| 1  | Potential prebiotic properties of whey protein and glycomacropeptide in gut microbiome                                                                     |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                                                            |
| 3  | Bryna Rackerby <sup>1</sup> , Hoang Ngoc M. Le <sup>1</sup> , Avery Haymowicz <sup>1</sup> , David C. Dallas <sup>1,2</sup> , Si Hong Park <sup>1,3*</sup> |
| 4  |                                                                                                                                                            |
| 5  | <sup>1</sup> Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331,                                                      |
| 6  | USA                                                                                                                                                        |
| 7  | <sup>2</sup> School of Biological and Population Health Sciences, Nutrition, Oregon State University,                                                      |
| 8  | Corvallis, OR 97331, USA                                                                                                                                   |
| 9  | <sup>3</sup> Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do,                                                        |
| 10 | Republic of Korea                                                                                                                                          |
| 11 |                                                                                                                                                            |
| 12 | Running title: Effect of whey protein and glycomacropeptide in gut microbiome                                                                              |
| 13 |                                                                                                                                                            |
| 14 | ORCID number                                                                                                                                               |
| 15 | Bryna Rackerby: 0000-0003-0582-5928                                                                                                                        |
| 16 | Hoang Ngoc M. Le: 0009-0005-5890-5245                                                                                                                      |
| 17 | Avery Haymowicz: 0009-0003-5131-7788                                                                                                                       |
| 18 | David C. Dallas: 0000-0002-9696-0967                                                                                                                       |
| 19 | Si Hong Park: 0000-0001-6587-7020                                                                                                                          |
| 20 | *Corresponding author                                                                                                                                      |
| 21 | Si Hong Park, Ph.D., Associate Professor, Department of Food Science and Technology, Oregon                                                                |
| 22 | State University, 3051 SW Campus Way, Corvallis, OR 97331; Tel: 541-737-1684; Fax: 541-                                                                    |
| 23 | 737-1877; E-mail: sihong.park@oregonstate.edu                                                                                                              |

## 24 Abstract

Proteins in whey have prebiotic and antimicrobial properties. Whey protein comprises numerous 25 bioactive proteins and peptides, including glycomacropeptide (GMP), a hydrophilic casein 26 peptide that separates with the whey fraction during cheese making. Glycomacropeptide has 27 traditionally been used as a protein source for individuals with phenylketonuria and also has 28 prebiotic (supporting the growth of Bifidobacterium and lactic acid bacteria) and antimicrobial 29 activities. Glycomacropeptide supplementation may help positively modulate the gut 30 microbiome, help treat dysbiosis-related gastrointestinal disorders and improve overall health in 31 32 consumers.

33

34 Keywords: whey protein, glycomacropeptide (GMP), prebiotic effect, gut microbiome.

### 35 Introduction

<sup>36</sup> Whey is a byproduct of the cheese manufacturing process. It is the liquid portion that is <sup>37</sup> drained away after curd formation. Bovine milk is the most common source of whey due to its <sup>38</sup> predominance in the dairy industry. The extracted product referred to as whey protein is a <sup>39</sup> mixture of numerous proteins including  $\beta$ -lactoglobulin (~65%),  $\alpha$ -lactalbumin (~25%), bovine <sup>40</sup> serum albumin (~8%), lactoferrin (~1%), lactoperoxidase (0.25-0.5%) and immunoglobulins <sup>41</sup> (<1%) (Boscaini et al., 2020).

Bovine whey protein is used in a large array of products, including supplements to 42 promote muscle synthesis and infant formula. Whey protein helps increase muscle synthesis 43 which can help with muscle and exercise recovery in athletes (Daniel et al., 2017; Moore, 2019), 44 and decrease the risk of age-related sarcopenia (Liao et al., 2019; Yang et al., 2012) (Figure 1). 45 Bovine whey protein is added to most infant formulas to mimic human milk. Beyond serving as 46 a source of amino acids, the proteins in whey can exert additional functions, including prebiotic, 47 antimicrobial (Kareb and Aïder, 2019), and enhancing gastrointestinal health (Li et al., 2018). 48 For example, many whey proteins, including lactoferrin, lactoperoxidase and immunoglobulins 49 have direct or indirect antimicrobial activity (Bielecka et al., 2022). Perhaps due to these 50 bioactivities, whey protein supplementation can alter the gut microbiome (at least in animal 51 models) (Boscaini et al., 2020; Nilaweera et al., 2017) and thereby impact metabolism (Boscaini 52 et al., 2020) (Figure 1). 53

Glycomacropeptide (GMP) is a hydrophilic peptide cleaved from κ-casein during
cheesemaking and makes up about 20% by mass of commercial whey protein (Neelima et al.,
2013). About half of the GMP in whey is the unglycosylated form known as
caseinomacropeptide, whereas the other 50% consists of 14 different glycovariants (Robitaille,

2013). Glycomacropeptide has several functions, including prebiotic (it promotes the growth of *Bifidobacterium* and lactic acid bacteria (Córdova-Dávalos et al., 2019) (Figure 1), antimicrobial
and immunomodulatory (Laura et al., 2019).

61

#### 62

# Impact of whey on the gut microbiome

Whey protein supplementation can impact the gut microbiome. In an infant fecal culture
system with 3 feeding conditions; 1) bovine milk, 2) formula with α-lactalbumin, and 3) formula
with GMP, both formulas supplemented with α-lactalbumin and GMP both supported *Bifidobacterium* as the predominant organism and decreased *Bacteroides*, *Clostridium* and *Escherichia coli* (Brück et al., 2003). In the same study, all groups reduced enteropathogenic *E. coli* and *Salmonella* Typhimurium after initial inoculation of these pathogens into the fecal
culture system (Brück et al., 2003).

