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Flavor and Taste Development Methods in Meat: Techniques and Emerging Trends 9 

Abstract  10 

Flavor and taste are critical factors influencing consumer attraction for meat, shaping preferences 11 

and commercial demand. This review examines conventional and novel approaches to flavor and 12 

taste creation in the meat business, highlighting ways that improve sensory profiles and meet 13 

consumer demands. Conventional methods, such as aging and marination, are analyzed in 14 

conjunction with new technologies, including enzymatic treatment, fermentation, genetic 15 

treatments to alter texture and enhance umami. This study also emphasizes innovative methods 16 

to improve flavor of plant-based meat products, designed to meet the increasing demand for 17 

healthier, sustainable, and customizable meat products. The paper examines various 18 

methodologies and trends, offering a thorough grasp of flavor creation in the meat sector and 19 

highlighting the potential of creative approaches to transform meat flavor and taste profiles in 20 

response to evolving consumer and industry demands. 21 

 22 

Keywords:  Flavor and taste, Plant based meat, Genetic treatments, Umami. 23 
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Introduction 25 

The sensory experience of meat intake is significantly affected by its flavor and taste, which are 26 

essential for consumer acceptance and market value. As customer preferences shift, influenced 27 

by heightened awareness of health, sustainability, and culinary diversity, the meat business 28 

encounters a rising demand for superior flavor development (Hussain et al., 2024; Zhang et al., 29 

2023). The intricacy of meat flavor results from the interplay of several substances, including 30 

amino acids, peptides, lipids, and volatiles, which are affected by variables such as animal 31 

species, food, and processing techniques (Jiang et al., 2024). Understanding these complex 32 

interactions, researchers and industry experts have pursued novel methods to improve and alter 33 

the flavor profiles of meat products to satisfy contemporary customer expectations. Traditional 34 

methods for flavor development in meat include dry and wet aging, marination, and smoking 35 

(Alam et al., 2024). These traditional methods facilitate biological reactions that enhance the 36 

umami, sweetness, and overall complexity of meat's flavor. Nonetheless, recent developments in 37 

food technology are expanding the limits of flavor enhancement by offering innovative methods 38 

that utilize enzymatic activity, microbial fermentation, and improved flavor encapsulation 39 

technologies (Wang et al., 2022). Microbial transglutaminase (MTGase) has become a favored 40 

binding agent, enhancing texture and affecting flavor release in meat products (Cheng et al., 41 

2023). 42 

The integration of artificial intelligence (AI) and big data analytics in the meat business is 43 

revolutionizing taste formulation methodologies. Data-driven models currently aid in forecasting 44 

consumer preferences, enhancing component interactions, and formulating tailored flavor 45 

profiles (Al-Ali et al., 2024). The integration of classic and contemporary techniques offers 46 

promising prospects to enhance and vary meat flavor profiles, improving both palatability and 47 

market attractiveness of meat products.  48 

This review will examine contemporary techniques and upcoming trends in flavor and taste 49 

production in meat, highlighting developments in both classic and creative methodologies. This 50 

research seeks to elucidate how contemporary literature and industry practices are influencing 51 

the future of meat taste engineering in response to evolving customer needs.  52 

 53 
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Exploring the Biochemical Mechanisms of Flavor and Taste in Meat 54 

Flavor and taste characteristics result from a complex interaction of chemical substances and 55 

sensory mechanisms, which collectively enhance a product's overall palatability. Taste, as 56 

conventionally defined, relates to the five fundamental gustatory sensations: sweet, sour, salty, 57 

bitter, and umami. Flavor is a composite of taste, scent, and supplementary sensations, including 58 

texture, mouthfeel, and visual cues, resulting in a multimodal experience that influences 59 

consumer satisfaction across various sensory dimensions (Smith et al., 2018; Shahidi & Zhong, 60 

2005). 61 

The flavor profile of meat is shaped by intrinsic characteristics, including species, age, and 62 

muscle type, alongside extrinsic ones such as diet, cooking style, and aging processes (Mottram, 63 

