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ABSTRACT 33 

Expectations for the industrialization of cultured meat are growing due to the increasing 34 

support from various sectors, such as the food industry, animal welfare organizations, and 35 

consumers, particularly vegetarians, but the progress of industrialization is slower than 36 

initially reported. This review analyzes the main issues concerning the industrialization of 37 

cultured meat, examines research and media reports on the development of cultured meat to 38 

date, and presents the current technology, industrialization level, and prospects for cultured 39 

meat. Currently, over 30 countries have companies industrializing cultured meat, and around 40 

200 companies that are developing or industrializing cultured meat have been surveyed 41 

globally. By country, the United States has over 50 companies, accounting for more than 42 

20% of the total. Acquiring animal cells, developing cell lines, improving cell proliferation, 43 

improving the efficiency of cell differentiation and muscle production, or developing cell 44 

culture media, including serum-free media, are the major research themes related to the 45 

development of cultured meat. In contrast, the development of devices, such as bioreactors, 46 

which are crucial in enabling large-scale production, is relatively understudied, and few of 47 

the many companies invested in the development of cultured meat have presented products 48 

for sale other than prototypes. In addition, because most information on key technologies is 49 

not publicly available, it is not possible to determine the level of technology in the 50 

companies, and it is surmised that the technology of cultured meat-related startups is not 51 

high. Therefore, further research and development are needed to promote the full-scale 52 

industrialization of cultured meat. 53 

 54 

Keywords: cultured meat; cultured meat industrialization; muscle satellite cell; myogenesis55 
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Introduction 56 

Cultured meat, also called in vitro meat or laboratory-cultured meat, is an edible tissue 57 

produced by the isolation, proliferation, and differentiation of muscle satellite cells (MSCs) 58 

obtained from a small amount of livestock tissue (Lee et al., 2021). The production of 59 

livestock products based on stem cell and tissue culture technologies is seen as a future 60 

technology and an emerging industry that is not only resource-efficient but can effectively 61 

address environmental degradation and the uncertainties associated with food security in the 62 

face of a growing global population and dwindling natural resources (Risner et al., 2023). 63 

Several countries around the world have implemented or taken steps to create policies to 64 

categorize cultured meat as cellular agriculture (Soice and Johnston, 2021). 65 

A 2023 report by GlobeNewswire ascertained that the estimated value of the global 66 

cultured meat market was USD 182 million in 2022 and will continue to grow, with a 67 

projected CAGR of 23.2% (Fig. 1). However, this is only 0.014% of the global traditional 68 

meat market size of USD 1.28 trillion, which was reported in the same year (Phuong, 2023), 69 

indicating that the cultured meat market is still small compared to the traditional meat market 70 

(Fig. 1). Currently, the only marketable cultured meats that have been officially certified as 71 

safe by the United States Food and Drug Administration (FDA) are cell-cultured chicken 72 

from Upside Foods and GOOD Meat. 73 

Following this official approval, several companies worldwide are seeking permission to 74 

sell cultured meat. In July 2023, an Israel-based company, Aleph Farms, submitted a 75 

regulatory approval application to the Swiss Federal Office for Food Safety and Veterinary 76 

Medicine (Aleph Farms, 2023). Subsequently, in January 2024, Israel's Ministry of Health 77 

(MoH) approved the sale of cultured beef from Aleph Farms, making it the third country to 78 

offer cultured meat for sale and the first approval for a bovine species (Aleph Farms, 2024). 79 

In October 2023, CellMEAT requested the Ministry of Food and Drug Safety (MFDS) of the 80 
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Republic of Korea certification for Dokdo shrimp (Lebbeus groenlandicus) cell culture as a 81 

temporary food ingredient (CellMEAT, 2023). In December 2023, Food Standards Australia 82 

New Zealand (FSANZ) announced new amendments to an application received from Vow 83 

seeking approval of cultured quail (FSANZ, 2023). Likewise, research is underway around 84 

the world to produce cultured beef, pork, lamb, turkey, foie gras, and various types of seafood 85 

(oysters, lobster, shrimp, salmon, and tuna) using cell culture technology, and the 86 

development of various materials and equipment for cultured meat production, including 87 

adipocytes, supports, microcarriers, growth factors, and bioreactors, is gaining traction. 88 

Despite expectations, the full-scale industrialization of cultured meat has not yet been 89 

achieved, and the timing of the industrialization of cultured meat remains unclear. In 90 

addition, the terminology for cultured meat has not yet been standardized. The Food and 91 

Agriculture Organization (FAO) and the World Health Organization (WHO) use the term 92 

'cell-based food,' the United States Department of Agriculture-Food Safety and Inspection 93 

Service (USDA-FSIS) uses 'cell-cultured meat,' and the U.S. Food and Drug Administration 94 

(FDA) uses 'cultured animal cell material' (e.g., cultured Gallus gallus cell material) (FAO-95 

WHO, 2023; FDA, 2023a; USDA-FSIS, 2023). 96 

Therefore, this review analyzes the main issues related to the industrialization of cultured 97 

meat, as well as research reports and media reports on the development of cultured meat to 98 

date, with the aim to present the current technology, industrialization level, and prospects of 99 

cultured meat. 100 

 101 

Cultured Meat and Food Safety 102 

Cultured meat production facilities are considered to be safer than conventional meat 103 

production facilities against foodborne pathogens, such as Salmonella, Campylobacter, 104 

Escherichia coli, yeasts, molds, and parasites because they are designed with enclosed 105 
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structures that can control the entry of external substances (Chriki and Hocquette, 2020). 106 

However, potential threats from the cultured meat production process cannot be completely 107 

ruled out. Among the anticipated food safety concerns are contamination with 108 

microorganisms and prion proteins that may occur during the cell culture phase, residues of 109 

antibiotics and cell freezing agents, the safety of cell lines (genetic manipulation and 110 

excessive passage culture), exogenous recombinant growth factors, unknown allergens, and 111 

the safety of support materials (Broucke et al., 2023; Ong et al., 2021). 112 

Furthermore, it is crucial to adhere to the guidelines of food authorities, such as the FDA, 113 

when using a scaffold for the production of cultured meat. This includes following 114 

regulations regarding the use of materials, solvents, cross-linking agents, inedible substances, 115 

toxic compounds, allergens, and other related factors (Levi et al., 2022). However, challenges 116 

remain in the commercialization of scaffolds due to the need to establish safety evaluation 117 

and approval standards for solvents or cross-linking agents used in scaffold polymerization, 118 

potential decomposition by-products of biodegradable scaffolds, physicochemical 119 

modifications of synthetic polymer scaffolds, and recombinant proteins that improve cell 120 

attachment efficiency (Bomkamp et al., 2022). 121 

In response to these concerns, several countries, such as those in Australasia and the 122 

European Union (EU), Korea, Singapore, the United Kingdom, and the United States, have 123 

taken steps toward establishing regulations and classification guidelines for cell-based foods 124 

or temporarily allowing them as food ingredients (EU, 2021; FDA, 2019; FDA, 2023b; FSA, 125 

2023; FSANZ, 2023; MFDS, 2023; Singapore Food Agency, 2023; USDA-FSIS, 2023). 126 

These regulations are overseen by national agencies in each country (Table 1). 127 

As there are many threats to the safety of cultured meat, it is essential to establish a 128 

"standard safety assessment procedure for cultured meat" that includes not only cell-cultured 129 

chicken but also other major livestock species, such as beef and pork, or cell-cultured 130 
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seafood, to ensure the safety certification and commercialization of cultured meat (Ong et al., 131 

2021). Furthermore, potential threats in cultured meat that are not yet well understood need to 132 

be further investigated, and the safe production of cultured meat should be based on the use 133 

of validated food ingredients in the product production process and appropriate regulations 134 