Whey protein feeding has also been shown to alter the microbiome in animal models. 70 Nilaweera et al. found that whey protein isolate (WPI) supplementation reduced the 71 72 susceptibility of mice to sucrose-induced microbial changes to a larger degree than those supplemented with casein (Nilaweera et al., 2017). The study indicated that whey protein 73 reduced the abundance of Firmicutes and Actinobacteria, which is associated with enhanced 74 metabolic health and reduced inflammation, and increased Bacteroidetes, a phylum that can 75 break down complex carbohydrates and produce beneficial short-chain fatty acids (SCFAs). In 76 77 the same study, whey protein feeding increased the families Unclassified\_*Sutterellaceae*, Sutterellaceae, Anaeroplasmanaceae, Unclassified\_Porphyromonadaceae and 78 Porphyromonadaceae, and decreased Streptococcaceae and Enterobacteriaceae, resulting in the 79 80 increase of potential healthy gut microbiomes (Nilaweera et al., 2017). Similarly, mice with

autoimmune prostatitis fed glycated whey had decreased Firmicutes and an increased

82 *Porphyromondaceae*, among other families and genera (Chen et al., 2020). In mice fed a high-fat

83 diet (HFD), whey protein increased Lactobacillaceae and Clostridiaceae at the family level and

84 Desulfovibrio and Mucisprillum at the genus level (McAllan et al., 2014). Boscaini et al. found

that 5-week-old mice fed whey (compared with casein) on a HFD had increased

86 Streptococcaceae and Lactococcus at the family and genus levels, increased Lactococcus lactis

87 and Bacteroides vulgatus at the species level and increased abundance of Lactobacillus murinis

88 (Boscaini et al., 2020). Sprong et al. found that casein supplemented with either whey protein or

89 threonine and cysteine both increased Lactobacillus and Bifidobacteria, decreased markers of

90 inflammation and increased mucin secretion in rats with dextran sulfate sodium-induced colitis

91 (Sprong et al., 2010). Chen et al. found that non-obese diabetic mice fed whey protein-derived

92 early glycation products for 6 months had increased *Allobaculum*, *Anaerostipes*, *Bacteroides*,

93 *Parabacteroides* and *Prevotella* and decreased *Adlercreutzia* and *Roseburia* at the genus level

94 (Chen et al., 2020). In this study, some of the changes in the microbiome correlated with immune

markers measured, which suggested that the microbial changes may have contributed to the

96 observed anti-inflammatory effects (Chen et al., 2020). Specifically, total splenocytes were

97 negatively correlated with *Bacteroides* (*uniformis* and *acidifaciens*), *Parabacteroides*,

98 *Prevotella*, and *Anaerostipes*; splenic M1 macrophages were negatively correlated with

99 Bacteroides (uniformis and acidifaciens) and Parabacteroides; and splenic CD4+ T-cells were

negatively correlated with *Bacteroides acidifaciens* (Chen et al., 2020).

101 Nielsen et al. found that piglets given WPC with high  $\alpha$ -lactalbumin tended to have 102 higher alpha-diversity and a higher abundance of *Clostridiaceae*, *Enterobacteriaceae*,

103 Streptococcus and Streptomyces than those supplemented with WPC with low  $\alpha$ -lactalbumin

(Nielsen et al., 2020). However, the microbial composition resulting from dietary interventions
did not show evidence of correlation with physiological changes or functional, or performance
aspects of preterm pigs (Nielsen et al., 2020).

Though dietary whey protein modulates the gut microbiome in fecal cultures, murine 107 108 models and piglet models, the few human studies have not been able to replicate these results. 109 This lack of findings in humans may be due to the large degree of variation in human gut microbiomes, behaviors, environmental factors and genetics. Two studies on primarily 110 overweight or obese adult humans found that whey protein did not significantly alter the gut 111 microbiome (Cronin et al., 2018; Reimer et al., 2017). However, one study on endurance athletes 112 fed between whey isolate and beef hydrolysate for 10 weeks indicated an altered gut microbiome 113 with increased *Bacteroidetes* and decreased health-related taxa, suggesting a potential negative 114 impact of long-term protein supplementation that requires further research (Moreno-Pérez et al., 115 2018). A summary of recent studies related to whey protein diets is listed in Table 1. 116

117

# 118 Impact of GMP on the gut microbiome

Glycomacropeptide can promote the growth of beneficial organisms and inhibit the adhesion of pathogens to intestinal cells (Córdova-Dávalos et al., 2019). Córdova-Dávalos et al. provided an extensive review of GMP's ability to prevent the adhesion of pathogens (e.g., *S*. Typhimurium and enterohemorrhagic *E. coli* 0157) and toxins (e.g., cholera toxin, *E. coli* enterotoxin) to intestinal cells (Córdova-Dávalos et al., 2019). Glycomacropeptide also demonstrates an enhancement in the growth of some specific probiotic organisms. For example, bovine and caprine GMP both improved the growth of *Lactobacillus rhamnosus* RW-9595-M

and *Bifidobacterium thermophilum* RBL67 in a dose-dependent manner and to a greater degree
than bovine β-lactoglobulin (Robitaille, 2012).