1998). Principal factors influencing meat flavor encompass the Maillard reaction, lipid oxidation, 64 

and nucleotide degradation during cooking. The Maillard reaction, occurring between amino 65 

acids and reducing sugars at elevated temperatures, generates various volatile chemicals that 66 

provide cooked meat with its distinctive roasted and caramelized aromas (Nursten, 2005). Lipid 67 

oxidation is a crucial process that enhances flavor by producing aldehydes, ketones, and 68 

hydrocarbons, imparting meat its distinctive scent and sensory complexity (Mottram, 1998). 69 

 70 

Fifth fundamental tastes “Umami”  71 

Among the five fundamental tastes, umami is especially important in the flavor of meat. The 72 

umami flavor, mostly originating from amino acids like glutamate and nucleotides such as 73 

inosinate, contributes to the richness and complexity characteristic of premium meat products 74 

(Kurihara, 2009). Research indicates that aging processes, including wet and dry aging, might 75 

augment umami by decomposing proteins into glutamate and other umami-rich substances, 76 

hence enhancing the savory profile and overall sensory attractiveness of beef products (Son et 77 

al., 2024; Ikeda, 2002). Dry aging is recognized for augmenting the flavor of beef, yielding nutty 78 

and earthy undertones as a result of the enzymatic degradation of amino acids and lipids 79 

(Dashdorj et al., 2015). The ways of cooking significantly influence taste development. Grilling 80 

enhances the Maillard reaction and lipid oxidation, resulting in more pronounced flavors, while 81 
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boiling or steaming produces a milder, less intricate flavor due to the restricted development of 82 

volatile chemicals (Zhong et al., 2018). 83 

Numerous components, such as proteins, lipids, carbohydrates, and nucleotides, substantially 84 

influence the distinctive flavors experienced in meat. The influence of different compounds in 85 

the taste and flavor of food and meat are shown in Figure 1. Meat is rich in proteins, and their 86 

decomposition during cooking or age liberates amino acids that are crucial for flavor 87 

enhancement. Amino acids, including glutamic acid, aspartic acid, and glycine, contribute to the 88 

umami flavor, whereas sulfur-containing amino acids such as methionine and cysteine produce 89 

appealing roasted or meaty odors upon heating (Mottram, 1998; Herrera & Calkins, 2022). 90 

Moreover, the Maillard reaction transpires between amino acids and reducing sugars during 91 

cooking, resulting in the creation of heterocyclic compounds that enhance the meat's browned 92 

exterior and intricate flavor. The oxidation of polyunsaturated fatty acids (PUFAs) during 93 

cooking generates chemicals including aldehydes, ketones, and alcohols, which are crucial for 94 

developing distinct meat tastes. For example, oleic acid produces agreeable fragrances, whereas 95 

linoleic and linolenic acids impart aromatic characteristics reminiscent of roasted meat (Resconi 96 

et al., 2013). Intramuscular fat, or marbling, is recognized for augmenting flavor intensity and 97 

juiciness, since it influences the retention and release of volatile chemicals during cooking 98 

(Wood et al., 2004). Despite their minimal presence, carbohydrates in meat, including glycogen, 99 

glucose, and ribose, significantly contribute to flavor production. The caramelization of sugars at 100 

high temperatures enhances the rich, sweet flavors of cooked meat, improving its overall appeal 101 

(Mottram, 1998). 102 

Nucleotides like inosine monophosphate (IMP) and guanosine monophosphate (GMP) are 103 

essential elements in the umami flavor characteristic of meat. These molecules, when 104 

amalgamated with amino acids such as glutamate, synergistically augment the umami flavor and 105 

complexity in meat (Tikk, 2008). Free amino acids and peptides contribute to flavor; notably, 106 

glutamic acid enhances the delicious profile of aged meat (Dashdorj et al., 2015). 107 

Umami, one of the five fundamental sensations with sweet, sour, salty, and bitter, is sometimes 108 

described as the "savory" or "meaty" flavor. Initially recognized by Japanese chemist Kikunae 109 

