Potential prebiotic properties of whey protein and glycomacropeptide in gut microbiome

Bryna Rackerby¹, Hoang Ngoc M. Le¹, Avery Haymowicz¹, David C. Dallas¹,², Si Hong Park¹,³*

¹Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA
²School of Biological and Population Health Sciences, Nutrition, Oregon State University, Corvallis, OR 97331, USA
³Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea

Running title: Effect of whey protein and glycomacropeptide in gut microbiome

ORCID number
Bryna Rackerby: 0000-0003-0582-5928
Hoang Ngoc M. Le: 0009-0005-5890-5245
Avery Haymowicz: 0009-0003-5131-7788
David C. Dallas: 0000-0002-9696-0967
Si Hong Park: 0000-0001-6587-7020

*Corresponding author
Si Hong Park, Ph.D., Associate Professor, Department of Food Science and Technology, Oregon State University, 3051 SW Campus Way, Corvallis, OR 97331; Tel: 541-737-1684; Fax: 541-737-1877; E-mail: sihong.park@oregonstate.edu
Abstract
Proteins in whey have prebiotic and antimicrobial properties. Whey protein comprises numerous bioactive proteins and peptides, including glycomacropeptide (GMP), a hydrophilic casein peptide that separates with the whey fraction during cheese making. Glycomacropeptide has traditionally been used as a protein source for individuals with phenylketonuria and also has prebiotic (supporting the growth of *Bifidobacterium* and lactic acid bacteria) and antimicrobial activities. Glycomacropeptide supplementation may help positively modulate the gut microbiome, help treat dysbiosis-related gastrointestinal disorders and improve overall health in consumers.

Keywords: whey protein, glycomacropeptide (GMP), prebiotic effect, gut microbiome.
Introduction

Whey is a byproduct of the cheese manufacturing process. It is the liquid portion that is drained away after curd formation. Bovine milk is the most common source of whey due to its predominance in the dairy industry. The extracted product referred to as whey protein is a mixture of numerous proteins including β-lactoglobulin (~65%), α-lactalbumin (~25%), bovine serum albumin (~8%), lactoferrin (~1%), lactoperoxidase (0.25-0.5%) and immunoglobulins (<1%) (Boscaini et al., 2020).

Bovine whey protein is used in a large array of products, including supplements to promote muscle synthesis and infant formula. Whey protein helps increase muscle synthesis which can help with muscle and exercise recovery in athletes (Daniel et al., 2017; Moore, 2019), and decrease the risk of age-related sarcopenia (Liao et al., 2019; Yang et al., 2012) (Figure 1). Bovine whey protein is added to most infant formulas to mimic human milk. Beyond serving as a source of amino acids, the proteins in whey can exert additional functions, including prebiotic, antimicrobial (Kareb and Aïder, 2019), and enhancing gastrointestinal health (Li et al., 2018). For example, many whey proteins, including lactoferrin, lactoperoxidase and immunoglobulins have direct or indirect antimicrobial activity (Bielecka et al., 2022). Perhaps due to these bioactivities, whey protein supplementation can alter the gut microbiome (at least in animal models) (Boscaini et al., 2020; Nilaweera et al., 2017) and thereby impact metabolism (Boscaini et al., 2020) (Figure 1).

Glycomacropeptide (GMP) is a hydrophilic peptide cleaved from κ-casein during cheesemaking and makes up about 20% by mass of commercial whey protein (Neelima et al., 2013). About half of the GMP in whey is the unglycosylated form known as caseinomacropeptide, whereas the other 50% consists of 14 different glycovariants (Robitaille,
Glycomacropeptide has several functions, including prebiotic (it promotes the growth of *Bifidobacterium* and lactic acid bacteria (Córdova-Dávalos et al., 2019) (Figure 1), antimicrobial and immunomodulatory (Laura et al., 2019).

