrophy. In contrast, overexpression of GDF-8 can cause muscle atrophy 

(Rodriguez et al., 2014).  

This result suggests that the slightly improved relative mass in gastrocnemius muscle in the DEX+G group might be 

related to the regulations of some muscle atrophy-related proteins, such as MuRF1 and GDF-8. However, the interpretation 

 
Fig. 4. Protein expression levels of MuRF1 (A), MAFbx (B), and GDF-8 (C) in gastrocnemius muscle of mice. a,b Different letters indicate a 
significant difference (p<0.05) among all treatments and significant difference between two groups was indicated with asterisk symbol 
(p<0.05). CON: mice intraperitoneally injected with saline, followed by treatment with normal diet [standard chow diets (2018S)] during the 
dietary period; DEX: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by treatment with 
normal diet; DEX+G: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by treatment with goat 
meat during the dietary period. MuRF1, muscle RING finger protein 1; MAFbx, muscle atrophy F-box; GDF-8, growth differentiation factor 8.
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needed to be expanded more fundamentally. Therefore, the CSA of the gastrocnemius muscle was further analyzed to 

evaluate if the improved relative muscle mass was associated with an increased CSA. 

 

Cross-sectional area of gastrocnemius muscle fiber in mice 
The muscle fiber size was tended to be larger in the DEX+G group than in the DEX group (Fig. 5A). The CSA of 

gastrocnemius muscle fibers was higher (p<0.05) in the CON group than in the DEX and DEX+G groups (Fig. 5B). In a 

comparison between the two-muscle atrophy-induced groups, CSA was slightly higher (p<0.05) in the DEX+G group than 

those in the DEX group (Fig. 5B). The decrease in the number and size of muscle fibers is an important characteristic of 

skeletal muscle atrophy (Hah et al., 2020; Jo et al., 2021), and thus, the CSA of muscle fibers could be an indicator to 

determine muscle atrophy and the recovery (Wang et al., 2022). This result suggests that intake of goat meat might increase 

the CSA of gastrocnemius muscle fiber in muscle atrophy-induced mice. However, this increase was not as large as in the 

CON group. It may be associated with the slightly improved relative muscle mass as described above. 

 
Fig. 5. Representative muscle fiber cross-section by hematoxylin and eosin staining histopathology at 40× magnification (A) and the 
average cross-sectional area (CSA) of gastrocnemius muscle fibers (B) in mice. a,b Different letters indicate a significant difference (p<0.05) 
among all treatments and * significant difference between two groups was indicated with asterisk symbol (p<0.05). CON: mice 
intraperitoneally injected with saline, followed by treatment with normal diet [standard chow diets (2018S)] during the dietary period; 
DEX: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by treatment with normal diet; 
DEX+G: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by treatment with goat meat 
during the dietary period. 
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Gut microbiota 

Diversity of gut microbiota 
Alpha diversity indicates the diversity of microbes in the community and is represented by Chao1 indicates species 

diversity, and the Shannon index considers the number of species and species evenness of the gut microbiota (Masetti et al., 

2018). On day 0 and day 18, there were no differences in Chao1 and Shannon indices among the treatments. Overall, there 

was a slight increase in alpha diversity on day 18 compared to day 0, regardless of the treatment group (Figs. 6A and B). This 

result suggests that the treatment of dexamethasone and goat meat may not have a significant impact on change in the 

diversity of the gut microbiota. Beta diversity represents the diversity of the microbiota between samples within a comparison 

group (Koleff et al., 2003). On day 0, clusters of gut bacterial communities appeared similar in all groups (Fig. 6C). On day 

18, the communities of the DEX+G group were clustered closer to the CON group than the DEX group (Fig. 6D). 

 

Taxonomic composition of gut microbiota 
The relative abundance at the phylum level on day 18 compared to day 0 was decreased in Bacillota in the CON group  

 

Fig. 6. Chao1 (A) and Shannon indices (B) for alpha diversity, and beta diversity on day 0 (C) and day 18 (D) in mice. CON: mice 
intraperitoneally injected with saline, followed by treatment with normal diet [standard chow diets (2018S)] during the dietary period; 
DEX: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by treatment with normal diet;
DEX+G: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by treatment with goat meat 
during the dietary period. 
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(Fig. 7A). The relative abundance was increased in Bacteroidota and decreased in Bacillota in the DEX group (Fig. 7B). 