Ikeda in 1908, umami arises from the presence of glutamate, inosinate, and guanylate, chemicals 110 

prevalent in numerous foods, particularly meats. This flavor elevates the culinary profile of 111 

dishes, delivering a sumptuous experience and an enduring aftertaste. The umami flavor 112 
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predominantly originates from amino acids, particularly glutamate, and nucleotides, including 113 

inosinate and guanylate, which are naturally found in meat (Ikeda, 2002). The umami and other 114 

taste perception mechanism is illustrated in Figure 2. Meat processing techniques such as curing 115 

and boiling can augment umami levels. With aging, proteolytic enzymes degrade muscle 116 

proteins, liberating free amino acids and nucleotides that enhance umami flavor. In goods like 117 

restructured meat or meat replacements, using umami sources (e.g., mushroom extracts, yeast 118 

extracts, or soy sauce) enhances sensory perception and improves palatability, hence increasing 119 

their appeal to consumers seeking meat-like experiences (Samad et al., 2024). 120 

 121 

The Application of Sensory Science in the Investigation of Flavor Profiles in Meat 122 

Progress in sensory research and analytical methodologies has facilitated a more accurate 123 

identification and comprehension of the chemical components that influence beef flavor (Alam et 124 

al., 2024a). Gas chromatography-mass spectrometry (GC-MS) enables researchers to identify 125 

and quantify volatile molecules, elucidating the chemical foundation of meat flavors. 126 

Furthermore, consumer sensory panels and descriptive sensory analysis facilitate the correlation 127 

of specific flavor traits with consumer preferences, enabling the meat sector to customize goods 128 

to satisfy consumer wants (Lawless & Heymann, 2010). 129 

 130 

Influence of Processing Methods on the Chemical Composition of Food Matrixes 131 

The chemical composition of meat and its resultant flavor are influenced by processing 132 

processes. Dry aging facilitates the enzymatic degradation of proteins and fats, hence 133 

augmenting the content of amino acids, peptides, and fatty acids that enhance umami and savory 134 

flavors (Wang et al., 2020). Cooking methods such as grilling, smoking, and frying induce 135 

thermal breakdown of lipids and proteins, resulting in the creation of distinctive volatile 136 

compounds and enhancing meat flavor (Resconi et al., 2013). 137 

The Maillard reaction is a primary mechanism of taste production during heat processing. This 138 

reaction transpires between reducing sugars and amino acids, resulting in a sequence of intricate 139 

reactions that yield various chemicals, including melanoidins, which impart the distinctive brown 140 
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hue and umami flavors in meat. The Maillard reaction is significantly influenced by temperature, 141 

generally taking place at temperatures over 140°C (Lea & Swoboda, 1962). Research indicates 142 

that elevated temperatures result in a greater formation of Maillard reaction products, hence 143 

intensifying flavor and color in restructured meat (Samad et al., 2024).  144 

The chemicals generated during the Maillard reaction differ based on the amino acids and sugars 145 

involved. Cysteine and ribose generate sulfur-containing compounds, including mercaptans and 146 

thiazoles, which provide savory and meaty flavors, whereas phenylalanine yields molecules with 147 

a roasted and nutty fragrance (Van Boekel, 2006). These reactions are controlled in restructured 148 

meat processing to maximize flavor profiles and augment customer attraction. 149 

Lipid oxidation is a significant element in the flavor characteristic of thermally cooked meat. 150 

Upon heating, unsaturated fats experience oxidation, resulting in the production of aldehydes, 151 

ketones, and alcohols, which enhance the aroma and flavor of the product (Shahidi & Zhong, 152 

2005). Lipid oxidation can impart appealing aromas, such the distinctive "grilled" scent; 153 

nevertheless, excessive oxidation may lead to undesirable off-flavors that diminish the overall 154 

sensory quality of restructured meat.  155 

Diverse fat sources and compositions markedly influence flavor results. Products rich in 156 

polyunsaturated fats typically exhibit more pronounced oxidation products, which can augment 157 

flavor complexity while also heightening the risk of rancidity. Consequently, meticulous 158 

selection of fats and regulated thermal processing are crucial in the manufacture of restructured 159 

meat to attain a harmonious flavor profile devoid of undesirable notes (Ren et al., 2024).  160 

Gamma irradiation proved to enhance the flavor and taste characteristics by reducing the 161 

oxidative changes in meat (Sadakuzzaman et al., 2024). Thermal processing induces protein 162 

denaturation and amino acid degradation, which facilitate the formation of distinctive taste 163 

molecules. During protein denaturation, free amino acids are released, which then engage in the 164 

Maillard reaction or undergo Strecker degradation, resulting in the formation of new taste 165 

compounds, such as pyrazines and pyridines, so enhancing the meat's flavor complexity (Xu & 166 