Impact of whey on the gut microbiome

Whey protein supplementation can impact the gut microbiome. In an infant fecal culture system with 3 feeding conditions; 1) bovine milk, 2) formula with α-lactalbumin, and 3) formula with GMP, both formulas supplemented with α-lactalbumin and GMP both supported *Bifidobacterium* as the predominant organism and decreased *Bacteroides*, *Clostridium* and *Escherichia coli* (Brück et al., 2003). In the same study, all groups reduced enteropathogenic *E. coli* and *Salmonella Typhimurium* after initial inoculation of these pathogens into the fecal culture system (Brück et al., 2003).

Whey protein feeding has also been shown to alter the microbiome in animal models. Nilaweera et al. found that whey protein isolate (WPI) supplementation reduced the susceptibility of mice to sucrose-induced microbial changes to a larger degree than those supplemented with casein (Nilaweera et al., 2017). The study indicated that whey protein reduced the abundance of Firmicutes and Actinobacteria, which is associated with enhanced metabolic health and reduced inflammation, and increased Bacteroidetes, a phylum that can break down complex carbohydrates and produce beneficial short-chain fatty acids (SCFAs). In the same study, whey protein feeding increased the families Unclassified_*Sutterellaceae*, *Sutterellaceae*, *Anaeroplasmanaceae*, Unclassified_*Porphyromonadaceae* and *Porphyromonadaceae*, and decreased *Streptococcaceae* and *Enterobacteriaceae*, resulting in the increase of potential healthy gut microbiomes (Nilaweera et al., 2017). Similarly, mice with...
autoimmune prostatitis fed glycated whey had decreased Firmicutes and an increased
Porphyromonadaceae, among other families and genera (Chen et al., 2020). In mice fed a high-fat
diet (HFD), whey protein increased Lactobacillaceae and Clostridiaceae at the family level and
Desulfovibrio and Mucisprillum at the genus level (McAllan et al., 2014). Boscaini et al. found
that 5-week-old mice fed whey (compared with casein) on a HFD had increased
Streptococcaceae and Lactococcus at the family and genus levels, increased Lactococcus lactis
and Bacteroides vulgatus at the species level and increased abundance of Lactobacillus murinis
(Boscaini et al., 2020). Sprong et al. found that casein supplemented with either whey protein or
threonine and cysteine both increased Lactobacillus and Bifidobacteria, decreased markers of
inflammation and increased mucin secretion in rats with dextran sulfate sodium-induced colitis
(Sprong et al., 2010). Chen et al. found that non-obese diabetic mice fed whey protein-derived
early glycation products for 6 months had increased Allobaculum, Anaerostipes, Bacteroides,
Parabacteroides and Prevotella and decreased Adlercreutzia and Roseburia at the genus level
(Chen et al., 2020). In this study, some of the changes in the microbiome correlated with immune
markers measured, which suggested that the microbial changes may have contributed to the
observed anti-inflammatory effects (Chen et al., 2020). Specifically, total splenocytes were
negatively correlated with Bacteroides (uniformis and acidifaciens), Parabacteroides,
Prevotella, and Anaerostipes; splenic M1 macrophages were negatively correlated with
Bacteroides (uniformis and acidifaciens) and Parabacteroides; and splenic CD4+ T-cells were
negatively correlated with Bacteroides acidifaciens (Chen et al., 2020).

Nielsen et al. found that piglets given WPC with high α-lactalbumin tended to have
higher alpha-diversity and a higher abundance of Clostridiaceae, Enterobacteriaceae,
Streptococcus and Streptomyces than those supplemented with WPC with low α-lactalbumin
(Nielsen et al., 2020). However, the microbial composition resulting from dietary interventions did not show evidence of correlation with physiological changes or functional, or performance aspects of preterm pigs (Nielsen et al., 2020).

Though dietary whey protein modulates the gut microbiome in fecal cultures, murine models and piglet models, the few human studies have not been able to replicate these results. This lack of findings in humans may be due to the large degree of variation in human gut microbiomes, behaviors, environmental factors and genetics. Two studies on primarily overweight or obese adult humans found that whey protein did not significantly alter the gut microbiome (Cronin et al., 2018; Reimer et al., 2017). However, one study on endurance athletes fed between whey isolate and beef hydrolysate for 10 weeks indicated an altered gut microbiome with increased Bacteroidetes and decreased health-related taxa, suggesting a potential negative impact of long-term protein supplementation that requires further research (Moreno-Pérez et al., 2018). A summary of recent studies related to whey protein diets is listed in Table 1.