(Bhat et al., 2015). Safe consumption of the product is a prerequisite for cultured meat to be 135 

licensed and marketed as a new food, which requires standardization of the manufacturing 136 

process or the development of manufacturing guidelines (Mariano et al., 2023). It may also 137 

be necessary to evaluate the safety of the final product manufactured according to the 138 

standardized process or manufacturing guidelines, which can be done using methods similar 139 

to those used to evaluate new foods for authorization for human consumption (Lee et al., 140 

2023c). In general, the safe consumption of food is assessed by short-term and long-term 141 

toxicity tests in laboratory animals. 142 

Toxicity tests used to assess food for human consumption analyze the genotoxicity, 143 

reproductive toxicity, hematotoxicity, hepatotoxicity, or allergenicity in comparison to 144 

existing products. In assessing the safety of cultured meat for consumption, it may be 145 

necessary to standardize or set guidelines for the following five processes: 146 

- Cell acquisition 147 

- Cell culture preparation 148 

- Cell culture and muscle differentiation 149 

- Cultured muscle acquisition 150 

- Manufacturing meat products using cultured muscle 151 

 152 

Sustainability and Animal Welfare 153 

According to the United Nations' World Population Prospects 2022 report, the world's 154 

population is expected to reach 9.7 billion by 2050 from 8 billion in 2022, and a joint report 155 
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prepared by the Organization for Economic Co‑operation and Development (OECD) and the 156 

FAO (OECD-FAO, 2022) predicts that global meat consumption will increase by 15% by 157 

2031 to keep pace with projected population growth. As a result, more land for growing feed 158 

is needed to keep up with the trend of increasing meat consumption. 159 

The global livestock industry has drawn increased attention in recent years because of the 160 

magnitude of its environmental impact. Greenhouse gases from livestock production are 161 

estimated to be 14.5% of global greenhouse gas emissions, and agricultural water use is 162 

reported to be 29% of global water use, 98% of which is used for the production of animal 163 

feed (Gerber et al., 2013; Mekonnen and Hoekstra, 2012). The environmental costs of 164 

livestock production also include land degradation, eutrophication of lakes and rivers, lower 165 

soil fertility, reduced biodiversity, increased exposure to zoonotic diseases, and accumulation 166 

of livestock manure, which could contaminate surface and groundwater, and has been shown 167 

to contribute to the transmission of zoonotic diseases and antibiotic-resistant bacteria 168 

(Godfray et al., 2018; Morand et al., 2019; Xie et al., 2018; Young et al., 2014). 169 

Cultured meat has been reported to involve 78-96% less greenhouse gas emissions, 99% 170 

less land use, 82-96% less water, and 7-45% less energy use than conventional meat 171 

production methods, depending on what meat product it is being compared to (Reis et al., 172 

2020; Tuomisto and Teixeira de Mattos, 2011). These data suggest that cultured meat could 173 

be a key promotional tool to induce positive consumer perceptions of its environmental 174 

benefits and engagement in environmental protection. Pakseresht et al. (2022) reviewed a 175 

total of 43 articles and identified environmental and ethical concerns among eight major 176 

factors determining the consumer acceptance of cultured meat. However, data quantifying the 177 

climate and environmental impacts of cultured meat production is highly speculative, based 178 

on forward-looking projections, and actual cultured meat production systems are often hidden 179 

due to intense competition, leaving little detailed information available for analysis (Lynch 180 
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and Pierrehumbert, 2019; Tuomisto, 2019). Therefore, a systematic approach with a larger 181 

sample size of cultured meat production technologies needs to be developed to assess the 182 

environmental impact of cultured meat. 183 

As global meat consumption is on the rise, the scale of farming and the number of animals 184 

slaughtered are expected to increase, and the religious, ethical, and environmental 185 

controversies that arise from the slaughter process are likely to become more intense than 186 

before (Heidemann et al., 2020). Over the years, continued efforts have been made to 187 

improve the efficiency of the livestock industry for mass production, but equally important is 188 

prioritizing animal welfare and, accordingly, the movement to improve animal welfare, such 189 

as developing standards for animal welfare certification and labeling schemes, is reported to 190 

be increasing every year (Anomaly, 2015; Parker et al., 2017). Given that cultured meat 191 

would reduce the need for raising livestock for slaughter, it can improve animal welfare 192 

concerns (Hocquette, 2016), and studies of consumers suggest that the emotional benefits of 193 

cultured meat in terms of animal welfare contribute to positive perceptions of cultured meat 194 

(Bryant and Barnett, 2020; Lin et al., 2023; Rolland et al., 2020). Conversely, some 195 

consumers have expressed concerns that cultured meat will affect the demand for industrial 196 

animals, leading to a decrease in the number of live animals, which poses a potential threat to 197 

traditional livestock farming, ultimately leading to a disruption of the balance between 198 

animals and nature (Laestadius and Caldwell, 2015; Newton and Blaustein-Rejto, 2021). In 199 

response to these concerns, scenario analysis studies have been conducted on the possibility 200 

of cultured meat partially replacing traditional livestock farming, but cultured meat is still 201 

considered to be at a technological plateau, requiring extensive research and large capital 202 

investments to replace conventional meat production (Mateti et al., 2022; Moritz et al., 2023). 203 

 204 

Consumer Perception 205 
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Cultured meat producers are emphasizing the benefits of environmental efficiency, 206 

sustainability, eco-branding, and environmental costs to win over consumers and are actually 207 

creating added value for cultured meat products by reducing the negative environmental 208 

impact of product production and providing differentiated products that make consumers feel 209 

like they are investing in environmental protection (Reis et al., 2020). In the review by 210 

Pakseresht et al. (2022) mentioned above, 43 (17.7%) of 243 screened articles on cultured 211 

meat development and technology concerned consumer attitudes, highlighting the scarcity of 212 

studies exploring consumers responses to this technology. In a choice experiment using a 213 

randomized group of 533 consumers, it was found that taste, health, price, animal welfare, 214 

environmental impact, and social impact were the most important factors in determining the 215 

purchase of a burger product and that only 11% of consumers would choose a burger made 216 

with cultured meat if all burgers had the same price (Slade, 2018). However, when presented 217 

with a positive framing of cultured meat, more than 66-70% of consumers were willing to try 218 

or purchase cultured meat, and those who were willing to purchase had a favorable evaluation 219 

of cultured meat, citing improvements in environmental and animal welfare as benefits of 220 

cultured meat (Bryant and Barnett, 2020; Rolland et al., 2020; Wilks and Phillips, 2017; 221 

Zhang et al., 2020). Furthermore, in a system dynamics model study to estimate the demand 222 

for cultured meat, the price of the product had the greatest impact on the speed of promotion 223 

and purchase decision-making for cultured meat, with low prices showing high demand 224 

regardless of the promotion strategy, suggesting the importance of proper pricing in the 225 

launch of cultured meat products (Skinner and Blake, 2023). 226 

However, cultured meat is categorized as a novel food that is only available for purchase or 227 

tasting in limited quantities in a handful of countries, and all the consumer research published 228 

as of November 2023 is based on hypothetical product settings. Additionally, consumer 229 

response has been found to be largely consistent, and it is expected that the production of 230 
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affordable cultured meat to meet consumer satisfaction will be paramount. As alluded to 231 

above, another consumer concern regarding the development of the cultured meat industry is 232 

that it will negatively impact traditional livestock farmers (Wilks and Phillips, 2017). A 233 

survey of the acceptance of alternative meat products among farmers and non-farmers found 234 

that both farmers and non-farmers expressed concerns about the impact of cultured meat on 235 

traditional livestock farming, with farmers reporting a lower preference for alternative meat 236 

products than non-farmers (Crawshaw and Piazza, 2023). 237 

Cultured meat also provokes ethical, cultural, and religious discussions. According to 238 

