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Development and comparative evaluation of imitated muscle fiber from different 9 

protein sources using wet-spinning 10 

 11 

Abstract 12 

Texture is a major challenge in addressing the need to find sustainable meat alternatives, as 13 

consumers desire alternative meat to have a sensory profile like meat. In this study, the 14 

fabrication of imitated muscle fiber (IMF) is performed by introducing different kinds of 15 

protein sources, with an effective bottom-up technique- wet spinning.  Herein, the protein 16 

sources (pea protein isolate, wheat protein, and myofibrillar paste) were combined with 17 

sodium alginate to stimulate the bonding with the coagulation solution for fabrication. It has 18 

been found that the fabrication of IMF is possible using all the protein sources, however, due 19 

to the difference in protein structure, a significant difference was observed in quality 20 

characteristics compared to conventional meat. Additionally, combination of wheat protein 21 

and pea protein isolate has given similar values as conventional meat in terms of some of the 22 

texture profiles and Warner-Bratzler shear force. In general, the optimization of protein 23 

sources for wet spinning can provides a novel way for the production of edible fiber of 24 

alternative meat. 25 

Keywords: Meat alternative, texture profiling, wet spinning, imitate muscle fiber, quality 26 

 27 

Introduction  28 

With the ongoing concerns related to environmental issues and the increasing population, 29 

the urge to innovate more sustainable protein food products, especially meat alternatives of 30 

meat with similar sensory profiling have gained attention from researchers and food 31 

industrialists (He et al., 2021; Mehrabi et al., 2020). Until now, meat alternatives have been 32 

attempted to be in line with animal meat products in terms of flavor, nutrition, and color 33 
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(Alam et al., 2024; Joo et al., 2022; Kang et al., 2024). However, texture is considered the 34 

main sensory aspect that meat consumers have given more importance for searching a food to 35 

replace the meat from their diet (Kumari et al., 2023). As the structural foundation of meat 36 

depends on the basic structure of muscle fiber, developing a fiber-like structure is crucial to 37 

achieve a similar textural profile. Two techniques are mainly used to produce meat 38 

alternatives: top-down and bottom-up. Top-down techniques include the production through 39 

extrusion, shear cell, and freezing, while the bottom-up include wet-spinning, electro-40 

spinning, and 3D printing (Dekkers et al., 2018; Kyriakopoulou et al., 2019). Among all the 41 

techniques extrusion (low moisture) and wet spinning are the only industrial technology. 42 

however, there have been some hindrances in the extrusion process due to high energy 43 

consumption, loss of nutrients because of high processing temperature, and low rehydration 44 

rate of the product without any specific structure similarity to the meat (McClements & 45 

Grossmann, 2021; Zahari et al., 2021). The other remaining technology faces problems like 46 

complications in operations and instability of the product, resulting in no industrial 47 

applications at the moment (Dekkers et al., 2018). At the same time, wet spinning is an 48 

industrialized production technique used to produce fiber-like structures for the textile 49 

industry. While considering the ingredients, soy protein isolate is the main ingredient used for 50 

the development of meat alternatives because of its high nutritional quality, and functional 51 

properties which have created a saturation in the use of raw material for alternative products. 52 

Inspired by (Cui et al., 2022) for utilizing soy protein isolate, we hypothesized that other 53 

types of protein sources can also be utilised to produce fibers using the wet spinning 54 

technique.  55 

 Therefore, in this study, we are focusing on using other protein sources to counter the 56 

overdependence on soy protein for a sustainable food supply (Tang, 2019) and to expand the 57 

range of raw materials that are suitable for production. Here we utilized ingredients that are 58 
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consumer-friendly to increase acceptance of these food items like pea protein isolate (PPI), 59 

wheat protein (WP), and myofibrillar paste (CMP: Conventional meat paste) are protein 60 

sources, and sodium alginate is a thickener and emulsifier (Etter et al., 2024). As the diameter 61 

and the strength of the fibers are based on the type of raw material and processing 62 

parameters, optimization is crucial for the desired alternative product (Pawar & Edgar, 2012). 63 