Impact of GMP on the gut microbiome

Glycomacropeptide can promote the growth of beneficial organisms and inhibit the adhesion of pathogens to intestinal cells (Córdova-Dávalos et al., 2019). Córdova-Dávalos et al. provided an extensive review of GMP’s ability to prevent the adhesion of pathogens (e.g., S. Typhimurium and enterohemorrhagic *E. coli* 0157) and toxins (e.g., cholera toxin, *E. coli* enterotoxin) to intestinal cells (Córdova-Dávalos et al., 2019). Glycomacropeptide also demonstrates an enhancement in the growth of some specific probiotic organisms. For example, bovine and caprine GMP both improved the growth of *Lactobacillus rhamnosus* RW-9595-M.
and *Bifidobacterium thermophilum* RBL67 in a dose-dependent manner and to a greater degree than bovine β-lactoglobulin (Robitaille, 2012).

The mechanism by which GMP exhibits prebiotic activity is unclear. Though studies on the antimicrobial impact of GMP tend to implicate the glycosylation structures in its bioactivity (Feeney et al., 2017), studies examining growth-promoting ability are less concordant. Some studies suggest the prebiotic effect stems from the glycan moieties of GMP. For example, periodate oxidation to remove the glycans from GMP significantly reduced its bifidogenic effect, which was interpreted as evidence that its prebiotic activity is linked to glycosylation (O’Riordan et al., 2018). This study also found that GMP induces the expression of some glycogenes, but repressed others, perhaps representing a glycan-structure specific response (O’Riordan et al., 2018).

Further, sialyl glycopeptide concentrate (SGC) created through digestion and ultrafiltration of GMP-containing whey protein concentrate (G-WPC) outperformed G-WPC as the sole carbon source for the growth of certain *Bifidobacteria* (Fukudome et al., 2021). Although the glycan component of GMP is often hypothesized to be the basis for prebiotic activity, the peptide portion may be involved as well, as periodate-treated GMP did possess a small growth-promoting effect (O’Riordan et al., 2018). Similarly, Tian et al. found that GMP’s *Bifidobacteria* growth-promoting effect did not directly depend on sialic acid content and may be related to its high glutamine, leucine, and alanine contents, despite the poor proteolytic activity of most *Bifidobacteria* (Tian et al., 2014). Glycomacropeptide hydrolysate produced with papain (GHP) had a stronger growth-promoting effect on *Bifidobacterium animalis subsp. lactis* (Bb12) than intact GMP or GMP hydrolyzed by trypsin (GHT), although GHP had the lowest sialic acid content of the three (Tian et al., 2014). Robitaille found that glycosylated, unglycosylated, and
mixed GMP treatments equally promoted the growth of lactic acid bacteria, indicating that the
glycosylation state is not necessarily a factor in prebiotic activity, even though neither
Bifidobacteria strain studied was proteolytic (Robitaille, 2012). Robitaille suggested that GMP
allows improved growth of Bifidobacteria and Lactobacillus in acidic media during fermentation
by triggering metabolic adaptations (Robitaille, 2012). Regardless of the mechanism, GMP is
effective in encouraging the growth of probiotic organisms in vitro and could be used in the
production of probiotics or as a functional ingredient to promote the growth of probiotic cultures
in fermented dairy products and influence beneficial organisms in the gut (O’Riordan et al.,
2018; Robitaille, 2013; Tian et al., 2014).

Like whey protein, GMP can impact the gut microbiome. In an in vitro human fecal
culture system, GMP addition supported stable Bifidobacterium presence and decreased
Bacteroides, Clostridium and E. coli (Brück et al., 2003). Chen et al. demonstrated that feeding
GMP to mice promoted the growth of Lactobacillus and Bifidobacteria while decreasing
Enterobacteriaceae and coliforms (Chen et al., 2012).