Islamic beliefs, halal means exception in Arabic, and whether cultured meat is halal is a 239 

determining factor in Muslims' acceptance of cultured meat consumption (Hamdan et al., 240 

2018). Muslims in the United Kingdom were less likely to try new foods than non-Muslims 241 

due to uncertainty about halal status, but Muslims were found to be more likely to purchase 242 

cultured meat than non-Muslims (Boereboom et al., 2022). Muslims in Singapore also 243 

considered the safety and halal status of cultured meat before accepting it, and there was a 244 

link between food safety and religious acceptance (Ho et al., 2022). To enter the kosher and 245 

halal markets, cultivated meat must comply with specific standards and requirements, 246 

including those related to its origin and method of production. In September 2023, Orthodox 247 

Union Kosher, the world's largest and most influential kosher certification authority, certified 248 

poultry products from SuperMeat as kosher, marking a major advancement for the food 249 

technology's acceptance under Jewish dietary law (Tress, 2023). At the time of writing, 250 

Aleph Farms (the first to receive approval for cultured meat for a bovine species) is awaiting 251 

a decision on kosher and halal certification of its beef steaks after seeking consultation from 252 

several religious authorities. 253 

Therefore, the strategies necessary for consumer acceptance of cultured meat must 254 

consider the positions of various sectors, such as government policy, food safety, traditional 255 
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livestock farming and cultured meat, and religious/cultural/ethical perspectives. Accurate 256 

data and research are needed to compare the sustainability of the conventional meat industry 257 

and cultured meat industry, not only to highlight the positive aspects of cultured meat but also 258 

to consider the coexistence of traditional livestock farming and cultured meat (Bryant and 259 

Barnett, 2018). However, market-based information on actual cultured meat technologies is 260 

inconsistent, making it difficult to evaluate and analyze, and environmental impact analysis is 261 

based on data with higher uncertainty compared to traditional livestock farming (Rodríguez 262 

Escobar et al., 2021). In addition, because most consumers' positive perception and 263 

acceptance of cultured meat is based on trust in the government, it is necessary to establish 264 

strict standards for food safety (Ho et al., 2022). 265 

In conclusion, to assess the ideal sustainability of cultured meat, bridging the knowledge 266 

and information gap is a must, and collaboration between relevant companies and researchers 267 

is needed to integrate the entire production process and scenarios so that the environmental 268 

impact of cultured meat can be reasonably predicted. Furthermore, the government should 269 

take into account the proposed scenarios and establish regulations to enable consumers to 270 

choose safe cultured meat. 271 

 272 

Domestic and International Cultured Meat Companies 273 

Information on domestic and international cultured meat companies as of 2023 is presented 274 

in Table 2, with a total of 195 companies producing food-grade cultured meat-related 275 

products in 35 countries. The largest number of cultured meat companies were identified in 276 

the United States (53), followed by the United Kingdom (17), Israel (14), Singapore and 277 

Canada (11), South Korea (10), Germany (9), the Netherlands and Japan (6), India, France 278 

and mainland China (5), South Africa, Argentina, and Australia (4), the Czech Republic (3), 279 

Belgium, Switzerland, Spain, Austria, and Chile (2), and other countries (New Zealand, 280 
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Denmark, Russia, Malaysia, Mexico, Vietnam, Sweden, Iceland, Croatia, Turkey, and 281 

Portugal). Furthermore, of the 307 product categories mentioned as being researched by 282 

companies, the top 10 categories are Meat, Beef, Fish, Pork, Chicken, Seafood, Scaffold, 283 

Culture media, Ingredients, and Others, accounting for 79.5% of the total, indicating that 284 

current trends in company-level cultured meat research are centered on cultured meat (beef > 285 

fish > pork > chicken = seafood), supports, and media (Fig. 2). However, it is necessary to be 286 

cautious in identifying trends as there are many cases where the researchers do not clearly 287 

mention the animal species under research and refer to it as Meat or Seafood. 288 

 289 

Production of Cultured Meat 290 

Muscle satellite cells (MSCs) 291 

MSCs are muscle-derived adult stem cells that are responsible for the regenerative capacity 292 

of muscle following damage to myofibers. MSCs are characterized by rapid proliferation in a 293 

highly active state early in life, while the proportion entering a quiescent state increases with 294 

age (Mesires and Doumit, 2002). Myofibrils are composed of structures surrounded by an 295 

inner sarcolemma and an outer basement membrane, and the basal lamina, which is close to 296 

the myofibrils, has been identified as an extracellular matrix (ECM) that is in direct contact 297 

with MSCs and is involved in the maintenance of physiological functions and the 298 

development of skeletal muscle (Holmberg and Durbeej, 2013; Zhang et al., 2021). The basal 299 

lamina is composed mainly of type IV collagen, which plays a role in maintaining MSCs in a 300 

quiescent state by sequestering various growth factors and signaling molecules involved in 301 

their activation and proliferation (Kann et al., 2021; Sanes, 2003). Furthermore, quiescent 302 

MSCs located in the niche between the basal lamina and myofibrils have a fusiform 303 

morphology with little cytoplasm and organelles and have been shown to express MSC-304 

specific genes, such as paired box protein 3 (Pax3) and Pax7, and myoblast determination 305 
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protein 1 (MyoD) at the beginning of quiescence or proliferation entry (Fu et al., 2015; Kuang 306 

et al., 2006; Zhang et al., 2010). 307 

 308 

Gene expression and signaling pathways 309 

Understanding the regeneration process of MSCs is necessary for cultured meat 310 

production, and the genes and signal transduction pathways that regulate proliferation and 311 

differentiation that have been widely reported to date are shown in Fig. 3. Pax3 is considered 312 

one of the important genes responsible for MSC survival during embryogenesis. It is also 313 

purported to be involved in the formation and underlying development of early muscles by 314 

affecting the expression of MyoD and myogenic factor 5 (Myf5) to regulate the development 315 

of limb muscles (MyoD) and peri-spinal and intercostal muscles (Myf5) in early embryos 316 

(Kablar et al., 1997). Pax7 is an essential gene for MSC maintenance, and individuals with 317 

Pax7 knockout show a decreased rate of muscle regeneration in muscle injury treatments and 318 

difficulty in generating MSCs (Kuang et al., 2006). In addition, Pax7 has been found to act as 319 

an antagonist of MyoD, resulting in an increased number of Pax7-positive cells in the 320 

muscles of individuals with MyoD knockout (Kuang et al., 2006; Olguin and Olwin, 2004; 321 

Seale et al., 2000). 322 

Activation of MSCs is an early step in myogenesis. When a muscle is damaged, the 323 

disruption of the basal plate and reorganization of the environment leads to interactions 324 

between signaling molecules that were previously sequestered by the basal plate and MSCs, 325 

leading to their activation (Li et al., 2018). Muscle formation is mainly regulated by 326 

myogenic regulatory factors (MRFs) expressed in activated MSCs. Some representative 327 

MRFs are MyoD, Myf5, myogenin, and muscle-specific regulatory factor 4 (MRF4, also 328 

known as Myf6) (Kim et al., 2023a). Activated MSCs divide to produce satellite cell-derived 329 

myoblasts that continue to divide and proliferate before committing to differentiation and 330 
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fusing to form myotubes, which then mature into myofibers. When satellite cells are 331 

activated, they initiate differential expression of MRFs depending on the asymmetry of cell 332 

orientation after division (Kuang et al., 2007). Accordingly, it has been shown that if the 333 

orientation of the cells formed after somatic cell division is on the myofibrillar side, they 334 

upregulate origin regulatory factors, such as MyoD and Myf5, whereas cells on the basal 335 

plate side do not express Myf5 and retain stemness (Kuang et al., 2007; Troy et al., 2012). 336 