Yin, 2024). Heating elevates the release of glutamic acid, hence intensifying umami qualities in 167 

meat products (Yoshida & Ninomiya, 2023). The processing temperature and duration directly 168 

influence the degree of protein breakdown. Elevated temperatures and extended cooking 169 

durations augment protein degradation and amino acid liberation, hence intensifying umami 170 
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qualities in restructured beef products. Enhancing these factors can consequently elevate the 171 

flavor profile and consumer approval of the final product.  172 

Diverse thermal processing techniques, including roasting, grilling, and steaming, influence 173 

flavor development distinctively due to differing heat transmission mechanisms. Grilling delivers 174 

direct high heat, facilitating Maillard browning and lipid oxidation, which enhances the flavor 175 

profile. Conversely, steaming employs lower temperatures and moist heat, resulting in gentler 176 

aromas, preserving more subtle notes, and diminishing lipid oxidation (Parry, 2016).  177 

Research comparing these techniques has indicated that whereas dry-heat procedures enhance 178 

flavor, they may also result in moisture loss, impacting texture and juiciness, which are essential 179 

for restructured meat products (Lawrie & Ledward, 2014). The selection of thermal processing 180 

method significantly influences the equilibrium between taste intensity and textural quality, 181 

affecting consumer preference and product satisfaction.  182 

 183 

Impact of Animal Diet on Meat Flavor  184 

The food of animals directly influences the accumulation of intramuscular fat and the 185 

composition of fatty acids, both of which are essential in the development of distinct flavors 186 

during cooking. Grass-fed and grain-fed animals exhibit distinct lipid profiles, with grass-fed 187 

diets yielding elevated concentrations of omega-3 fatty acids and conjugated linoleic acid (CLA) 188 

(Rahman et al., 2009). These chemicals impart a unique grassy and gamey flavor typically 189 

associated with grass-fed meats, in contrast to the sweeter and buttery flavor of grain-fed meat 190 

(Jiang et al., 2011).  191 

Certain dietary supplements, such as antioxidants (e.g., Vitamin E), can enhance oxidative 192 

stability, hence avoiding flavor degradation linked to lipid oxidation. Research indicates that 193 

administering specific natural antioxidants, such as rosemary, to cattle may improve the stability 194 

of meat flavor during storage (Rashidaie Abandansarie et al., 2019). Cattle provided with 195 

selenium-enriched diets have enhanced flavor profiles attributable to selenium's antioxidant 196 

properties, which mitigate off-flavors resulting from oxidation (Shin et al., 2021).  197 

 198 
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Genetic Influences on Meat Flavor 199 

Genetics fundamentally determine muscle fiber types, fat deposition, and enzyme activity, all of 200 

which affect meat flavor. Various breeds demonstrate distinct flavor profiles influenced by 201 

hereditary characteristics. Wagyu beef is esteemed for its pronounced marbling, yielding a 202 

delicate texture and distinctive umami flavor profile (Smith et al., 2018). Iberian pork possesses 203 

a unique flavor, resulting from its genetics and a specialized acorn-rich diet during the finishing 204 

phase. Genetic factors influence the distribution of muscle fiber types, hence impacting meat 205 

flavor. Fast-twitch fibers (Type II) are associated with flavors related to lactate buildup, whereas 206 

slow-twitch fibers (Type I) possess a higher concentration of oxidative enzymes, resulting in a 207 

unique flavor profile (Purslow, 2022). Research indicates that the heritability of meat flavor is 208 

moderate, suggesting the feasibility of selective breeding for flavor-specific characteristics 209 

(Smith et al., 2003).  210 

 211 

Comprehensive Sensory and Instrumental Approaches for Meat Flavor and Taste 212 

Assessment 213 

Aging is a post-mortem process wherein meat experiences biochemical alterations that improve 214 

its flavor and softness. It is chiefly categorized into wet aging and dry aging, each conferring 215 

unique flavor profiles.  216 

Wet aging entails vacuum-sealing the meat to preserve moisture, so facilitating the activity of 217 

proteolytic enzymes, such as calpains and cathepsins, which decompose muscle proteins into 218 

smaller, tasty peptides. Wet-aged meat possesses a subdued, more metallic flavor in contrast to 219 

dry-aged meat (Son et al., 2024). Dry aging involves storing meat at regulated temperatures and 220 

humidity levels without packaging, facilitating moisture evaporation, flavor concentration, and 221 

microbial activity that contributes nutty, earthy, and intricate umami characteristics. The 222 