The mechanism by which GMP exhibits prebiotic activity is unclear. Though studies on 128 129 the antimicrobial impact of GMP tend to implicate the glycosylation structures in its bioactivity 130 (Feeney et al., 2017), studies examining growth-promoting ability are less concordant. Some 131 studies suggest the prebiotic effect stems from the glycan moieties of GMP. For example, 132 periodate oxidation to remove the glycans from GMP significantly reduced its bifidogenic effect, 133 which was interpreted as evidence that its prebiotic activity is linked to glycosylation (O'Riordan 134 et al., 2018). This study also found that GMP induces the expression of some glycogenes, but repressed others, perhaps representing a glycan-structure specific response (O'Riordan et al., 135 2018). 136

Further, sialyl glycopeptide concentrate (SGC) created through digestion and 137 ultrafiltration of GMP-containing whey protein concentrate (G-WPC) outperformed G-WPC as 138 the sole carbon source for the growth of certain Bifidobacteria (Fukudome et al., 2021). 139 Although the glycan component of GMP is often hypothesized to be the basis for prebiotic 140 activity, the peptide portion may be involved as well, as periodate-treated GMP did possess a 141 small growth-promoting effect (O'Riordan et al., 2018). Similarly, Tian et al. found that GMP's 142 Bifidobacteria growth-promoting effect did not directly depend on sialic acid content and may be 143 144 related to its high glutamine, leucine, and alanine contents, despite the poor proteolytic activity of most Bifidobacteria (Tian et al., 2014). Glycomacropeptide hydrolysate produced with papain 145 (GHP) had a stronger growth-promoting effect on *Bifidobacterium animalis subsp. lactis* (Bb12) 146 than intact GMP or GMP hydrolyzed by trypsin (GHT), although GHP had the lowest sialic acid 147 content of the three (Tian et al., 2014). Robitaille found that glycosylated, unglycosylated, and 148

| 149 | mixed GMP treatments equally promoted the growth of lactic acid bacteria, indicating that the                  |
|-----|----------------------------------------------------------------------------------------------------------------|
| 150 | glycosylation state is not necessarily a factor in prebiotic activity, even though neither                     |
| 151 | Bifidobacteria strain studied was proteolytic (Robitaille, 2012). Robitaille suggested that GMP                |
| 152 | allows improved growth of Bifidobacteria and Lactobacillus in acidic media during fermentation                 |
| 153 | by triggering metabolic adaptations (Robitaille, 2012). Regardless of the mechanism, GMP is                    |
| 154 | effective in encouraging the growth of probiotic organisms in vitro and could be used in the                   |
| 155 | production of probiotics or as a functional ingredient to promote the growth of probiotic cultures             |
| 156 | in fermented dairy products and influence beneficial organisms in the gut (O'Riordan et al.,                   |
| 157 | 2018; Robitaille, 2013; Tian et al., 2014).                                                                    |
| 158 | Like whey protein, GMP can impact the gut microbiome. In an <i>in vitro</i> human fecal                        |
| 159 | culture system, GMP addition supported stable Bifidobacterium presence and decreased                           |
| 160 | Bacteroides, <i>Clostridium</i> and <i>E. coli</i> (Brück et al., 2003). Chen et al. demonstrated that feeding |
| 161 | GMP to mice promoted the growth of Lactobacillus and Bifidobacteria while decreasing                           |
| 162 | Enterobacteriaceae and coliforms (Chen et al., 2012).                                                          |
| 163 | In piglets, compare with control diet, diet supplemented with 1.5% casein GMP resulted                         |
| 164 | in positive changes to the gut microbiome (increased Lactobacillus and decreased                               |
| 165 | Enterobacteria) (Hermes et al., 2012). Supplementation of sows with a combination of GOS and                   |
| 166 | casein glycomacropeptide (GOS+GMP) during late gestation through farrowing induced changes                     |
| 167 | to the intestinal microbiome in both the sow and their offspring, when comparing to control                    |
| 168 | treatment based on nutrient requirements from National Research Council (Wu et al., 2020). At                  |
| 169 | the phylum level, Fusobacteria became more prevalent in GOS+GMP-fed sows, whereas their                        |
| 170 | offspring had an increase in Synergistetes and a decrease in Patescibacteria. At the genus level,              |
| 171 | GOS+GMP-fed sows had higher Prevotella, Fusobacterium, and unclassified_f_Prevotellaceae,                      |
|     |                                                                                                                |

and their offspring had higher *norank\_f\_Ruminococcaceae*, *Christensenellaceae\_R-7\_group*,

173 *Ruminococcaceae\_UCG-005*, and *Ruminococcaceae\_UCG-010* (Wu et al., 2020). Beyond these

174 changes in the microbiome, this supplementation improved the number of live and healthy

piglets, total litter weight, and average birth weight of live piglets (Wu et al., 2020). These

176 findings align with previous work demonstrating that maternal diet impacts the health and

177 microbial composition of the intestinal tract of offspring (Kashtanova et al., 2016). The study

178 design did not allow identification of any effect due to GMP alone.