MyoD and Myf5 are genes that activate myogenin and MRF4 and participate in the late 337 

stages of muscle formation by influencing the fusion of myoblasts and the initiation of their 338 

final differentiation, leading to cell maturation and ultimately the formation of multinucleated 339 

myotubes (Cornelison et al., 2000; Hawke and Garry, 2001; Punch et al., 2009; Smith et al., 340 

1993). MyoD has somewhat overlapping roles with myogenin, but when myogenin is deleted, 341 

MyoD is unable to take over its role, and individuals with myogenin deletion have been 342 

shown to die at birth due to impaired skeletal muscle formation (Adhikari et al., 2021; 343 

Nabeshima et al., 1993). It was also found that in C2C12 cultures with myogenin deletion, 344 

myomaker and myomixer, two genes that regulate the fusion of skeletal muscle, were 345 

significantly downregulated, leading to the inhibition of differentiation (Adhikari et al., 346 

2021). MRF4 is an origin regulator that is predominantly expressed in fully differentiated 347 

muscle fibers and plays a role in maintaining the MSC pool. It has been reported that deletion 348 

of MRF4 can significantly reduce the number of Pax7-positive MSCs in postnatal individuals 349 

(Lazure et al., 2020). 350 

Signals that regulate the stemness of MSCs are known to include p38α/β mitogen-activated 351 

protein kinase (MAPK) or Notch. First, inhibition of p38 has been reported to induce self-352 

renewal of MSCs by blocking the MyoD expression pathway and maintaining Pax7 353 

expression along with inhibition of cell cycle entry to sustain an undifferentiated and 354 

proliferative state (Ding et al., 2018; Li et al., 2023; Troy et al., 2012). Among Notch 355 
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signaling components, Notch1 is activated upon muscle injury in vivo by binding to 356 

myofilament ligands to induce cell cycle exit, Notch2 is activated in MSCs to maintain the 357 

stemness of the MSC population by inhibiting differentiation, and Notch3 has been shown to 358 

inhibit the p38α/β MAPK pathway to suppress myocyte enhancer factor 2 (MEF2) expression 359 

associated with differentiation (Conboy and Rando, 2002; Gagan et al., 2012; Jo et al., 2022). 360 

It has been reported that activated MSCs are proliferation-induced and differentiation-361 

inhibited by the phosphoinositide 3-kinase (PI3K)/Akt pathway or the extracellular signal-362 

regulated kinase 1/2 (ERK1/2) pathway (Li et al., 2023; Mohammadabadi et al., 2021; 363 

Ohashi et al., 2015). Growth factors known to be involved in PI3K/Akt activation include 364 

fibroblast growth factor (FGF), insulin-like growth factor (IGF)-1/2, hepatocyte growth factor 365 

(HGF)/c-Met, epidermal growth factor (EGF), and interleukin-6/Janus kinase 2/signal 366 

transducer and activator of transcription 3 (IL-6/JAK2/STAT3). These factors have been 367 

shown to act as activators of mammalian target of rapamycin complex 1 (mTORC1), which 368 

can regulate the proliferation of muscle progenitor cells (Brandt et al., 2018; Holterman and 369 

Rudnicki, 2005; Lu et al., 2017; Messersmith et al., 2021; Ohashi et al., 2015; Ornitz and 370 

Itoh, 2015; Relaix et al., 2021; Rhoads et al., 2016; Wang et al., 2023a). Furthermore, it has 371 

been confirmed that EGF and FGF are involved in the ERK1/2 pathway, one of the MAPK 372 

family signaling pathways, which can activate myoblast proliferation and impair the initiation 373 

and maintenance of differentiation (Li et al., 2023; Mohammadabadi et al., 2021; Ohashi et 374 

al., 2015). Additionally, the Wnt pathway can activate both mTORC1/2, with mTORC1 375 

regulating metabolism in response to environmental factors (growth factors, amino acids, 376 

energy, and stress) and mTORC2 involved in the maintenance of MSC populations through 377 

phosphatase family pathways (Oh and Jacinto, 2011; Rion et al., 2019; Wei et al., 2019). 378 

The p38α/β MAPK pathway activates MEF2 and plays a major role in the differentiation 379 

of myoblasts. Myotube formation is inhibited when MEF2 is removed because of the 380 
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involvement of MEF2 in the proliferation and differentiation of MSCs (Chen et al., 2017; 381 

Shao et al., 2022; Wang et al., 2018). Furthermore, when the mTOR pathway is inhibited by 382 

rapamycin in MSC cultures, the expression of myogenic genes (Pax7, Myf5, and MyoG) is 383 

inhibited, indicating that the mTOR pathway is essential for the proliferation and 384 

differentiation of MSCs (Zhang et al., 2015). In addition, previous studies on MSC 385 

differentiation have shown that Wnt1 and Wnt7a signaling, along with activation of the 386 

Wnt/β-catenin pathway, increases β-catenin to induce myogenic differentiation of 387 

mesenchymal stem cells and activate the myogenic regulators Myf5 and MyoD to influence 388 

skeletal muscle development (Eng et al., 2013; Zhu et al., 2022). Signals that inhibit 389 

differentiation include ERK, myostatin, and protein kinase A (PKA), with myostatin reported 390 

to inhibit muscle formation by co-inhibiting the Akt pathway and PKA reported to induce 391 

proteolytic cleavage to produce factors that inhibit MEF2 signaling (Backs et al., 2011; 392 

Mohammadabadi et al., 2021; Trendelenburg et al., 2009). 393 

The nuclear factor of activated T-cells (NFAT) can activate signaling molecules that 394 

regulate the fusion of myoblasts and myotubes, such as MEF2 and IL-4, by the calcineurin 395 

and p38/MAPK pathways; however, PKA has been reported to prevent premature 396 

differentiation of myoblasts by rephosphorylating MEF2 and NFAT while inhibiting their 397 

differentiation (Horsley et al., 2003; Knight and Kothary, 2011; McKinsey et al., 2002; Stork 398 

and Schmitt, 2002; Wu et al., 2007; Yue et al., 2023). In addition, it has been shown that 399 

mTOR regulates the proliferation of MSCs but can also regulate myotube fusion by both 400 

kinase-dependent and -independent pathways (Park and Chen, 2005). 401 

In conclusion, an understanding of the various gene expression and signaling processes 402 

within MSCs for cultured meat production is required, and further research is needed to 403 

control and regulate cell cycle arrest and activation, proliferation, differentiation, and even 404 

fusion. 405 
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 406 

Obtaining muscle satellite cells (MSCs) 407 

MSCs can be obtained by biopsy of muscle tissue from living animals and by harvesting 408 

muscle tissue from animals immediately after slaughter. The most used processes for 409 

harvested muscle tissue are disinfection, removal of fat and connective tissue, fragmentation, 410 

digestive enzyme treatment, sequential filtration, centrifugation, pre-culture, and finally, cell 411 

recovery to obtain primary cells (Lee et al., 2021). The obtained primary cells are then 412 

subjected to immunofluorescence staining or polymerase chain reaction (PCR) to determine 413 

the proportion of MSCs from the proportion of progenitor regulatory factors in the primary 414 

cells. Typically, Pax7 and MyoD are used to determine the purity of MSCs, and by 415 

comparing their expression levels, the activation of the MSCs used in the experiment can be 416 

determined (Ding et al., 2017; Kim et al., 2023a; Pasut et al., 2013). In addition, flow 417 

cytometry methods, such as fluorescence-activated cell sorting (FACS) and magnetic-418 

activated cell sorting (MACS), can be used to obtain pure MSCs labeled with MSC-specific 419 

markers, which can then be proliferated to sufficient quantities for use in cultured meat 420 

experiments and production (Ding et al., 2018; Gromova et al., 2015; Kim et al., 2023a; 421 