In piglets, compare with control diet, diet supplemented with 1.5% casein GMP resulted
in positive changes to the gut microbiome (increased Lactobacillus and decreased
Enterobacteria) (Hermes et al., 2012). Supplementation of sows with a combination of GOS and
casein glycomacropeptide (GOS+GMP) during late gestation through farrowing induced changes
to the intestinal microbiome in both the sow and their offspring, when comparing to control
treatment based on nutrient requirements from National Research Council (Wu et al., 2020). At
the phylum level, Fusobacteria became more prevalent in GOS+GMP-fed sows, whereas their
offspring had an increase in Synergistetes and a decrease in Patescibacteria. At the genus level,
GOS+GMP-fed sows had higher Prevotella, Fusobacterium, and unclassified_f_Prevotellaceae,
and their offspring had higher norank_f_Ruminococcaceae, Christensenellaceae_R-7_group, Ruminococcaceae_UCG-005, and Ruminococcaceae_UCG-010 (Wu et al., 2020). Beyond these changes in the microbiome, this supplementation improved the number of live and healthy piglets, total litter weight, and average birth weight of live piglets (Wu et al., 2020). These findings align with previous work demonstrating that maternal diet impacts the health and microbial composition of the intestinal tract of offspring (Kashtanova et al., 2016). The study design did not allow identification of any effect due to GMP alone.

Effects of GMP on the microbiome in humans

Though GMP has growth-promoting effects on probiotic organisms in vivo and in animal models, these results are not consistently replicable in humans. Wernlund et al. found that GMP supplementation in healthy human subjects had no effects on Shannon or observed diversity and no changes in microbiome composition or fecal short-chain fatty acids (Wernlund et al., 2020). Moreover, that study showed no effect of GMP on gastrointestinal symptoms. Likewise, the study found no effect of GMP on high-sensitivity C-reactive protein, fecal calprotectin, indicating little systemic immunomodulatory impacts (Wernlund et al., 2020). A possible explanation for the observed lack of change in humans is the increased variability in human genetics, environments, behaviors and microbiomes compared to laboratory mice.

A recent crossover study (Hansen et al., 2023) in which obese women consumed twice or thrice daily GMP supplements (15 g GMP + 10 g whey protein/dose) found that compared to baselines, the high dose GMP resulted in lower overall alpha-diversity and the low dose resulted in lower relative abundance of the genus Streptococcus. The observed changes in the gut microbiome were unlikely to be the cause of the observed increases in satiety and higher area
under the curves of the glucoregulatory/satiety hormone amylin and the C-peptide of insulin and lower glucagon in a blood test after a GMP meal tolerance test compared with a baseline soy meal tolerance test. In this study, GMP supplementation did not affect weight, markers of systemic inflammation or plasma short-chain fatty acids (Hansen et al., 2023).

GMP effects on dysbiosis

Glycomacropeptide may be able to improve dysbiosis induced by old age or metabolic syndromes. In the elderly, a loss of microbial diversity may be a contributing factor in suboptimal health (Ntemiri et al., 2017). In an artificial colon model of elderly gut microbiota, the addition of GMP increased microbial diversity and increased the growth of the beneficial gut bacteria *Coproccoccus* and *Clostridium* cluster XIVb (Ntemiri et al., 2017). In fecal cultures from free-living subjects GMP supplementation increased *Roseburia* and tended to increase *Dorea*, whereas in fecal culture from subjects residing in long-stay facilities *Pseudoflavonifactor* increased (Ntemiri et al., 2017). Type 2 diabetes is also associated with a loss of microbial diversity and changes to the microbial composition (Yuan et al., 2020). Mice with type 2 diabetes had increased *Helicobacteraceae* and *Lachnospiraceae* and decreased *Bacteroidales_S24-7_group* (Yuan et al., 2020). Feeding glycomacropeptide hydrolysates (GHP) to these diabetic mice recovered lost microbial diversity, reduced *Helicobacteraceae*, and increased *Ruminococcaceae* and *Bacteroidales_S24-7_group*, the ratio of Bacteroidetes:Firmicutes, and *Ruminisclostridium, Blautia*, and *Allobaculum* (Yuan et al., 2020). Similarly, feeding non-hydrolyzed GMP increased the abundance of *Allobaculum* in wild-type mice and the abundance of *Bacteroidales;f_S24-7;g_ in mice with phenylketonuria and reduced
Desulfovibrio in both wild-type and phenylketonuria mice, which is associated with inflammatory bowel disease (IBD) (Sawin et al., 2015).