179

## 180 Effects of GMP on the microbiome in humans

Though GMP has growth-promoting effects on probiotic organisms in vitro and in animal 181 models, these results are not consistently replicable in humans. Wernlund et al. found that GMP 182 supplementation in healthy human subjects had no effects on Shannon or observed diversity and 183 no changes in microbiome composition or fecal short-chain fatty acids (Wernlund et al., 2020). 184 Moreover, that study showed no effect of GMP on gastrointestinal symptoms. Likewise, the 185 study found no effect of GMP on high-sensitivity C-reactive protein, fecal calprotectin, 186 indicating little systemic immunomodulatory impacts (Wernlund et al., 2020). A possible 187 188 explanation for the observed lack of change in humans is the increased variability in human genetics, environments, behaviors and microbiomes compared to laboratory mice. 189 190 A recent crossover study (Hansen et al., 2023) in which obese women consumed twice or 191 thrice daily GMP supplements (15 g GMP + 10 g whey protein/dose) found that compared to

baselines, the high dose GMP resulted in lower overall alpha-diversity and the low dose resulted

in lower relative abundance of the genus *Streptococcus*. The observed changes in the gut

194 microbiome were unlikely to be the cause of the observed increases in satiety and higher area

under the curves of the glucoregulatory/satiety hormone amylin and the C-peptide of insulin and
lower glucagon in a blood test after a GMP meal tolerance test compared with a baseline soy
meal tolerance test. In this study, GMP supplementation did not affect weight, markers of
systemic inflammation or plasma short-chain fatty acids (Hansen et al., 2023).

199

#### 200 GMP effects on dysbiosis

Glycomacropeptide may be able to improve dysbiosis induced by old age or metabolic 201 syndromes. In the elderly, a loss of microbial diversity may be a contributing factor in 202 suboptimal health (Ntemiri et al., 2017). In an artificial colon model of elderly gut microbiota, 203 the addition of GMP increased microbial diversity and increased the growth of the beneficial gut 204 bacteria Coprococcus and Clostridium cluster XIVb (Ntemiri et al., 2017). In fecal cultures from 205 free-living subjects GMP supplementation increased Roseburia and tended to increase Dorea, 206 whereas in fecal culture from subjects residing in long-stay facilities Pseudoflavonifactor 207 increased (Ntemiri et al., 2017). Type 2 diabetes is also associated with a loss of microbial 208 diversity and changes to the microbial composition (Yuan et al., 2020). Mice with type 2 209 diabetes had increased Helicobacteraceae and Lachnospiraceae and decreased 210 211 *Bacteridales\_S24-7\_group* (Yuan et al., 2020). Feeding glycomacropeptide hydrolysates (GHP) to these diabetic mice recovered lost microbial diversity, reduced *Helicobacteraceae*, and 212 213 increased *Ruminococcaceae* and *Bacteroidales\_S24-7\_group*, the ratio of 214 Bacteroidetes: Firmicutes, and Ruminisclostridium, Blautia, and Allobaculum (Yuan et al., 2020). Similarly, feeding non-hydrolyzed GMP increased the abundance of Allobaculum in wild-type 215 mice and the abundance of *Bacteroidales;f\_S24-7;g\_* in mice with phenylketonuria and reduced 216

217 Desulfovibrio in both wild-type and phenylketonuria mice, which is associated with

218 inflammatory bowel disease (IBD) (Sawin et al., 2015).

219

## 220 Impacts of GMP-induced microbial shifts on physiology

The changes in the gut microbiome induced by GMP can have physiological impacts (Table 2). For example, in a study by Yuan et al., supplementing glycomacropeptide hydrolysates to mice with high fat diet and streptozotocin-induced type 2 diabetes induced antidiabetic effects that correlated with changes in the microbiome (Yuan et al., 2020). Similarly, microbial changes in piglets whose mothers were supplemented with a combination of GOS and GMP were positively correlated with mRNA transcript levels for claudin-1, claudin-2, occludin, mucin-4, and mucin-13 (Wu et al., 2020).

228

## 229 Future Perspective

Though many studies have examined the effects of GMP in animal models (e.g., neonatal 230 piglets (Wu et al., 2020), rhesus monkeys (Kelleher et al., 2003), and mice (Nilaweera et al., 231 2017)), studies in humans are scarce. Moreover, we know little about how changes in the 232 233 microbiome induced by GMP affect physiology. Future research is needed to examine the effects of whey protein and GMP on the microbiome in humans and determine their clinical impacts. 234 235 Moreover, more studies examining the long-term effect of whey protein and GMP 236 supplementation on gut health and immune function are needed (Pena et al., 2018). Further research can guide the use of GMP and whey protein as therapeutics. 237 238

# 240 Conclusions

| 241 | Both whey protein and GMP have a range of bioactivities, including prebiotic action and          |
|-----|--------------------------------------------------------------------------------------------------|
| 242 | antimicrobial actions, and may enhance human health beyond provision of their amino acids. In    |
| 243 | animal models, whey protein supplementation frequently results in increased gut microbiota       |
| 244 | diversity, increased growth of beneficial microbial species and decreased markers of             |
| 245 | inflammation. GMP's capacity to promote the growth of beneficial organisms makes it a            |
| 246 | potential prebiotic dietary supplement. More research is needed to determine the extent to which |
| 247 | whey protein and GMP affect the microbiome in humans and the extent to which any such            |
| 248 | changes affect overall physiology.                                                               |
| 249 |                                                                                                  |
| 250 | Funding                                                                                          |
| 251 | This review manuscript was supported by the BUILD (Building University-Industry linkages         |
| 252 | through Learning and Discovery) Dairy program and Glanbia.                                       |
| 253 |                                                                                                  |
| 254 | References                                                                                       |
| 255 | Bielecka M, Cichosz G, Czeczot H. 2022. Antioxidant, antimicrobial and anticarcinogenic          |
| 256 | activities of bovine milk proteins and their hydrolysates – a review. Int Dairy J.               |
| 257 | 127:105208                                                                                       |
| 258 | Boscaini S, Cabrera-Rubio R, Nychyk O, Speakman JR, Cryan JF, Cotter PD, Nilaweera KN.           |
| 259 | 2020. Age- and duration-dependent effects of whey protein on high-fat diet-induced               |
| 260 | changes in body weight, lipid metabolism, and gut microbiota in mice. Physiol Rep.               |
| 261 | 8:e14523.                                                                                        |