The objective of this study is to utilize the different protein sources mentioned above using 64 

the wet spinning technique and perform a comparative analysis of the quality parameters in 65 

comparison to conventional meat to study the variation between them. Moreover, the results 66 

from this study can be beneficial for the production of meat alternatives without over-67 

depending on one source of protein.  68 

 69 

Material and method  70 

Materials for spinning solution 71 

Pea protein isolate (PPI) and wheat protein (WP) were purchased from an online 72 

platform and meat from a commercial slaughterhouse. Sodium alginate (SA) with high 73 

viscosity was obtained from the Qingdao Gather Great Ocean Algae Industry Co. Ltd. 74 

(China, 186789359). Calcium chloride was purchased from Qingdao Soda Ash Industrial 75 

Development Co. Ltd. (China). All the materials used for experiments were food grade. 76 

For CM and CMF, the longissimus dorsi muscle was utilized from a barrow (Landrace × 77 

Yorkshire × Duroc, LYD). Muscle samples from barrow (6 months old, carcass weight 89 78 

kg) were obtained from local farm at the Ansung, Korea. 79 

 80 

Sample Preparation 81 

Three samples with 8% wheat protein (WP), pea protein isolate (PPI), and myofibrillar 82 

paste in distilled water were prepared respectively and the fourth one with the combination 83 
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of WP and PP in an equal concentration of (4%). On the other hand, a solution of 2 % 84 

sodium alginate was prepared by dissolving it into the distilled water. All the solutions 85 

were kept overnight at 4°C to achieve complete hydration. Then, the solutions were mixed 86 

with SA in equal weight and degassed for 20 min using an ultrasonicator.  87 

 88 

Imitated fiber processing 89 

The wet spinning method was used to prepare imitated muscle fiber (IMF) from the 90 

spinning solution. The process flow of the IMF fabrication is shown in Figure 1. The 91 

composite solution was extruded through a needle of 0.13 mm diameter into the 3 % 92 

calcium chloride (w/w) coagulation bath at room temperature (20 - 25℃). The obtained 93 

IMF was suspended into the coagulation bath to attain the complete gelation of the 94 

solution. The macroscopic structural representation of fiber fabrication during the wet 95 

spinning process has been captured and illustrated from various angles (Fig. 2). After that, 96 

the IMF block was washed in the washing bath containing distilled water to remove the 97 

excess calcium chloride from the surface of the IMF block and finally, the IMF blocks 98 

were collected.  99 

 100 

Moisture content 101 

The moisture of the samples was analyzed using the Association of Official Agricultural 102 

Chemists (AOAC 650.46B) method. 2 g of samples were weighed into the aluminium dish 103 

and allowed to dry for 16 h at 105 ℃ in a dry oven. The moisture content was calculated as 104 

the percentage ratio of wet and dry weight. The experiment was conducted three times. 105 

 106 

  107 
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 Cooking loss 108 

The water-holding capacity of samples was measured in terms of cooking loss. The 109 

samples were weighed and cooked in a water bath at 75 ℃ for 30 min, followed by 110 

measuring the weight of the samples after 10 min of chilling (Pathare & Roskilly, 2016). 111 

The cooking loss of the sample was expressed as a percentage using the following formula 112 

(Wi et al., 2020). Measurement of CL was performed three times. 113 

CL % = (W1-W2) W1 ×100 114 

CL: cooking loss; W1: weight of the uncooked sample (g); W2: weight of the cooked sample 115 

(g). 116 

 117 

Color 118 

The color or chromaticity indicates quality and freshness, measured by a Chroma Meter 119 

(Konica Minolta CR-300, Japan). The color parameters L*(lightness), a*(redness), and 120 

b*(yellowness) were determined in quintuplicate for each sample. Results were expressed as 121 

mean ± standard deviation (SD). 122 

 123 

pH 124 

3 g of the sample was homogenized with 27 ml of distilled water and pH was measured 125 

using a digital pH meter (Thermo Fisher Scientific, A211 pH Meter). 126 

 127 

Warner-Bratzler shear force (WBSF) 128 

The WBSF of the samples was measured through the texture analyzer (AMETEK, Berwyn, 129 