Impacts of GMP-induced microbial shifts on physiology

The changes in the gut microbiome induced by GMP can have physiological impacts (Table 2). For example, in a study by Yuan et al., supplementing glycomacropeptide hydrolysates to mice with high fat diet and streptozotocin-induced type 2 diabetes induced antidiabetic effects that correlated with changes in the microbiome (Yuan et al., 2020). Similarly, microbial changes in piglets whose mothers were supplemented with a combination of GOS and GMP were positively correlated with mRNA transcript levels for claudin-1, claudin-2, occludin, mucin-4, and mucin-13 (Wu et al., 2020).

Future Perspective

Though many studies have examined the effects of GMP in animal models (e.g., neonatal piglets (Wu et al., 2020), rhesus monkeys (Kelleher et al., 2003), and mice (Nilaweera et al., 2017)), studies in humans are scarce. Moreover, we know little about how changes in the microbiome induced by GMP affect physiology. Future research is needed to examine the effects of whey protein and GMP on the microbiome in humans and determine their clinical impacts. Moreover, more studies examining the long-term effect of whey protein and GMP supplementation on gut health and immune function are needed (Pena et al., 2018). Further research can guide the use of GMP and whey protein as therapeutics.
Conclusions

Both whey protein and GMP have a range of bioactivities, including prebiotic action and antimicrobial actions, and may enhance human health beyond provision of their amino acids. In animal models, whey protein supplementation frequently results in increased gut microbiota diversity, increased growth of beneficial microbial species and decreased markers of inflammation. GMP’s capacity to promote the growth of beneficial organisms makes it a potential prebiotic dietary supplement. More research is needed to determine the extent to which whey protein and GMP affect the microbiome in humans and the extent to which any such changes affect overall physiology.

Funding

This review manuscript was supported by the BUILD (Building University-Industry linkages through Learning and Discovery) Dairy program and Glanbia.

References

Meddah AT, Yazourh A, Desmet I, Risbourg B, Vestraete W, Romond MB. 2001. the regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the

Reimer RA, Willis HJ, Tunnicliffe JM, Park H, Madsen KL, Soto-Vaca A. 2017. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: a randomized controlled trial. Mol Nutr Food Res. 61:1700484.

Figure 1: Overall relations between whey and GMP with their primary functions.
Table 1: A summary of the recent studies examining the effect of different whey protein diets on gut microbiome diversity