Maillard process on the surface of the meat enhances the flavor profile (Kim et al., 2016).  223 

The length of the aging process influences taste strength, since prolonged aging provides 224 

additional time for enzymatic and microbiological activities, potentially resulting in complex 225 

flavors while also posing a spoiling risk if not well managed (Marcus, 2019).  226 

The sensory quality of meat is a crucial determinant of consumer satisfaction. Attributes like 227 

flavor, texture, and juiciness drive consumer preferences and purchasing decisions. Meat flavor 228 
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is a multi-faceted attribute, influenced by amino acids, peptides, and fat content, while the 229 

umami taste in particular enhances palatability (Kerth et al., 2024). This section discusses 230 

sensory evaluation methods to assess flavor and taste accurately, along with advanced 231 

instrumental techniques. 232 

Descriptive analysis involves training panelists to characterize and quantify specific flavor 233 

attributes. It offers in-depth profiling and is widely used for understanding meat flavor (Lawless & 234 

Heymann, 2010). Techniques include flavor Profile Analysis (FPA) uses trained panelists to 235 

evaluate attributes like "meaty," "brothy," or "metallic." It provides a structured approach to 236 

understanding flavor nuances (Adam, 2021). Quantitative Descriptive Analysis (QDA) applies 237 

statistical methods to quantify flavor intensities. It’s flexible for comparing different meat 238 

samples or treatments, such as aging or cooking methods (De Pilli et al., 2024). Spectrum™ 239 

Analysis is a highly standardized method enables cross-laboratory comparisons by using scales 240 

based on reference standards. It is particularly useful for research settings requiring consistency 241 

across sensory studies. Hedonic Rating is a widely used method, where participants rate samples 242 

on a scale (e.g., 9-point scale from "dislike extremely" to "like extremely"). This quick and 243 

simple test provides a direct measure of consumer acceptance (Lawless & Heymann, 2010). In 244 

Paired Preference Testing, consumers compare two samples to determine which they prefer, 245 

allowing direct comparisons between treatments like different binders or levels of additives 246 

(Meilgaard et al., 1999).  247 

Instrumental techniques complement sensory analysis by providing objective measurements of 248 

flavor compounds in meat. Gas Chromatography-Mass Spectrometry (GC-MS) is a standard 249 

technique to analyze volatile flavor compounds (Shahidi & Cadwallader, 1997).  It separates, 250 

identifies, and quantifies compounds contributing to meat aroma, like aldehydes and ketones. 251 

Electronic Nose (E-Nose) is sensor-based device mimics the human sense of smell to detect and 252 

differentiate flavor compounds (Peris & Escuder-Gilabert, 2009). It’s increasingly used in meat 253 

quality assessment due to its efficiency and non-destructive nature. Liquid Chromatography-254 

Mass Spectrometry (LC-MS) is ideal for analyzing non-volatile compounds responsible for taste, 255 

such as amino acids and nucleotides that contribute to umami and savory tastes in meat 256 

(Koutsidis et al., (2009).  257 

 258 

Traditional Techniques for Flavor Development in Meat  259 
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The formation of flavor in meat is a complex process affected by elements including animal 260 

species, muscle type, and cooking techniques. Conventional methods emphasize altering the 261 

inherent properties of meat to improve its flavor profile via aging, marination, fermentation, and 262 

curing. These procedures have been employed for ages, cultivating unique flavors desired in 263 

culinary practices.  Figure 3 illustrates the advantages and disadvantages of traditional flavor 264 

development techniques. 265 

Aging, including dry and wet aging, is a prevalent method in the meat business to augment 266 

flavor. Dry aging entails the preservation of beef under regulated humidity and temperature for 267 

many weeks, facilitating the action of natural enzymes that decompose muscle fibers, resulting in 268 

a more intense, flavorful, and tender product (Dashdorj et al., 2016). In wet aging, meat is 269 

vacuum-sealed and refrigerated, permitting it to mature in its own juices. Wet aging often results 270 

in a more subdued flavor than dry age, as the meat preserves moisture; yet, enzyme activity 271 

continues to enhance a complex flavor profile (Kim et al., 2016).  272 

Marination is a widely employed method to enhance the flavor, softness, and juiciness of meat. 273 