Motohashi et al., 2014). 422 

 423 

Culture of muscle satellite cells (MSCs) 424 

The culture of MSCs has been performed since before the 1990s, and the methods can be 425 

broadly divided into two types: culture of isolated single strands of muscle fibers and culture 426 

of cells isolated from enzymatically treated muscle tissue (Anderson and Pilipowicz, 2002; 427 

Bischoff, 1986; Doumit and Merkel, 1992; McFarland et al., 1988). Fetal bovine serum 428 

(FBS) is a key ingredient added to the basal medium for culture, but the exact nature of FBS 429 

is still poorly understood, and commercialization of cultured meat is currently limited by the 430 
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need to replace FBS completely (Lee et al., 2022; Lee et al., 2023a). It is difficult to avoid the 431 

ethical issues associated with the production of FBS, as more than 2 million bovine fetuses 432 

derived from slaughtered mothers are used for FBS production each year (Lee et al., 2022). In 433 

addition to ethical concerns, the high price of FBS has led numerous research teams to 434 

investigate serum-free media as an alternative to FBS, and along with research to refine the 435 

active ingredients of FBS, results support that serum can be effectively replaced with proteins 436 

required for cell growth or a combination of various growth factors (Messmer et al., 2022; 437 

Schenzle et al., 2022; Skrivergaard et al., 2023; Stout et al., 2022; Stout et al., 2023). 438 

Furthermore, to meet halal standards, the use of blood in cultured meat production is also 439 

limited (Hamdan et al., 2018). However, challenges remain, such as the use of recombinant 440 

growth factors in the preparation of serum-free media or chemically composed media and the 441 

cost of expensive additives (Stout et al., 2022; Stout et al., 2023). 442 

Once the medium in which the cells are to be cultured is prepared, the method of culturing 443 

the cells must be chosen according to each cell type. Cell culture techniques for cultured meat 444 

production can be broadly divided into adherent culture and floating culture, and among the 445 

cells, MSCs and fibroblasts have been studied, as well as adipocytes (Bodiou et al., 2020; Ge 446 

et al., 2023; Humbird, 2021; Lee et al., 2021). Approximately 1014 cells and 10,000 L of 447 

culture medium are required to produce 1 t of cultured meat, assuming a cell density of 107 448 

cells/mL in the bioreactor (Guan et al., 2021). However, the larger the bioreactor size, the 449 

higher the stirring intensity needed to maintain a homogeneous environment in the vessel, 450 

which can lead to shear stresses of a magnitude that can cause cell damage (Allan et al., 451 

2019). In a modeling study of cultured meat production scenarios, it was emphasized that 452 

optimal cell selection to reduce the consumption rate of medium, completely replace or 453 

decrease the cost of growth factors, and increase the size of perfusable bioreactors are 454 

necessary for mass production environments (Risner et al., 2021). 455 
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As such, cultured meat is a tissue engineering technique under investigation based on the 456 

theory that the self-renewal ability of MSCs can be harnessed to produce dozens of times the 457 

amount of muscle tissue from a small piece of muscle. Cultured meat is one of the promising 458 

future technologies that can be used as an important source of meat for some countries 459 

because it is less sensitive to climatic conditions than conventional meat production, but there 460 

is a need to improve economic issues, such as cell acquisition, mass production and cost, and 461 

the amount of culture fluid and energy required for production compared to real meat. 462 

Additionally, research is being conducted worldwide to improve the qualitative limitations, 463 

such as flavor, texture and structure, meat color, and nutritional content, which are different 464 

from those of real meat. 465 

 466 

Recent Trends in Muscle Satellite Cell (MSC) Culture Technologies 467 

Isolation 468 

Bovine MSC isolation techniques for cultured meat production reported in 2023 are shown 469 

in Table 3. The goal of the isolation process is to obtain the raw material for cultured meat. 470 

The isolation techniques used can be broadly categorized into 1) enzymatic reactions and 471 

centrifugation to obtain MSCs and pre-culture and 2) flow cytometry to increase the purity of 472 

the MSCs. 473 

First, an enzymatic reaction is performed to obtain primary cells from muscle tissue. The 474 

cells are minced to increase the surface area, and connective tissue is removed to facilitate the 475 

reaction. Enzymes used for MSC isolation include collagenase, dispase, trypsin, and pronase 476 

in various concentrations. Centrifugation is a method that uses centrifugal force and density 477 

gradients to remove unwanted tissue and isolate desired cells. In the isolation process of 478 

MSCs, the centrifugal acceleration was 76-1,200×g, and the time was generally around 5-15 479 

min. 480 
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The cells obtained by enzymatic reaction and centrifugation are primary cells. Cell pre-481 

plating or purification techniques, such as FACS and MACS, are employed to increase the 482 

purity of MSCs. Pre-culture is a technique for isolating specific cells from a mixture of 483 

different cell types, effectively increasing the purity of MSCs by exploiting differences in the 484 

adhesion properties of primary intracellular fibroblasts and MSCs (Richler and Yaffe, 1970). 485 

The preincubation time used in the isolation of bovine MSCs reported in 2023 was 1-3 h. 486 

Fibroblasts begin to adhere 5 min after incubation and adhere to surfaces faster than MSCs, 487 

indicating that a relatively high purity of Pax7- or MyoD-positive cells can be obtained using 488 

the preincubation process (Table 3) (Kim et al., 2022; Xu et al., 2018; Yoshioka et al., 2020). 489 

In other studies, preincubation conditions have been shown to vary from 5 min to 24 h after 490 

fibroblasts begin to adhere (Table 3). One of the effective methods for rat MSCs was 491 

preincubation for up to 10 min with shaking every 5 min (Yoshioka et al., 2020). For chicken 492 

MSCs, it was up to 2 h with shaking every 8 min after 2 h of rest, indicating that the 493 

preincubation conditions may also vary depending on species-specific cell characteristics 494 

(Kim et al., 2022). 495 

Even without the pre-culture step, the purity of the MSCs can be increased by using cell 496 

sorting techniques, such as FACS and MACS. Some drawbacks of the flow cytometry-based 497 

isolation process are that it requires expensive equipment and reagents, trained professionals, 498 

and is cumbersome because of sorter-induced cellular stress (SICS), such as high-pressure 499 

jets, high voltage, and laser exposure during the isolation process, and cytotoxicity that can 500 

occur when using specific markers (Lopez and Hulspas, 2020). Although FACS has the 501 

advantage of being able to separate cells based on their size or three-dimensional features 502 

using fluorescent labeling, it has the disadvantage of expensive equipment and long analysis 503 

times. MACS uses magnetic particles to sort cells more than four times faster than FACS and 504 
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is less expensive, but it is difficult to apply to cells that are susceptible to magnetism or 505 

cannot be labeled (Gerashchenko, 2011). 506 

Both FACS and MACS label cells with clusters of differentiation (CD), which are specific 507 

markers of MSCs, and each uses a fluorescent agent for FACS and magnetic particles for 508 

MACS. Specific markers for MSCs used for cell labeling are species-specific, but some 509 

examples are integrin α7, vascular cell adhesion protein 1 (Vcam1), and differentiation 510 

clusters, such as CD29 (integrin β1), CD34 (hematopoietic stem cell marker), CD56 (neural 511 

cell adhesion molecule), and CD82 (4-transmembrane glycoprotein) (Castiglioni et al., 2014; 512 