| 262 | Brück WM, Graverholt G, Gibson GR. 2003. A two-stage continuous culture system to study the |
|-----|---------------------------------------------------------------------------------------------|
| 263 | effect of supplemental alpha-lactalbumin and glycomacropeptide on mixed cultures of         |
| 264 | human gut bacteria challenged with enteropathogenic Escherichia coli and Salmonella         |
| 265 | serotype Typhimurium. J Appl Microbiol. 95:44-53.                                           |
| 266 | Chen Q, Cao J, Jia Y, Liu X, Yan Y, Pang G. 2012. Modulation of mice fecal microbiota by    |
| 267 | administration of casein glycomacropeptide. Microbiol Res. 3:e3.                            |
| 268 | Chen Y, Guo KM, Nagy T, Guo TL. 2020. Chronic oral exposure to glycated whey proteins       |
| 269 | increases survival of aged male NOD mice with autoimmune prostatitis by regulating the      |
| 270 | gut microbiome and anti-inflammatory responses. Food Funct. 11:153-162.                     |
| 271 | Chiu CY, Chan YL, Tsai MH, Wang CJ, Chiang MH, Chiu CC. 2019. Gut microbial dysbiosis is    |
| 272 | associated with allergen-specific IgE responses in young children with airway allergies.    |
| 273 | World Allergy Organ J. 12:100021.                                                           |
| 274 | Córdova-Dávalos LE, Jiménez M, Salinas E. 2019. Glycomacropeptide bioactivity and health: a |
| 275 | review highlighting action Mechanisms and signaling pathways. Nutrients. 11:598-620.        |
| 276 | Cronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I, Murphy EF, Woods T, Nugent H,       |
| 277 | Fanning A, Melgar S, Falvey EC, Holmes E, Cotter PD, O'Sullivan O, Molloy MG,               |
| 278 | Shanahan F. 2018. A prospective metagenomic and metabolomic analysis of the impact          |
| 279 | of exercise and/or whey protein supplementation on the gut microbiome of sedentary          |
| 280 | adults. mSystems. 3:e00044-18.                                                              |
| 281 | Crowley R, FitzGerald LH. 2006. The impact of cGMP compliance on consumer confidence in     |
| 282 | dietary supplement products. Toxicology. 221:9-16.                                          |

| 283 | Feeney S, Ryan JT, Kilcoyne M, Joshi L, Hickey R. 2017. Glycomacropeptide reduces intestinal |
|-----|----------------------------------------------------------------------------------------------|
| 284 | epithelial cell barrier dysfunction and adhesion of entero-hemorrhagic and entero-           |
| 285 | pathogenic Escherichia coli in vitro. Foods. 6:93.                                           |
| 286 | Feng C, Tian L, Hong H, Wang Q, Zhan X, Luo Y, Tan Y. 2022. In vitro gut fermentation of     |
| 287 | whey protein hydrolysate: an evaluation of its potential modulation on infant gut            |
| 288 | microbiome. Nutrients. 14:1374.                                                              |
| 289 | Fukudome H, Yamaguchi T, Higuchi J, Ogawa A, Taguchi Y, Li J, Kabuki T, Ito K, Sakai F.      |
| 290 | 2021. Large-scale preparation and glycan characterization of sialylglycopeptide from         |
| 291 | bovine milk glycomacropeptide and its bifidogenic properties. J Dairy Sci. 104:1433-         |
| 292 | 1444.                                                                                        |
| 293 | Hermes RG, Molist F, Francisco Pérez J, de Segura AG, Ywazaki M, Davin R, Nofrarias M,       |
| 294 | Korhonen TK, Virkola R, Martin-Orúe SM. 2012. Casein glycomacropeptide in the diet           |
| 295 | may reduce Escherichia coli attachment to the intestinal mucosa and increase the             |
| 296 | intestinal lactobacilli of early weaned piglets after an enterotoxigenic E. coli K88         |
| 297 | challenge. Br J Nutr. 109:1001-1012.                                                         |
| 298 | Hansen KE, Murali SG, Ibrahim ZC, Suen G, Ney DM. 2023. Glycomacropeptide impacts            |
| 299 | amylin-mediated satiety, postprandial markers of glucose homeostasis, and the fecal          |
| 300 | microbiome in obese postmenopausal women. J Nutr. 157:1915-1929.                             |
| 301 | Kashtanova DA, Popenko AS, Tkacheva ON, Tyakht AB, Alexeev DG, Boytsov SA. 2016.             |
| 302 | Association between the gut microbiota and diet: fetal life, early childhood, and further    |
| 303 | life. Nutrition. 32:620-627.                                                                 |
| 304 | Kareb O, Aïder M. 2019 Whey and its derivatives for probiotics, prebiotics, synbiotics, nd   |
| 305 | functional foods: a critical review. Probiotics & Antimicro Prot. 11:348-369                 |