Marinades often comprise components such as acids (e.g., vinegar, citrus), oils, and seasonings. 274 

Acidic substances decompose proteins, resulting in a more tender product, while aromatic herbs 275 

and spices contribute supplementary flavors (Aminzare et al., 2016). An overview of using 276 

additives in the quality, taste and flavor development of meat and meat products are summarized 277 

in Table 1. Marinades function as vehicles for taste chemicals that engage with the meat, 278 

facilitating deeper flavor penetration into the muscle fibers. Moreover, the inclusion of sugar or 279 

salt in marinades might facilitate Maillard reactions during cooking, resulting in caramelized 280 

tastes and enhanced coloration on the meat's surface (Latoch et al., 2023).  281 

Fermentation is extensively employed in the production of cured foods such as sausages and 282 

salamis. This procedure entails the incorporation of particular bacterial cultures, such as 283 

Lactobacillus and Staphylococcus, into meat, facilitating lactic acid synthesis and reducing the 284 

pH level. The acidic environment preserves the meat and increases flavor through intricate 285 

biological interactions that release volatile molecules responsible for a tangy and umami-rich 286 

character (Lorenzo & Pateiro, 2018). Fermentation produces supplementary aromatic chemicals 287 

such as aldehydes and esters, enhancing the distinctive aromas of fermented meat products 288 

(Hugas & Monfort, 1997).  289 
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Smoking is a conventional method that imparts a unique, smoky flavor and preserves the meat. 290 

This approach involves exposing meat to smoke generated from wood combustion, which 291 

infuses it with phenols, carbonyls, and organic acids that provide aroma and antibacterial 292 

characteristics (Pintado et al., 2021). Various woods, including hickory, apple, and cherry, 293 

contribute various flavors, as each wood type emits a specific array of aromatic chemicals. 294 

Smoking is employed in goods such as ham, bacon, and smoked sausages, where the smoky 295 

scent and flavor are much valued (Aaslyng & Meinert, 2017).  296 

Curing entails the application of salt, nitrates, or nitrites to meat, which suppresses bacterial 297 

proliferation and facilitates the emergence of distinctive flavors. Salt extracts moisture, 298 

intensifying the meat's flavor and fostering conditions for biological reactions that generate 299 

distinct taste and aroma profiles (Toldrá et al., 2012). Nitrate and nitrite curing is crucial for 300 

color stability in cured meats, imparting the distinctive pink hue and inhibiting oxidative 301 

rancidity, which can adversely affect flavor (Desmond, 2006). This process is crucial in the 302 

production of hams, prosciuttos, and other cured meats, where flavor intensity is a defining 303 

characteristic.  304 

 305 

Biotechnological Methods for Flavor Enhancement 306 

Biotechnology involves several techniques that alter biological creatures or systems to generate 307 

or improve flavors. These methods may encompass fermentation, metabolic engineering, and 308 

enzymatic procedures to generate preferred flavor molecules in food. The cutting-edge 309 

biotechnological methods are illustrated in Figure 4. 310 

Fermentation has been employed for centuries to enhance flavors in food and beverages. Recent 311 

advancements in microbial biotechnology have facilitated more precise fermentation procedures 312 

to enhance flavor qualities. Traditional fermentation methods utilizing lactic acid bacteria and 313 

yeast have been refined to produce flavors and fragrances characteristic of meat, dairy, or certain 314 

plant-based characteristics. Lactic acid bacteria, specifically Lactobacillus and Pediococcus 315 

species, can synthesize organic acids, esters, and alcohols that impart a meat-like flavor to plant-316 

based products (Gänzle, 2015).  317 

Metabolic engineering modifies the metabolic pathways of microorganisms to improve the 318 

synthesis of particular taste chemicals. In yeast, the metabolic pathways for ester synthesis can 319 

be modified to provide flavors akin to those present in cheese, wine, and other fermented goods. 320 
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Genetically modifying Saccharomyces cerevisiae, a widely utilized yeast in taste manufacturing, 321 

to enhance the biosynthesis of isoamyl acetate or ethyl caproate can produce fruity and buttery 322 

flavors that are sought after in many plant-based dairy replacements (Ienczak et al., 2022).  323 