PA, USA) with a V-shaped shear blade on its shear mode to determine the tenderness. The 130 

curve obtained reflects the tenderness of the sample. The analysis was performed at a speed 131 
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of 100 mm/min with a force of 50 kg. The data were expressed as the mean and standard 132 

deviation of the values measured five times. 133 

 134 

Texture profile analysis (TPA) 135 

The textural characteristics were determined using a double compression test, which 136 

involves compressing the sample under constant conditions and measuring the force-time 137 

profile. The measurements were carried out using a texture analyzer (AMETEK, Berwyn, 138 

PA, USA). Using a sharp knife the samples were cut into 1 cm × 1 cm × 1 cm cubes and 139 

placed in the instrument’s measurement cell. Compression and decompression were 140 

conducted twice at a fixed speed of 100 mm/min and a maximum load of 180 kg. The force 141 

versus time graph automatically recorded the hardness, springiness, gumminess, chewiness 142 

and cohesiveness of each sample by the instrument software. The data were expressed as the 143 

mean and standard error of mean for the values measured five times. 144 

 145 

Process efficiency per minute 146 

The efficiency of a process is a measurement of how effectively the process converts raw 147 

materials into finished products over a period of time. It is typically expressed as the unit of 148 

output per unit of input per minute.  149 

Efficiency per Minute = (Desired output) / (Total input × time)  ……………………. (1) 150 

 151 

Statistical analysis 152 

The statistical analysis was conducted using SAS 9.4 (SAS Institute, Cary, NC, USA) and 153 

GraphPad Prism (10.1.2) (GraphPad, Callifornia, USA). All data were represented as mean 154 

and standard deviation, and TPA was shown as mean and standard error of mean. The 155 

resulted data were analysed by one-way analysis of variance (ANOVA) (Brown-Forsythe and 156 
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Welch) with the Dunnett T3 test. Analysis of TPA data was performed by one-way ANOVA 157 

with Tuckey`s multiple comparison test. Statistical significance was determined as p value (p 158 

< 0.05). 159 

 160 

Results and Discussion  161 

Appearance and color profile of Imitated Muscle Fiber block 162 

The morphological appearance of the IMFs was analyzed by virtually inspecting the fiber 163 

block. It has been observed that all the fibers were thin in appearance with significant color 164 

differences and were unaligned (Fig. 3). The difference in color profile is described by the 165 

color analysis (Table 2).  166 

The color profile analysis includes the lightness (L*), redness /greenness (a*) and 167 

yellowness/ blueness (b*) of the product (Table 1). The L* value indicates significant 168 

variations in lightness across the samples and was significantly highest in CMF (p < 0.05). It 169 

suggests that the paste modification of CMF increased the lightness due to the incorporation 170 

of more air. Also, potential reduction in particle size could also have enhanced light 171 

scattering, resulting in higher reflectance compared to the control (CM, 53.81). Additionally, 172 

PPF and CPF were also lighter than CM, with values of 71.78 and 72.82, respectively due to 173 

the absence of dark pigment, contributing to its high lightness. L* values of WPF had a 174 

higher lightness than CM, but lower than the other IMFs as it had a creamy color originally. 175 

a* value for CM has the significantly highest, indicating a reddish tint while the other 176 

samples have low or negative values (p <0.05). Theses color difference was attributed to 177 

green due to their original characteristics (Sakata & Honikel, 2001). b* value of PPF (14.60), 178 