| 306 | Kelleher SL, Chatterton D, Nielsen K, Lönnerdal B. 2003. Glycomacropeptide and alpha-       |
|-----|---------------------------------------------------------------------------------------------|
| 307 | lactalbumin supplementation of infant formula affects growth and nutritional status in      |
| 308 | infant rhesus monkeys. Amm J Clin Nutri. 77:1261-1268.                                      |
| 309 | Laura ECD, Jiménez M, Salinas E. 2019. Glycomacropeptide bioactivity and health: a review   |
| 310 | highlighting action mechanisms and signaling pathways. Nutrition. 11:598-620.               |
| 311 | Li Y, Nguyen DN, Obelitz-Ryom K, Andersen AD, Thymann T, Chatterton DEW, Heckmann           |
| 312 | AB, Bering SB, Sangild PT. 2018. Bioactive whey protein concentrate and lactose             |
| 313 | stimulate gut function in formula-fed preterm pigs. J Pediatr Gastroenterol Nutr. 66:128-   |
| 314 | 134.                                                                                        |
| 315 | Liao Y, Peng Z, Chen L, Zhang Y, Cheng Q, Nüssler AK, Bao W, Liu L, Yang W. 2019.           |
| 316 | Prospective views for whey protein and/or resistance training against age-related           |
| 317 | sarcopenia. Aging Dis. 10:157-173.                                                          |
| 318 | Masarwi M, Solnik HI, Phillp M, Yaron S, Shamir R, Pasmanic-Chor M, Gat-Yablonski G.        |
| 319 | 2018. Food restriction followed by refeeding with a casein- or whey-based diet              |
| 320 | differentially affects the gut microbiota of pre-pubertal male rats. J Nutr Biochem. 51:27- |
| 321 | 39.                                                                                         |
| 322 | McAllan L, Skuse P, Cotter PD, O'Connor P, Cryan JF, Ross RP, Fitzgerald G, Roche HM,       |
| 323 | Nilaweera KN. 2014. Protein quality and the protein to carbohydrate ratio within a high     |
| 324 | fat diet influences energy balance and the gut microbiota in C57BL/6J mice. PLoS One.       |
| 325 | 9:e88904.                                                                                   |
| 326 | Meddah AT, Yazourh A, Desmet I, Risbourg B, Vestraete W, Romond MB. 2001. the regulatory    |
| 327 | effects of whey retentate from bifidobacteria fermented milk on the microbiota of the       |

328 simulator of the human intestinal microbial ecosystem (SHIME). J Appl Microbiol.

329 91:1110–1117.

- 330 Monteiro NES, Roquetto AR, de Pace F, Moura CS, Santos AD, Yamada AT, Saad MJA,
- 331 Amaya-Farfan. 2016. Dietary whey proteins shield murine cecal microbiota from
- extensive disarray caused by a high-fat diet. Food Res Int. 85:121-130.
- Moore DR. 2019. maximizing post-exercise anabolism: the case for relative protein intakes.
  Front Nutr. 6:147-160
- 335 Moreno-Pérez D, Bressa C, Bailén M, Hamed-Bousdar S, Naclerio F, Carmona M, Larrosa M.
- 336 2018. Effect of a protein supplement on the gut microbiota of endurance athletes: a

randomized, controlled, double-blind pilot study. Nutrients. 10:337.

- Neelima, Sharma R, Rajput YS, Mann B. 2013. Chemical and functional properties of
- glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in
  milk: a review. Dairy Sci Technol. 93:21-43.
- Nielsen CH, Hui Y, Nguyen DN, Ahnfeldt AM, Burrin DG, Hartmann B, Heckmann AB,
- 342 Sangild PT, Thymann T, Bering SB. 2020. Alpha-lactalbumin enriched whey protein
- 343 concentrate to improve gut, immunity and brain development in preterm pigs. Nutrients.

344 12:245.

- 345 Nilaweera KN, Cabrera-Rubio R, Speakman JR, O'Connor PM, MsAuliffe A, Guinane CM,
- Lawton EM, Crispie F, Aguilera M, Stanley M, Boscaini S, Joyce S, Melgar S, Cryan JF,
- 347 Cotter PD. 2017. Whey protein effects on energy balance link the intestinal mechanisms
- of energy absorption with adiposity and hypothalamic neuropeptide gene expression. Am
- J Physiol Endocrinol Metab. 313:E1-E11.