Uezumi et al., 2016; Yoshioka et al., 2020). After sorting the MSCs, they can then be 513 

cultured to check the expression of Pax7 or MyoD to confirm the purity of the isolated 514 

MSCs, and the proliferation and differentiation capacity of the cells can be assessed. 515 

In conclusion, the cell biological characteristics necessary for the isolation of MSCs from 516 

each animal species have not yet been fully identified, and comprehensive research is limited 517 

by the lack of standardization of separation methods, which is an obstacle to industrialization. 518 

 519 

Proliferation 520 

MSCs obtained during the isolation process will multiply in number in a properly 521 

conditioned growth medium. The proliferation process is directly related to the yield of 522 

cultured meat, and various studies have been conducted to improve the proliferation 523 

efficiency. First, the basal media commonly used for MSC culture are Ham's F-10, 524 

Dulbecco's modified Eagle's medium (DMEM), and DMEM/F12, with bovine fetal serum 525 

added to the media at a concentration of 10-20% (v/v) in most cases (Table 4). Basal media 526 

is a solution of basic nutritional components (e.g., amino acids, glucose, lipids, nucleic acid 527 

bases, inorganic salts, vitamins, buffers, pH indicators) formulated in a certain proportion 528 

according to the culture conditions of the desired cells. In the culture of MSCs, the basal 529 
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medium and serum concentrations are known to be closely related to the cell proliferation 530 

rate and myotube formation (McFarland et al., 1988). In a broiler MSC culture experiment 531 

based on culture medium composition, DMEM was found to be more effective than McCoy's 532 

5A medium in terms of proliferation rate and MRF expression (Flees et al., 2022). In 533 

addition, the common view that a low glucose content is effective for chicken and bovine 534 

MSC proliferation when using DMEM as basal medium was confirmed (Flees et al., 2022; 535 

Zygmunt et al., 2023). 536 

As adherent cells, MSCs require an ECM-based coating for proliferation and 537 

differentiation. Representative ECMs used for bovine MSC proliferation have been shown to 538 

be gelatin, collagen I, laminin, and Matrigel (Table 4). Integrin α7β1, which is present in the 539 

cell membrane of MSCs, binds to collagen and laminin, and laminin induces the proliferation 540 

and migration of satellite cells (Ö calan et al., 1988; Sanes, 2003). However, C2C12 cells 541 

cultured on plates coated with ECM proteins had a better proliferation rate compared to 542 

highly elastic coatings, such as collagen I/laminin/fibronectin hydrogels, which were not 543 

conducive to inducing proliferation of MSCs (Palade et al., 2019). 544 

Growth factors are cell signaling proteins. For MSCs, basic fibroblast growth factor 545 

(bFGF), vascular endothelial growth factor (VEGF), and HGF are commonly used in culture 546 

(Table 4). Typically, bFGF is added to the proliferation medium at a concentration of 5-10 547 

ng/mL. Accordingly, in bovine MSC cultures, a bFGF content of 10 ng/mL in the medium 548 

led to a faster proliferation rate than when the bFGF content was 5 ng/mL (Zygmunt et al., 549 

2023). In addition, the expression of various endothelial cell-derived growth factors (IGF-1, 550 

HGF, bFGF, and VEGF) can stimulate MSCs to proliferate and regenerate muscle 551 

(Yamamoto et al., 2020; Zygmunt et al., 2023). 552 

However, research into cultured meat using FBS remains prevalent. Even when serum-free 553 

media is used, various culture ingredients, such as basal media, coating agents, and 554 
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recombinant proteins (growth factors, hormones), are employed. To address this issue, the 555 

development of natural product-derived media that meet food regulatory requirements is 556 

underway. However, industrialization is inevitably delayed because companies and research 557 

teams cannot disclose it due to competitiveness. 558 

 559 

Differentiation 560 

MSC differentiation is commonly achieved by removing the proliferation medium and 561 

replacing it with the differentiation medium once the cells have reached a sufficient cell 562 

density in the proliferation medium (Ding et al., 2017). The differentiation process typically 563 

uses media containing 2% FBS or horse serum (HS) to induce serum starvation (Table 5). 564 

Serum starvation is often chosen to induce differentiation of MSCs (Pirkmajer and Chibalin, 565 

2011). Induction of differentiation in studies published in 2023 was mainly performed at cell 566 

densities above 70% confluence, and the duration of differentiation varied by 1-10 d 567 

depending on the experimental conditions, but only one study was identified that varied the 568 

serum concentration within the culture period (Table 5). 569 

When a low-serum environment is used to induce differentiation of MSCs, extensive 570 

changes occur at the transcript level, with upregulation of progenitor transcription factors and 571 

markers associated with differentiation identified during the differentiation process (Dmitriev 572 

et al., 2013; Messmer et al., 2022). Transient and mild levels of serum starvation (15% 573 

serum, v/v) induce autophagy, which can promote cell metabolism and differentiation, but 574 

5% serum starvation induces excessive autophagy, leading to cell death (Wang et al., 2023b). 575 

A hypoxic environment (1-10% O2) in MSC culture can create conditions that mimic 576 

oxygen saturation in mature skeletal muscle. Moreover, a hypoxic environment (2% O2) 577 

upregulates the myogenic regulators Pax7, Myf5, and MyoD, and intermittent hypoxic 578 

exposure increases the expression of VEGF released from MSCs (Koning et al., 2011; 579 
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Nagahisa and Miyata, 2018; Urbani et al., 2012). The hypoxia-induced factor-1 (HIF-1) 580 

signaling pathway, which is expressed in response to hypoxic conditions, is thought to be 581 

involved in the regulation of myoblast proliferation and differentiation. Under a hypoxic 582 

environment (1% O2), broiler MSC cultures exhibited a decrease in the level of MyoD-583 

positive cells along with changes in the transcriptome profile (Jung et al., 2024; Li et al., 584 

2007). 585 

However, serum starvation tends to be the preferred method for induction of differentiation 586 

compared to hypoxic environments, and the signaling pathways involved and their effects on 587 

differentiation remain poorly understood. Furthermore, the regulations regarding cultured 588 

meat are extensive and do not clearly differentiate between cultured meat with or without 589 

differentiated tissue, leading to confusion within the industry. 590 

 591 

Conclusion 592 

This study analyzed the current technology, industrialization level, and future prospects of 593 

cultured meat by analyzing research reports and media reports related to the industrialization 594 

of cultured meat. At present, major companies are not entering mass production except for 595 

prototype development, and the reason they do not disclose related technologies is that they 596 

do not have enough technological capabilities. Therefore, when investing in cultured meat 597 

development companies, it is necessary to accurately assess the level of technology that the 598 

company has or has acquired. Much of the focus is currently on cell acquisition technology, 599 

cell line acquisition technology, and cell culture and muscle differentiation technology. While 600 

the level of technology related to the industrialization of cultured meat has reached the stage 601 

where prototypes can be produced, it is believed that it has not yet reached the stage where 602 

production costs can be dramatically reduced and the product sold to the market. 603 

Nevertheless, given the steady increase in the number and depth of studies related to the 604 
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industrialization of cultured meat and the increasing number of companies involved, it is 605 

expected that the industrialization of cultured meat could begin in the not-too-distant future. 606 
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Figure legends 1094 

Fig. 1. Global cultured meat and traditional meat market by year from 2022 to 2030. 1095 

Reproduced from GlobeNewswire and Statista report (Edition 2023). 1096 

 1097 

Fig. 2. Major product trends for cultured meat companies. 1098 

 1099 

Fig. 3. Gene regulation and signaling pathways in myogenesis.1100 
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Table 1. Countries with established regulations and classification guidelines for cell-based foods. 1101 