However, no obvious changes of the relative abundance in Bacteroidota and Bacillota were observed in the DEX+G group 

(Fig. 7C). For the family level, the relative abundance of Akkermansiaceae was highly increased on day 18 in CON group 

 

Fig. 7. Relative abundance at the phylum level (A–C), family level (D–F), genus level (G–I) and species level (J–L) in the gut microbiota of 
mice for each treatment on day 0 and day 18 during the dietary period. The three figures for each level show the CON, DEX, and DEX+G 
groups in that order. CON: mice intraperitoneally injected with saline, followed by treatment with normal diet [standard chow diets 
(2018S)] during the dietary period; DEX: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed 
by treatment with normal diet; DEX+G: mice intraperitoneally injected with dexamethasone during muscle atrophy induction, followed by 
treatment with goat meat during the dietary period. 
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compared to the DEX and DEX+G groups (Figs. 7D, E, and F). Comparison of the DEX and DEX+G groups showed that 

Lachnospiraceae decreased in the DEX group (Figs. 7E and F). In Figs. 7G, H, and I, the relative abundance at the genus 

level is depicted. On day 18, the relative abundances of Prevotellamassilia were higher in the DEX and DEX+G groups than 

in the CON group (Figs. 7G, H, and I). Prevotellamassilia was lower in the DEX+G group than in the DEX group (Figs. 7H 

and I). At the species level, the relative abundance of Akkermansia muciniphila was higher in the CON group compared to 

those of the DEX and DEX+G groups on day 18 (Figs. 7J, K, and L). Differences in gut microbiota on day 18 were 

investigated by LEfSe analysis of gut microbiota (Fig. 8). The LDA score of 14 bacteria was more than 2.0. Actinomycetes 

(class), Bifidobacteriales (order), and Bifidobacteriaceae (family) characterized the DEX group from CON and DEX+G. For 

the genus level, Ligilactobacillus, Luoshenia and Papillibacter, Bifidobacterium, and Marasmitruncus characterized the 

CON, the DEX, and the DEX+G groups, respectively. In addition, five species (Ligilactobacillus apodemi, Luoshenia tenuis, 

Papillibacter cinnamivorans, Christensenella hongkongensis, and Acetivibrio thermocellus) were identified in the CON 

group, and one species (Marasmitruncus massiliensis) was identified in the DEX+G group. These results indicate that the 

taxonomic compositions of microbiota generally varied among the treatments. The composition of the gut microbiota is 

influenced by various ingredients consumed. The ingredients in goat meat are diverse and might vary among individual goats, 

sexes, ages, species, feed, etc. Thus, if an analysis is conducted on the relationship between gut microbiota and muscle 

atrophy without considering these factors in experimental design, using the result for the practical implication may not be 

appropriate, and the interpretation of the result from the analysis may include too many assumptions. Therefore, the  

 

 
Fig. 8. Linear discriminant analysis effect size (LEfSe) for the bacterial communities on day 18. CON: mice intraperitoneally injected with 
saline, followed by treatment with normal diet [standard chow diets (2018S)] during the dietary period; DEX: mice intraperitoneally
injected with dexamethasone during muscle atrophy induction, followed by treatment with normal diet; DEX+G: mice intraperitoneally 
injected with dexamethasone during muscle atrophy induction, followed by treatment with goat meat during the dietary period. 
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relationship between muscle atrophy and gut microbiota was not analyzed in this study; only the effects of DEX and DEX+G 

treatments on changes in gut microbiota were analyzed as the optimum approach under given conditions. 

 

Conclusion 

In the mouse model, of the three muscles examined, the relative mass of only the gastrocnemius muscle was slightly higher 

in the DEX+G than in the DEX, and it was similar to the CON group. However, obvious relations between muscle damage-

related biomarkers in blood and improving the relative muscle mass were not observed. Of the three muscle atrophy-related 

proteins in the gastrocnemius muscle, the expressions of MuRF1 and GDF-8 were lower in the DEX+G than in the DEX. The 

CSA of the gastrocnemius muscle was slightly higher in the DEX+G group than in the DEX group, but it was lower in the 

DEX+G group than in the CON group. Muscle atrophy induced by dexamethasone and goat meat treatment resulted in 

changes in gut microbiota. These results show that goat meat treatment might improve slightly relative muscle mass and CSA 

in only gastrocnemius muscle in muscle atrophy-induced mice not in the other muscles, and it might be related to lowered 

expression of MuRF1 and GDF-8 in the gastrocnemius muscle, but some biomarkers were not different between DEX and 

DEX+G. Hence, formulating a general conclusion from the information described above is not appropriate before further 

study. The current findings are based on a mouse model and indicate that goat meat treatment shows only a slight effect on 

improving relative muscle mass and CSA only in the gastrocnemius muscle, but not in the other muscles. Additionally, some 

factors were not different between DEX and DEX+G groups. Therefore, further research is necessary to assess the more 

apparent effect of consuming goat meat on muscle atrophy, especially in humans. 
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