| 350 | Ntemiri A, Chonchúir FN, O'Callaghan TF, Stanton C, Ross RP, O'Toole PW. 2017.             |
|-----|--------------------------------------------------------------------------------------------|
| 351 | Glycomacropeptide sustains microbiota diversity and promotes specific taxa in an           |
| 352 | artificial colon model of elderly gut microbiota. J Agric Food Chem. 65:1836-1846.         |
| 353 | O'Riordan N, O'Callaghan J, Buttò LF, Kilcoyne M, Joshi L, Hickey RM. 2018. Bovine         |
| 354 | glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and          |
| 355 | modulates its gene expression. J Dairy Sci. 101:6730-6741.                                 |
| 356 | Pena MJ, Pinto A, Daly A, MacDonald A, Azevedo L, Rocha JC, Borges N. 2018. The use of     |
| 357 | glycomacropeptide in patients with phenylketonuria: a systematic review and meta-          |
| 358 | analysis. Nutrients. 10:1974-1989.                                                         |
| 359 | Reimer RA, Willis HJ, Tunnicliffe JM, Park H, Madsen KL, Soto-Vaca A. 2017. Inulin-type    |
| 360 | fructans and whey protein both modulate appetite but only fructans alter gut microbiota    |
| 361 | in adults with overweight/obesity: a randomized controlled trial. Mol Nutr Food Res.       |
| 362 | 61:1700484.                                                                                |
| 363 | Robitaille G. 2012. Growth-promoting effects of caseinomacropeptide from cow and goat milk |
| 364 | on probiotics. J Dairy Res. 80:58-63.                                                      |
| 365 | Sawin EA, Wolfe TJD, Aktas B, Stroup BM, Murali SG, Steele JL, Ney DM. 2015.               |
| 366 | Glycomacropeptide is a prebiotic that reduces Desulfovibrio bacteria, increases cecal      |
| 367 | short-chain fatty acids, and is anti-inflammatory in mice. Am J Physiol Gastrointest Liver |
| 368 | Physiol. 309:G590-601.                                                                     |
| 369 | Sprong RC, Schonewille A, van der Meer R. 2010. Dietary cheese whey protein protects rats  |
| 370 | against mild dextran sulfate sodium-induced colitis: role of mucin and microbiota. J       |
| 371 | Dairy Sci. 93:1364-1371.                                                                   |
|     |                                                                                            |

| 372 | Szymlek-Gay EA, Lönnerdal B, Abrams SA, Kvistgaard AS, Domellöf M, Hernell O. 2012.        |
|-----|--------------------------------------------------------------------------------------------|
| 373 | Alpha-lactalbumin and casein-glycomacropeptide do not affect iron absorption from          |
| 374 | formula in healthy term infants. J Nutr. 142:1226-1231.                                    |
| 375 | Tian Q, Wang T, Tang X, Han M, Leng Z, Mao X. 2014. Developing a potential prebiotic of    |
| 376 | yogurt: growth of Bifidobacterium and yogurt cultures with addition of                     |
| 377 | glycomacropeptide hydrolysate. Int J Food Sci Technol. 50:120-127.                         |
| 378 | Wang H, Shou Y, Zhu X, Xu Y, Shi L, Xiang S, Feng X, Han J. 2018. Stability of vitamin B12 |
| 379 | with the protection of whey proteins and their effects on the gut microbiome. Food Chem.   |
| 380 | 276:298-306.                                                                               |
| 381 | Wardill HR, Ferreira ARDS, Kumar H, Bateman EH, Cross CB, Bowen JM, Havinga R,             |
| 382 | Harmsen HJM, Dorresteijn B, van Dijk M, van Bergenhenegouwen J, Tissing WJE.               |
| 383 | 2023. Whey-based diet containing medium chain triglycerides modulates the gut              |
| 384 | microbiota and protects the intestinal mucosa from chemotherapy while maintaining          |
| 385 | therapy efficacy. Cell Death Dis. 14:338.                                                  |
| 386 | Wernlund PG, Hvas CL, Dahlerup JF, Bahl M, Licht TR, Knudsen KEB, Agnholt JS. 2020.        |
| 387 | Casein glycomacropeptide is well tolerated in healthy adults and changes neither high-     |
| 388 | sensitive C-reactive protein, gut microbiota nor faecal butyrate: a restricted randomised  |
| 389 | trial. Br J Nutr. 125:1374-1385.                                                           |
| 390 | West DWD, Sawan SA, Mazzulla M, Williamson E, Moore DR. 2017. Whey protein                 |
| 391 | supplementation enhances whole body protein metabolism and performance recovery            |
| 392 | after resistance exercise: a double-blind crossover study. Nutrients. 9:735.               |
|     |                                                                                            |

| 393 | Wu Y, Zhang X, Tao S, Pi Y. 2020. Maternal supplementation with combined                  |
|-----|-------------------------------------------------------------------------------------------|
| 394 | galactooligosaccharides and casein glycomacropeptides modulated microbial                 |
| 395 | colonization and intestinal development of neonatal piglets. J Funct Foods. 74:104170.    |
| 396 | Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, Tarnopolsky MA,       |
| 397 | Phillips SM. 2012. Resistance exercise enhances myofibrillar protein synthesis with       |
| 398 | graded intakes of whey protein in older men. Br J Nutr. 108:1780-1788.                    |
| 399 | Yuan Q, Zhan B, Chang R, Du M, Mao X. 2020. Antidiabetic effect of casein                 |
| 400 | glycomacropeptide hydrolysates on high-fat diet and stz-induced diabetic mice via         |
| 401 | regulating insulin signaling in skeletal muscle and modulating gut microbiota. Nutrients. |
| 402 | 12:220.                                                                                   |
| 403 |                                                                                           |