Regions/countries Departments Policies/regulations References 

Australasia Food Standards Australia 

New Zealand (FSANZ) 

Cultured quail as a novel food (food standards code, 

Applications No. A1269) 

FSANZ, 2023 

European Union (EU) European Parliament (EP) European Parliament and of the council (No. 2015/2283) EU, 2021 

Korea Ministry of Food and Drug 

Safety (MFDS) 

Temporary standards and recognition standards of 

specification for food, etc. (No. 2023-507) 

MFDS, 2023 

Singapore Singapore Food Agency 

(SFA) 

Requirements for the safety assessment of novel foods and 

novel food ingredients (revised on July 20, 2023) 

SFA, 2023 

United Kingdom Food Standards Agency 

(FSA) 

Cell-cultivated products (revised on November 16, 2023) FSA, 2023 

United States United States Department of 

Agriculture-Food Safety and 

Inspection Service (USDA-

FSIS) 

FSIS responsibilities in establishments producing cell-cultured 

meat and poultry food products (No. 7800.1) 

USDA-FSIS, 2023 
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Food and Drug 

Administration (FDA) 

Federal Food, Drug, and Cosmetic Act (U.S. Code: Title 21) 

Public Health Service Act (U.S. Code: Title 42) 

Fair Packaging and Labeling Act (U.S. Code, Title 15) 

FDA, 2019; FDA, 

2023b 
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Table 2. Cultured meat-related companies. 1103 

Countries Companies Products 

Argentina Alt Meat Beef 

 BIFE Meat 

 Cell Farm Food Tech Beef 

 Granja Tres Arroyos Chicken 

Australia Heuros Beef, Growth factors 

 Magic Valley Lamb 

 Smart MCs Ingredients, Meat, Other 

 Vow Food Meat, Other 

Austria enGenes Biotech GmbH Growth factors 

 QUBICON AG Bioprocessing, Equipment, 

Other 

Belgium Fishway BV Fish 

 Peace of Meat Meat 

Brazil Ambi Real Food Beef 

 BRF Meat 

 Cellva Ingredients Fat 

 Embrapa Swine and Poultry Chicken 

 JBS Beef 

 Sustineri Piscis Fish 

Canada Another Fish Fish 

 Appleton Meats Beef 

 Cell Ag Tech Fish 
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 Evolved Meats Meat 

 Future Fields Culture media 

 Genuine Taste Ingredients, Meat 

 Meatleo Beef, Ingredients 

 Myo Palate Pork 

 Seafuture Seafood 

 The Better Butchers Meat 

 WhiteBoard Foods Scaffolds 

Chile LiveMatrix Biotech Beef, Fish, Tuna 

 Luyef Biotechnologies, Inc. Meat 

Croatia ANJY MEAT Meat 

Czech Republic Bene Meat Technologies Beef, Chicken, Pork 

 Enantis Growth factors, Meat, 

Ingredients 

Czech Republic Mewery Beef, Culture media, Pork 

Denmark Meat Tomorrow Beef, Pork 

France BioMimesys Scaffolds 

 Fudzs Meat 

 GOURMEY - Suprême SAS Duck 

 HCS Pharma Scaffolds 

 Vital Meat Chicken 

Germany Alife Foods Beef 

 Bluu Seafood Fish 
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 CellTec Systems GmbH Bioprocessing, Equipment, 

Meat, Seafood 

 Cultimate Foods Fat 

 denovoMATRIX Beef, Culture media, Chicken, 

Duck, Pork 

 Innocent Meat Meat 

 mk2 Biotechnologies Ingredients, Meat, Seafood 

 MyriaMeat Beef, Pork 

 Ospin Modular Bioprocessing Bioprocessing 

Iceland ORF Genetics Growth factors 

India Clear Meat Culture media, Meat 

 Klever Meat Ingredients, Seafood 

 MealTech Pvt. Ltd. Chicken, Ingredients 

 MyoWorks Ingredients, Meat, Scaffolds 

 Neat Meatt Biotech Pvt. Ltd. Chicken, Fish 

Israel Aleph Farms Beef 

 Believer Meats Meat 

 Believer Meats Meat 

 BioBetter™ Growth factors 

 E-FISHient Protein Fish 

 Ever After Foods Meat 

 Forsea Foods Fish 

 Meatafora Meat, Scaffolds 

 Meatosis Fish 
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 Mermade Seafoods Seafood 

 Profuse Technology Growth factors, Meat 

 Sea2Cell Fish 

 Steakholder Foods 3D printing, Beef 

 SuperMeat Chicken 

 Wanda Fish Technology Fish 

Japan DiverseFarm Meat, Seafood 

 IntegriCulture Meat 

 Nissin Food Products Co., Ltd. Beef 

 Organoid Farm, Inc. Beef 

 Shojinmeat Project Meat 

 Toppan Printing 3D printing 

Mainland China Avant Meats Seafood 

 CellX Meat 

 Jimi BioTech Beef 

 Joes Future Food Beef, Pork 

 NewDay Farm Bioprocessing, Equipment, 

Pork 

Malaysia Cell AgriTech Sdn. Bhd Meat, Seafood 

Mexico Micro Meat Equipment 

Netherlands Cultured Blood Culture media 

 FoldChanges Computational biology 

 Magic Caviar Seafood 

 Meatable Meat 
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 Mosa Meat Beef 

 Upstream Foods Seafood 

New Zealand Opo Bio Ingredients, Meat 

Portugal Cell4Food Seafood 

Republic of Korea Baobab Healthcare Seafood 

 CellMEAT Seafood, Shrimp 

 CellQua Seafood 

 DaNAgreen 3D culture, Scaffolds 

 KCell Biosciences Ingredients, Meat 

 SeaWith Meat, Scaffolds 

 Simple Planet Meat, Seafood 

 Space F Meat 

 TissenBioFarm 3D printing, Meat 

 Xcell Therapeutics Culture media 

Russia ArtMeat Fish, Other 

Singapore Ambrosia Sciences Meat, Seafood 

 Ants Innovate Pork 

 Esco Aster Pte. Ltd. Bioreactors 

 Fisheroo Fish 

 Gaia Foods Beef 

 ImpacFat Fish 

 Meatiply Chicken, Duck, Pork 

 Shiok Meats Crab, Fish, Shellfish 

 SingCell Meat 
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 Umami Meats Seafood 

 Wasna Culture media 

South Africa Mogale Meat Chicken, Meat 

 Mogale Meats Beef, Antelope, Other 

 Newform Foods Beef, Chicken 

 Sea-Stematic Fish 

Spain BioTech Foods Beef 

 Cubiq Foods Meat 

Sweden Re:meat Beef 

Switzerland Cultured Food Innovation Hub Meat 

 Mirai Foods AG Beef 

Thailand Charoen Pokphand Foods Meat 

Turkey Biftek Beef, Culture media 

United Kingdom 3D Bio-Tissues Ltd. Pork, Culture media, Tissue 

templating 

 Alt Atlas Ltd. Beef, Chicken, Pork, Other 

 Animal Alternative Technologies Meat 

 Biomimetic Solutions Beef 

 Bright Biotech Meat, Growth factors, 

Ingredients 

 CellRev Bioreactors 

 Cellular Agriculture Ltd. Meat 

 Extracellular Meat, Seafood 

 Higher Steaks Pork 
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 Hoxton Farms Fat, Other 