CPF (14.26) and WPF (7.61) exhibited the highest yellowness. PPI, contains yellow pigments 179 

naturally such as carotenoids, contributed to its high yellowish value substantially. This 180 

resulted higher yellowish than CM (2.99) indicating a shift towards yellow compared to CM 181 
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(Asen et al., 2023). While CMP (1.41) shows a lower yellow value, suggesting a reduction in 182 

yellow hue due to the paste modification. 183 

 184 

pH, moisture content, and cooking loss of Imitated Muscle Fiber 185 

The pH and moisture content of IMFs demonstrated a bit higher than the CM (Table 2). 186 

The CMF had the highest pH (6.44) and moisture content (82.66) while the CM was the 187 

lowest. However, pH and moisture content in the other fibers ranges from 5.88 to 6.22 and 188 

80.16 to 81.52 respectively. The change in the pH of C comparison to CM can be due to the 189 

neutralization of organic acids, interaction with protein, and change in the ionic strength, as 190 

demonstrated by (Huff-Lonergan & Lonergan, 2005). The difference in the pH between the 191 

plant protein fibers could be due to the difference in initial pH of PPI, WP. The use of 192 

calcium chloride during the processing of the fiber block creates the porous structure 193 

responsible for the high moisture accumulation in the fiber (Cui et al., 2022; Cui et al., 2023). 194 

In terms of CL of the IMF, the CM showed the significantly highest CL with 23.51% while 195 

the CPF has the lowest at 14.37%, giving a better fiber in terms of maintaining the juiciness 196 

of the fiber after cooking (p < 0.05). A different rate of protein denaturation could be 197 

explained for the differences observed in the cooking loss across the fibers. While comparing 198 

the CL of the PPF, WPF, and CPF, it was found that the combination of PPI and WP helps to 199 

reduce the cooking loss significantly from the IMF from the individual sources. This 200 

combination can be suitable for manufacturing fibers with better mouthfeel and juiciness. 201 

 202 

Texture profile analysis of Imitated Muscle Fiber block 203 

The textural properties including hardness, springiness, gumminess, chewiness, and 204 

cohesiveness of the IMFs were presented in Table 3. Conventional meat textural properties 205 

were included as a comparison to the IMFs. In springiness among the fresh IMFs, there is no 206 
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significant difference (p > 0.05). However, all the other parameters had significant 207 

differences in comparison to CM (p < 0.05). The CMF showed significantly higher hardness, 208 

chewiness, cohesiveness, and gumminess than CM, which could be due to the fibrous nature 209 

of protein and cross-linking with sodium alginate during the process (Nagamine et al., 2023; 210 

Pietrasik & Jarmoluk, 2003). The chewiness, cohesiveness, and gumminess were also 211 

significantly higher in PPF due to the nature of legumin and vicilin that form a much denser 212 

and more compact structure and also the high fiber content and high-water holding capacity 213 

(Asgar et al., 2010; Day, 2013). However, significantly lower cohesiveness in WPF and CPF 214 

to CM could be caused by presence of wheat protein (glutenin and gliadin), low fiber content, 215 

and low water retention capacity form a less cohesive structure with an elastic gel-like 216 

structure (Sha & Xiong, 2020; Shimoni & Galili, 1996). 217 

The same trends have been observed in the springiness of fibers after cooking (p > 0.05). 218 

Cooked CMF had significantly lower cohesiveness than CM (p < 0.05). While the PPF has 219 

been found to have a significantly higher value of hardness, cohesiveness, chewiness, and 220 

gumminess than CM (p < 0.05). The presence of gluten in the WPF had lowered these values. 221 

The contradictory effect of PPI and WP had created the difference in the WPF and CPF 222 

which were lower in every aspect except gumminess than to CM. The hardness of the fresh 223 

PPF was similar to fresh CM but it was reduced after cooking. CMF had the significantly 224 

highest hardness while the WPF and CPF had lower hardness before and after cooking (p < 225 

0.05). The variation in the hardness of IMFs could be due to the difference in the deformation 226 

of proteins and their interaction with sodium alginate during processing. Hence, further 227 

research is needed. Due to the presence of gluten form and soft gel with a more open and airy 228 

structure, reduction was caused hardness in WPF and CPF. The strong interaction of PPI with 229 