**Figure 1:** Overall relations between whey and GMP with their primary functions.

**Table 1:** A summary of the recent studies examining the effect of different whey protein diets on gut microbiome diversity

| Area           | Criteria of study                                                                                                      | Outcome: changes in gut                                                                             | microbiome (whey only)                                                                         | Reference                    |
|----------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------|
|                |                                                                                                                        | Increase                                                                                            | Decrease                                                                                       |                              |
| Animal studies | Mice fed whey protein isolate (WPI) for 17<br>weeks                                                                    | Bacteroidetes                                                                                       | Firmicutes and Actinobacteria                                                                  | Nilaweera et<br>al., 2017    |
|                | Non-obese diabetic mice fed glycated whey proteins for 6 months                                                        | Porphyromondaceae                                                                                   | Firmicutes                                                                                     | Chen et al., 2020            |
|                | Mice on a high-fat diet (HFD) fed for 21<br>weeks                                                                      | Lactobacillaceae                                                                                    | Clostridiaceae/Clostridium                                                                     | McAllan et<br>al., 2014      |
|                | Mice on a HFD fed WPI versus casein for 5 weeks                                                                        | Lactobacillus murinus                                                                               | HsL and Lpl expression                                                                         | Boscaini et<br>al., 2020     |
|                | Rats with 3% dextran sulfate sodium-<br>induced colitis fed cheese whey protein for<br>14 days                         | Lactobacilli and Bifidobacteria                                                                     | N/A                                                                                            | Sprong et al.,<br>2010       |
|                | Preterm piglets fed $\alpha$ -lactalbumin-enriched<br>whey protein concentrate (WPC) versus<br>regular WPC for 19 days | Clostridiaceae,<br>Enterobacteriaceae, and<br>Lachnospiraceae                                       | None noted                                                                                     | Nielsen et al.,<br>2020      |
|                | Pre-pubertal male rats under 60 days of food<br>restriction and refeeding with casein- or<br>whey-based diet           | Burkholderiales (phylum<br>Proteobacteria), Bacilli (phylum<br>Firmicutes), and<br>Lactibacillaceae | Erysipelotrichales,<br>Cytophagales, and<br>Flavobacteriales                                   | Masarwi et<br>al., 2018      |
|                | Mice fed high-fat-whey protein concentrate<br>and high-fat whey-protein hydrolysate for 9<br>weeks                     | Bacteroidetes phylum ( <i>B. rodentium, B. acidifaciens</i> and <i>B. stercoris</i> )               | Firmicutes                                                                                     | Monteiro et<br>al., 2016     |
|                | Rats with and without tumors fed a whey-<br>based diet containing medium-chain<br>triglycerides                        | Muribaculaceae and<br>Peptostreptococcaeceae                                                        | Ruminococcaceae                                                                                | Wardill et al.,<br>2023      |
| Human study    | Endurance athletes fed whey isolate or beef<br>hydrolysate for 10 weeks                                                | Bacteroidetes phylum                                                                                | <i>Citrobacter, Klebsiella,</i><br><i>Coprococcus, Roseburia,</i> and<br><i>Blautia</i> genera | Moreno-Pérez<br>et al., 2018 |
|                | With or without whey protein supplement on<br>adult engaged in aerobic and resistance<br>training for 8 weeks          | <i>Lactococcus</i> phage, $\beta$ -diversity of gut virome                                          | None noted                                                                                     | Cronin et al.,<br>2018       |
|                | Adults with overweight/obesity assigned snack bar with whey protein for 12 weeks                                       | None                                                                                                | None                                                                                           | Reimer et al.,<br>2017       |

| In vitro study | In vitro infant fecal culture exposed to whey | Lactobacillus acidophilus,     | Actinobacteriota:Bacteroidota | Feng et al., |
|----------------|-----------------------------------------------|--------------------------------|-------------------------------|--------------|
|                | protein hydrolysate enriched in essential     | Proteobacteria, Streptococcus, | (ratio)                       | 2022         |
|                | amino acids                                   | and Bacteroides                |                               |              |

**Table 2:** A summary of glycomacropeptide (GMP) effects on gut microbiome diversity

| Area/Criteria of Study    | Specific effect                                                                                | Reference            |
|---------------------------|------------------------------------------------------------------------------------------------|----------------------|
| General population health | Decrease Streptococcus abundance in the gut                                                    | Hansen et al., 2023  |
|                           | Enhance indicators of satiety and glycemic control                                             |                      |
|                           | Positive relationship of GMP + GOS feeding with increased mRNA transcript levels for           | Wu et al., 2020      |
|                           | claudin-1, claudin-2, occludin, mucin-4, and mucin-13                                          |                      |
|                           | Changes in the microbiome were positively correlated with antidiabetic effects after feeding   | Yuan et al., 2020    |
|                           | glycomacropeptide hydrolysates                                                                 |                      |
|                           | Maternal GMP + GOS supplementation improved litter characteristics in piglet (number of        | Wu et al., 2020      |
|                           | live and healthy piglets, total litter weight, and average birth weight of live piglets)       |                      |
|                           | Maternal GMP + GOS supplementation increased immunoglobulins (IgA, IGF-1, IgG, IgM)            |                      |
|                           | in neonatal piglets                                                                            |                      |
| Microbiome - Dysbiosis    | Increased Lactobacillus, stable Bifidobacterium, decreased Bacteroides, Clostridium, and E.    | Brück et al., 2003   |
|                           | <i>coli</i> in human fecal cultures                                                            |                      |
|                           | Improved microbial diversity in an artificial colon model for elderly people: increased growth | Ntemiri et al., 2017 |
|                           | of Coprococcus, Clostridium cluster XIVb, Roseburia; decreased Dorea                           |                      |
|                           | Reduced Helicobacteraceae; increased Ruminococcaceae, Bacteroidales_S24-7_group in             | Yuan et al., 2020    |
|                           | mice with type-2 diabetes                                                                      |                      |