 Ivy Farm Technologies Pork 

 LiquiBio Meat, Seafood 

 Moolec Meat 

 Multus Media Culture media 

 Quest Meat Beef 

 Roslin Technologies Meat 

 Uncommon Beef 

United States Aqua Cultured Foods Seafood 

 Ark Biotech Bioreactors 

 Artemys Foods Beef 

 Atlantic Fish Co. Seafood 

 Balletic Foods Meat 

 BioBQ Beef, Scaffolds 

 BioCraft Meat, Other 

 Blue Ridge Bantam Avian, Chicken 

 Bluefin Foods, Inc. Fish 

 BlueNalu Fish 

 CellCrine, Inc. Beef, Chicken, Pork 

 Clever Carnivore Beef, Chicken, Pork 

 Cultured Abundance Meat 

 Cultured Decadence Fish, Lobster, Shellfish 

 CytoNest, Inc. Scaffolds 

 Defined Bioscience Culture media 
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 Eat Just - GOOD Meat Meat, Chicken 

 Ecovative Design Scaffolds 

 Edge Foods Beef, Chicken, Pork 

 Excell Meat, Scaffolds 

 Finless Foods Fish, Tuna 

 Fork & Good Meat 

 GenScript Beef, Chicken, Fish, Pork, 

Tuna 

 iLabs Bioprocessing, Equipment 

 Jellatech Scaffolds 

 Kiran Meats Beef 

 Lab Farm Foods Chicken, Pork 

 Marinas Bio Fish 

 Matrix F.T. Meat, Microcarriers 

 MilliporeSigma Bioprocessing, Equipment, 

Ingredients, Other 

 Mission Barns Pork 

 Molecular Devices Bioprocessing, Equipment, 

Other 

 Myodenovo Meat 

 New Age Meats Pork 

 NouBio Culture media, Microcarriers 

 Novel Farms Pork, Scaffolds 

 OceanTastes, Inc. Shellfish, Other 
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 Ohayo Valley Beef 

 Omeat Beef, Chicken, Fish, Pork 

 Optimized Foods Mushrooms 

 Orbillion Bio 3D printing, Beef, Lamb 

 Pearlita Foods Oysters 

 Provenance Bio 3D printing, Scaffolds 

 Reel Foods Seafood 

 SciFi Foods Beef 

 Sound Eats Fish 

 SunP Biotech 3D printing, Scaffolds 

 Triplebar Bio Cell lines 

 TruSpin Nanomaterials Scaffolds, Other 

 Umami Bioworks Fish, Shellfish, Tuna, Other 

 Upside Foods Beef, Chicken, Duck 

 Vivax Bio 3D printing 

 Wildtype Fish, Salmon 

Vietnam Minh Phu Seafood Shrimp 

Abbreviations: 3D, three-dimensional.1104 
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Table 3. Isolation methods for bovine muscle satellite cells published in 2023. 1105 

Muscles Enzymes Centrifugation conditions Pre-plating References 

Longissimus Pronase 500×g, 10 min N/A Kim and Kim, 2023 

Biceps femoris Pronase 300×g, 5 min; 1,200×g, 15 min N/A Kim et al., 2023a 

Longissimus Pronase 500×g, 10 min N/A Kim et al., 2023b 

Longissimus thoracis Collagenase II, Dispase II N/A 3 h + 3 h Lee et al., 2023b 

Semitendinosus Collagenase N/A N/A Messmer et al., 2023 

Top round Collagenase mix 800×g, 5 min N/A Park et al., 2023 

Semimembranosus Collagenase, Trypsin 100×g, 5 s; 1,000×g, 10 min N/A Skrivergaard et al., 2023 

Semitendinosus Collagenase II N/A N/A Stout et al., 2023 

Longissimus thoracis Collagenase, Trypsin N/A 1 h Tzimorotas et al., 2023 

Longissimus lumbrorum Collagenase D 76×g, 5 min 1 h Uyen et al., 2023 

Hind limb Collagenase II, Trypsin N/A N/A Zhang et al., 2023 

Longissimus dorsi Collagenase II 500×g, 10 min 1 h Zygmunt et al., 2023 

Abbreviation: N/A: not applicable.1106 
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Table 4. Proliferation methods for bovine muscle satellite cells published in 2023. 1107 

Basal media Sera Growth factors Coatings References 

DMEM 10% FBS N/A N/A Kim and Kim, 2023 

DMEM/F12 10% FBS N/A N/A Kim et al., 2023a 

DMEM 10% FBS N/A N/A Kim et al., 2023b 

Ham's F-10 20% FBS bFGF Collagen I Kim et al., 2023c 

Ham's F-10 20% FBS bFGF Collagen, Matrigel Oh et al., 2023 

Ham's F-10 20% FBS N/A Bovine collagen I, 

Matrigel 

Park et al., 2023 

DMEM/F12, 

Ham's F-10 

Serum-free media, 20% 

FBS 

bFGF, HGF, Hydrocortisone, 

IGF-1, IL-6, ITSE, PDGF, 

VEGF 

Fibronectin, Laminin Messmer et al., 2023 

DMEM, 

DMEM/F12 

10% FBS, Serum-free 

media 

bFGF, Fetuin, ITS, HGF, 

PDGF, Insulin 

Matrigel Skrivergaard et al., 2023 

DMEM 20% FBS bFGF Laminin, Vitronectin Stout et al., 2023 
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LG-DMEM 10% FBS, 2% FBS, 

Ultroser G 

N/A Entactin-Collagen-

Laminin 

Tzimorotas et al., 2023 

DMEM 15% FBS N/A Rat tail collagen I Uyen et al., 2023 

DMEM 20% FBS bFGF N/A Zhang et al., 2023 

LG-DMEM, HG-

DMEM 

20% FBS bFGF Gelatin Zygmunt et al., 2023 

Abbreviations: DMEM: Dulbecco's modified Eagle's medium; DMEM/F12: Dulbecco's modified Eagle's medium and Ham's F-12 Nutrient 1108 

Mixture; LG-DMEM: low glucose-DMEM; HG-DMEM: high glucose-DMEM; FBS: fetal bovine serum; bFGF: basic fibroblast growth 1109 

factor; HGF: hepatocyte growth factor; IGF-1: insulin-like growth factor-1; IL-6: interleukin-6; ITS: insulin-transferrin-selenium; ITSE: 1110 

insulin-transferrin-selenium-ethanolamine; PDGF: platelet-derived growth factor; VEGF vascular endothelial growth factor. N/A: not 1111 

applicable.1112 
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Table 5. Differentiation methods for bovine muscle satellite cells published in 2023. 1113 

Basal media Sera Time (d) References 

SILAC DMEM Flex Media 2% HS 4 Kim and Kim, 2023 

DMEM/F12 2% HS 1-4 Kim et al., 2023a 

DMEM 2% FBS 1-4 Kim et al., 2023c 

DMEM 2% HS 6 Lee et al., 2023b 

DMEM/F12 Serum-free 3 Messmer et al., 2023 

DMEM 2% FBS 4-5 Oh et al., 2023 

DMEM 2% FBS 1-6 Park et al., 2023 

Neurobasal N/A 2 Stout et al., 2023 

DMEM 2% HS 3 Uyen et al., 2023 

DMEM 2% HS, 10% HS 3-7 Yun et al., 2023 

DMEM 2% HS 1-5 Zhang et al., 2023 

LG-DMEM, HG-DMEM 20% HS 3-10 Zygmunt et al., 2023 

Abbreviations: DMEM: Dulbecco's modified Eagle's medium; DMEM/F12: DMEM and 1114 

Ham's F-12 Nutrient Mixture; LG-DMEM: low glucose-DMEM; HG-DMEM: high glucose-1115 

DMEM; HS: horse serum; FBS: fetal bovine serum. N/A: not applicable.1116 
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