SA might have disrupted during cooking. 230 

 231 
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Tenderness analysis of Imitated Muscle Fiber block 232 

It has been observed that all the fibers in the fresh IMF have significant differences in 233 

terms of shear to the conventional meat (Fig. 4). These differences in WBSF could be 234 

attributed to several key factors including the difference in the protein structural composition 235 

and behavior with SA as the myofibers organized in a hierarchical order. In contrast, during 236 

fiber formation, SA and calcium chloride lead to the formation of a rigid gel matrix. 237 

However, the presence of high moisture could increase the tenderness, but it might have 238 

contradicted by the formation of a rigid gel (Foegeding et al., 2011). On the other hand, the 239 

WBSF of cooked WPF, and CPF haven’t shown a significant difference in comparison to 240 

cooked CM (p > 0.05). However, WBSF has increased significantly in cooked CMF (p < 241 

0.05). It could be attributed to denaturation of wheat protein(unfolding) and gelatinization of 242 

starch present in wheat to form a gel-like soft structure leading to the reduction of shear force 243 

(Aguilera, 2022; Biliaderis, 2009; Foegeding et al., 2011; Singh et al., 2010). The use of 244 

sodium alginate and calcium chloride may also have affected the mechanical properties of the 245 

products. It is considered that determination of the actual cause behind these variations 246 

should be found out in future study. 247 

 248 

Process efficiency per minute of wet-spinning 249 

The wet spinning machine processed 700 ml of spinning solution over a time duration of 250 

50 min and yielded different amounts of final product from all the samples mentioned in 251 

Figure 5. With the help of equation (1), the process efficiency per minute is calculated. It was 252 

found that the processing efficiency with the PPI solution was about 3.63 g per minute, 253 

indicating the conversion rate of input to output. However, the conversion rate of CPF, WPF, 254 

and CMP was 3.4, 3.2, and 2.8 g per minute respectively. These difference in the process 255 

efficiency depend on several critical factors related to the characteristics of the solution and 256 
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the operational parameters of the machine. Here, during this process, it was noted that due to 257 

the differences in the characteristics of WP and PPI like the formation of lumps in WP 258 

solution. As WP tends to form viscoelastic networks and increase the resistance to flow, 259 

which also affects the consistency of the solution (Wang, 2014). PPI had lower solubility 260 

which is a challenge to form a homogenous mixture and required continuous mixing. 261 

Additionally, the CMP solution caused clogging of the spinneret leading to lower operational 262 

efficiency due to high levels of suspended fiber and the fibrous nature of protein. All these 263 

deviations highlight areas for process optimization, such as viscosity reduction and 264 

temperature management, to enhance the machine's operational efficiency (Chen et al., 2021). 265 

Further research should be done to improve the process operation efficiency of the wet 266 

spinning for industrialization. 267 

 268 

Conclusion 269 

In this study, PPI, WP, and CM paste were utilized with SA to fabricate fiber to mimic the 270 

animal muscle fiber by wet spinning process. It was seen that the processing speed of the 271 

fiber was strongly dependent on the type of protein sources. The physicochemical and 272 

textural profile analysis displayed the difference between the meat quality parameters. While 273 

the use of WP has shown promising quality in achieving the desired product, but not up to the 274 

mark of conventional meat. Therefore, further analysis to find out how the protein 275 

deformation occurs during cooking in the presence of SA is needed. It is concluded that the 276 

use of a single protein source cannot create fiber similar to meat fiber. However, optimization 277 

of the different protein sources is essential to achieve similar profiling. 278 
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Figure Legends: 379 

Figure 1. Process flow diagram of Imitated Muscle Fiber fabrication by wet spinning 380 

Figure 2. Macroscopic representation of fiber fabrication during processing (a) top view 381 

angle (b) Close up (c) side angle view 382 

Figure 3. Display of appearance profiling of Imitated Muscle Fiber from different protein 383 

sources 384 

Figure 4. The shear forces of the Imitated Muscle Fiber in comparison to Conventional 385 

meat 386 

Figure 5. Shows the wet spinning process efficiency per minute for different protein 387 

solution 388 
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Table 1. Effect of Imitated Muscle Fiber composition on pH, moisture, and cooking loss compared to Conventional meat 

 

 

 

 

 
 

 

 

A-B Different letters within a row indicate statistically significant differences between IMFs at p<0.05. 