Enzymes are crucial for catalyzing processes that generate taste chemicals. Biotechnology 324 

utilizes particular enzymes, such as lipoxygenase or peroxidase, to facilitate targeted reactions 325 

that produce desirable tastes. Lipoxygenase can transform linoleic acid into volatile chemicals 326 

linked to a "meaty" fragrance in plant-based meat. Improvements in enzyme immobilization and 327 

stabilization methods have significantly increased the commercial scalability of enzyme 328 

technology, facilitating reliable and efficient taste generation in food manufacturing (Hasan et 329 

al., 2006).  330 

Genomics has elucidated the genetic foundations of flavor production, facilitating the 331 

identification and alteration of genes implicated in flavor pathways. By finding and manipulating 332 

these genes, scientists can genetically modify plants, yeast, and bacterial strains to yield various 333 

flavor profiles. Genomic research has pinpointed genes that govern the manufacturing of several 334 

taste chemicals in plants. In tomatoes, genes like LeHPL and LeCCD1 are recognized for their 335 

impact on volatile chemicals that enhance fruity and sweet aromas. Researchers can utilize 336 

CRISPR-Cas9 to accurately modify genes, so augmenting the natural tastes of plant components 337 

employed in food production (Tieman et al., 2017). Comparable research in soybeans has 338 

pinpointed genes that affect unwanted grassy or beany flavors, which can be suppressed or 339 

altered to yield a more neutral flavor profile appropriate for plant-based meat (Dixon, 2013).  340 

Genetic alteration is a potent genomics instrument employed to augment flavor. By introducing 341 

or overexpressing particular flavor-producing genes, researchers can enhance the synthesis of 342 

desirable chemicals in microorganisms or plants. For instance, S. cerevisiae has been genetically 343 

modified to express flavor-related pathways from other species, such as Pichia pastoris or 344 

Kluyveromyces lactis, thereby augmenting its potential to generate intricate, dairy-like flavors in 345 

plant-based dairy substitutes (Steensels et al., 2014).  346 

Epigenetic alterations entail altering the expression of flavor-associated genes without modifying 347 

the DNA sequence. This method can regulate gene expression to augment the synthesis of 348 

particular tastes in agricultural products. Methylation alterations in tomato plants have been 349 

linked to enhanced production of fruity smells (Guo et al., 2018). Epigenetic methodologies are 350 
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currently developing in flavor biotechnology but show potential for improving flavor profiles in 351 

diverse crops without direct genetic alteration.  352 

 353 

Fundamental Sensory Attributes of Hybrid and Plant-Based Meat  354 

Hybrid and plant-based meats must emulate essential sensory characteristics of conventional 355 

meat, including texture, flavor, appearance which are crucial determinant in consumer choice. In 356 

plant-based alternatives, attaining a meat-like texture frequently necessitates the use of binders, 357 

such as microbial transglutaminase (MTGase), which improves the structural integrity of plant 358 

proteins (Baugreet et al., 2017). Conventional meat flavors originate from amino acids and fatty 359 

acids, which are difficult to reproduce in plant-based formulations (Kumari et al., 2023). The 360 

incorporation of natural flavor enhancers and fermentation techniques can augment the meat-like 361 

flavor of alternative goods. Colorants or natural substances, such as beet juice or heme proteins, 362 

are employed to impart the distinctive red or pink hue in meat analogs (Kyriakopoulou et al., 363 

2019). Use of scaffolding materials encapsulated with bioactive compounds may improve the 364 

taste and flavor of meat analogs (Alam et al., 2024). Consumers are more inclined to embrace 365 

plant-based goods when their flavor closely resembles that of traditional meat (Elzerman et al., 366 

2015). Sensory evaluation methods for any kinds of meat products has been illustrated in Figure 367 