<table>
<thead>
<tr>
<th>Area</th>
<th>Criteria of study</th>
<th>Outcome: changes in gut microbiome (whey only)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal studies</td>
<td>Mice fed whey protein isolate (WPI) for 17 weeks</td>
<td>Bacteroidetes</td>
<td>Nilaweera et al., 2017</td>
</tr>
<tr>
<td></td>
<td>Non-obese diabetic mice fed glycated whey proteins for 6 months</td>
<td>Porphyromonadaceae</td>
<td>Chen et al., 2020</td>
</tr>
<tr>
<td></td>
<td>Mice on a high-fat diet (HFD) fed for 21 weeks</td>
<td>Lactobacillaceae</td>
<td>McAllan et al., 2014</td>
</tr>
<tr>
<td></td>
<td>Mice on a HFD fed WPI versus casein for 5 weeks</td>
<td>Lactobacillus murinus</td>
<td>Boscaini et al., 2020</td>
</tr>
<tr>
<td></td>
<td>Rats with 3% dextran sulfate sodium-induced colitis fed cheese whey protein for 14 days</td>
<td>Lactobacilli and Bifidobacteria</td>
<td>Sprong et al., 2010</td>
</tr>
<tr>
<td></td>
<td>Preterm piglets fed α-lactalbumin-enriched whey protein concentrate (WPC) versus regular WPC for 19 days</td>
<td>Clostridiaceae, Enterobacteriaceae, and Lachnospiraceae</td>
<td>Nielsen et al., 2020</td>
</tr>
<tr>
<td></td>
<td>Pre-pubertal male rats under 60 days of food restriction and refeeding with casein- or whey-based diet</td>
<td>Burkholderiales (phylum Proteobacteria), Bacilli (phylum Firmicutes), and Lactobacillaceae</td>
<td>Masarwi et al., 2018</td>
</tr>
<tr>
<td></td>
<td>Mice fed high-fat-whey protein concentrate and high-fat whey-protein hydrolysate for 9 weeks</td>
<td>Bacteroidetes phylum (B. rodentium, B. acidifaciens and B. stercoris)</td>
<td>Monteiro et al., 2016</td>
</tr>
<tr>
<td></td>
<td>Rats with and without tumors fed a whey-based diet containing medium-chain triglycerides</td>
<td>Muribaculaceae and Peptostreptococcaceae</td>
<td>Wardill et al., 2023</td>
</tr>
<tr>
<td>Human study</td>
<td>Endurance athletes fed whey isolate or beef hydrolysate for 10 weeks</td>
<td>Bacteroidetes phylum</td>
<td>Moreno-Pérez et al., 2018</td>
</tr>
<tr>
<td></td>
<td>With or without whey protein supplement on adult engaged in aerobic and resistance training for 8 weeks</td>
<td>Lactococcus phage, β-diversity of gut virome</td>
<td>Cronin et al., 2018</td>
</tr>
<tr>
<td></td>
<td>Adults with overweight/obesity assigned snack bar with whey protein for 12 weeks</td>
<td>None</td>
<td>Reimer et al., 2017</td>
</tr>
</tbody>
</table>
In vitro study | In vitro infant fecal culture exposed to whey protein hydrolysate enriched in essential amino acids | \textit{Lactobacillus acidophilus}, \textit{Proteobacteria}, \textit{Streptococcus}, and \textit{Bacteroides} | Actinobacteriota:Bacteroidota (ratio) | Feng et al., 2022

Table 2: A summary of glycomacropeptide (GMP) effects on gut microbiome diversity

<table>
<thead>
<tr>
<th>Area/Criteria of Study</th>
<th>Specific effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>General population health</td>
<td>Decrease \textit{Streptococcus} abundance in the gut</td>
<td>Hansen et al., 2023</td>
</tr>
<tr>
<td></td>
<td>Enhance indicators of satiety and glycemic control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive relationship of GMP + GOS feeding with increased mRNA transcript levels for claudin-1, claudin-2, occludin, mucin-4, and mucin-13</td>
<td>Wu et al., 2020</td>
</tr>
<tr>
<td></td>
<td>Changes in the microbiome were positively correlated with antidiabetic effects after feeding glycomacropeptide hydrolysates</td>
<td>Yuan et al., 2020</td>
</tr>
<tr>
<td></td>
<td>Maternal GMP + GOS supplementation improved litter characteristics in piglet (number of live and healthy piglets, total litter weight, and average birth weight of live piglets)</td>
<td>Wu et al., 2020</td>
</tr>
<tr>
<td></td>
<td>Maternal GMP + GOS supplementation increased immunoglobulins (IgA, IGF-1, IgG, IgM) in neonatal piglets</td>
<td></td>
</tr>
<tr>
<td>Microbiome - Dysbiosis</td>
<td>Increased \textit{Lactobacillus}, stable \textit{Bifidobacterium}, decreased \textit{Bacteroides}, \textit{Clostridium}, and \textit{E. coli} in human fecal cultures</td>
<td>Brück et al., 2003</td>
</tr>
<tr>
<td></td>
<td>Improved microbial diversity in an artificial colon model for elderly people: increased growth of \textit{Coprococcus}, \textit{Clostridium cluster XIVb}, \textit{Roseburia}; decreased \textit{Dorea}</td>
<td>Ntemiri et al., 2017</td>
</tr>
<tr>
<td></td>
<td>Reduced \textit{Helicobacteraceae}; increased \textit{Ruminococcaceae}, \textit{Bacteroidales_S24-7_group} in mice with type-2 diabetes</td>
<td>Yuan et al., 2020</td>
</tr>
</tbody>
</table>