CL, cooking loss 

CM, conventional meat; CMF, conventional meat fiber; PPF, pea protein fiber; WPF, wheat protein fiber; CPF, combination protein fiber 

  

Parameter CM CMF PPF WPF CPF 

pH 5.66±0.01E 6.44±0.0A 6.22±0.02B 5.88±0.01D 6.10±0.01C 

Moisture (%) 71.82±0.96B 82.66±0.34A 81.26±0.92A 81.52±4.26AB 80.16±0.90A 

CL  (%) 23.51±0.27A 22.93±3.65ABC 19.85±1.10AB 20.27±0.46B 14.37±1.19C 
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Table 2. Effect of Imitated Muscle Fiber composition on color (CIE L*, a*, b*) in contrast with Conventional meat  

Color CM CMF PPF WPF CPF 

CIE L* 53.81±0.89D 74.69±0.66A 71.78±0.43B 65.05±1.54C 72.82±1.09B 

CIE a* 7.18±0.53A -1.89±0.20D 1.76±0.14B -1.34±0.06C 0.85±0.45B 

CIE b* 2.09±0.20C 1.41±0.91C 14.60±0.38A 7.61±0.46B 14.26±0.81A 

A-B Different letters within a row indicate statistically significant differences between IMFs at p < 0.05. 

CM, conventional meat; CMF, conventional meat fiber; PPF, pea protein fiber; WPF, wheat protein fiber; CPF, combination protein fiber 
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Table 3. Analysis of texture profile parameters for Imitated Muscle Fiber corresponding to Conventional meat  

Parameter 

Imitated Fiber 

SEM   P-value 

CM CMF PPF WPF CPF 

Hardness (N) 

Fresh 25.879B 34.316A 28.509B 21.088C 14.496D 1.421 <0.0001 

Cooked 37.799B 62.928A 32.194C 14.557E 19.182D 0.949 <0.0001 

Springiness 

Fresh 0.869 0.871 0.933 0.932 0.913 0.002 0.0678 

Cooked 0.895 0.870 0.889 0.863 0.849 0.002 0.4530 

Gumminess (N) 

Fresh 3.642D 8.288B 14.634A 5.542C 5.000CD 0.654 <0.0001 

Cooked 6.244D 24.589A 13.291B 5.997D 8.579C 0.668 <0.0001 

Chewiness (N) Fresh 4.790C 7.226B 12.774A 5.353C 4.618C 0.759 <0.0001 
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Cooked 7.439C 23.052A 11.746B 4.905D 7.522C 0.373 <0.0001 

Cohesiveness 
Fresh 0.262C 0.304BC 0.500A 0.255C 0.354B 0.001 <0.0001 

Cooked 0.573A 0.392D 0.512B 0.405CD 0.450C 0.001 <0.0001 

A-B Different letters within a row indicate statistically significant differences between IMFs at p<0.05. 

CM, conventional meat; CMF, conventional meat fiber; PPF, pea protein fiber; WPF, wheat protein fiber; CPF, combination protein fiber 
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Figure 1. Process flow diagram of Imitated Muscle Fiber fabrication by wet spinning 
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Figure 2. Macroscopic representation of fiber fabrication during processing (a) top view angle (b) Close up (c) side angle view 
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Figure 3. Display of appearance profiling of Imitated Muscle Fiber from different protein sources 
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Figure 4. The shear forces of the Imitated Muscle Fiber in comparison to Conventional meat. P values were labelled as *** p < 0.001,  p < 

0.0001. 
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Figure 5. Shows the wet spinning process efficiency per minute for different protein solution 

 
 