5. A study conducted by Elzerman et al. (2013) revealed that consumers positively assessed the 368 

texture of plant-based meat analogs, while observing flavor discrepancies in comparison to 369 

traditional meat. In a separate study, Kyriakopoulou et al. (2019) investigated the impact of 370 

ingredient modification on the sensory attributes of restructured plant-based patties, observing 371 

that the incorporation of MTGase improved texture, resulting in increased chewiness and 372 

firmness. Baugreet et al. (2017) found that in consumer preference testing for hybrid meat 373 

products that integrate plant and animal proteins, those exhibiting enhanced juiciness and 374 

tenderness received better overall like scores. Alam et al. (2024c, 2024d) assessed different type 375 

of plant ingredients in pork and beef products and hybrid products were well accepted by sensory 376 

panel in comparison to reference meat products. additionally, the umami and richness values 377 

were higher in hybrid products. These studies indicate that hybrid products can attract consumers 378 

desiring meat substitutes that closely resemble the sensory characteristics of traditional meat.  379 

 380 

Conclusion 381 
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The integration of traditional and contemporary approaches offers a viable foundation for 382 

augmenting the sensory attributes of meat. Although age, marination, and smoking are 383 

fundamental approaches, advancements in biotechnology and sensory research present novel 384 

potential for flavor enhancement. Enzymatic activity, microbial cultures, and data-driven insights 385 

are essential for creating customized flavor profiles that align with changing customer 386 

preferences. This collaborative strategy not only improves flavor but also corresponds with the 387 

market's transition towards sustainable and creative food solutions. Subsequent research ought to 388 

concentrate on enhancing these technologies to maximize flavor uniformity and user 389 

contentment. 390 

 391 
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Table 1. overview of using additives in the quality, taste and flavor development of meat 617 

and meat products 618 

Product 

type 
Objectives 

Natural 

Additives  

Additive 

Concentrati

on (%) in 

formulation 

Salt type 

Salt 

concentra

tion (%) 

Main effects References 

Pork ham 
Flavor 

improvement 
Seaweed extract 0.11 NaCl 1 

Flavor 

improved (Barbieri, et al., 2016) 

Dry aged 

beef jerkey 

Flavor and  

tenderness. 
Soy Sauce 2 NaCl 2 

Flavor and 

tenderness 

improved (Lim et al., 2014) 

Chicken 

nugget 
Tenderness Mushroom 2.5 NaCl 25 

Tenderness 

improved (Akesowan, 2021) 

Beef patty 

Flavor and 

lipid 

oxidation 

Mushroom 2.5 NaCl 0.60% 

Reduced 

lipid 

oxidation and 

improved 

flavor. 

(Ceron-Guevara et 

al., 2020a, Ceron-

Guevara et al., 

2020b) 

Dry-cured 

pork  
Flavor 

Glasswort 

extract 
10 NaCl 90 

Flavor 

improved (Ferreira et al., 2022) 

 

Tenderness 

and 

juiciness. 

Glasswort 

extract 
10% NaCl 1 

Tenderness 

and juiciness 

improved (Lim et al., 2015) 

Pork loin 

Tenderness 

and 

juiciness. 

Red glasswort 2 NaCl 2 

Tenderness 

and juiciness 

improved (Jeong et al., 2020) 

  
Synthetic 

additives  
     

Fermented 

sausages 
Tenderness 

Calcium 

glutamate 
0.03 

NaCl, KCl, 

Calcium 

Ascorbate 

2.25+0.42

+0.3 

Tenderness 

improved 
(Zhang et al., 2021) 

 Flavor. K-lactate 10 NaCl, KCl 50+40 
Flavor 

improved (Guàrdia et al., 2008) 

Pork 

Frankfurter 

Texture and 

flavor 
Glycine 20 NaCl, KCl 

22.5+57.5

0 

Texture and 

flavor 

improved  (Wilailux et al., 2020) 

Pork 

sausage 
Texture 

Maltodextrin+L-

Lysine+L-

Alanine, Ccitric 

acid, Ca-lactate 

3.5+ 4 

+1+0.5+ 1%  
NaCl, KCl 70+20 

Texture 

improved 
(Chen et al., 2019) 



 

28 

 

 

Figure 1. The influence of different compounds in the taste and flavor of food and meat. 

  



 

29 

 

 

 

Figure 2. The umami and other taste perception mechanism.  

 

 

Figure 3. Advantages and disadvantages of traditional flavor development techniques. 

  

Packman Analogy (Schmidt & Mouritsen, 2022) 
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Figure 4. The cutting-edge biotechnological methods for flavor development. 
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Figure 5. Sensory evaluation methods for any kinds of meat products  

 


