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Proximate content monitoring of black soldier fly larval (Hermetia illucens) dry 9 

matter for feed material using short-wave infrared hyperspectral imaging 10 

 11 

Abstract 12 

Edible insects are gaining popularity as a potential future food source because of their 13 

high protein content and efficient use of space. Black soldier fly larvae are noteworthy 14 

because they can be used as feed for various animals including reptiles, dogs, fish, 15 

chickens, and pigs. However, if the edible insect industry is to advance, we should use 16 

automation to reduce labor and increase production. Consequently, there is a growing 17 

demand for sensing technologies that can automate the evaluation of insect quality. This 18 

study used short-wave infrared (SWIR) hyperspectral imaging to predict the proximate 19 

composition of dried black soldier fly larvae, including moisture, crude protein, crude fat, 20 

crude fiber, and crude ash content. The larvae were dried at various temperatures and 21 

times, and images were captured using an SWIR camera. A partial least-squares 22 

regression (PLSR) model was developed to predict the proximate content. The SWIR-23 

based hyperspectral camera accurately predicted the proximate composition of black 24 

soldier fly larvae from the best preprocessing model; moisture, crude protein, crude fat, 25 

crude fiber, and crude ash content were predicted with high accuracy, with R2 values of 26 

0.89 or more, and RMSEP values were within 2%. Among preprocessing methods, mean 27 

normalization and max normalization methods were effective in proximate prediction 28 

models. Therefore, SWIR-based hyperspectral cameras can be used to create automated 29 

quality management systems for black soldier fly larvae. 30 

 31 

Keywords: Black soldier fly larvae, Feed insect, Quality monitoring, Chemical 32 

image, Hyperspectral image.  33 

34 
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Introduction 35 

Insects have a rich protein content and are being suggested as a new alternative food 36 

source. Although entomophagy, or the consumption of insects, varies depending on the 37 

region, humans have already consumed over 2,111 species of insects since the past (Van 38 

Huis, 2013; Jongema, 2017). Recently, edible insects have been distributed in processed 39 

forms, such as protein bars, nuggets, and schnitzels, in European countries. However, 40 

there is still a clear aversion to eating insects (Hartmann et al., 2015), and experts have 41 

reported that the industrialization of edible insects may take some time because of the 42 

risks posed by allergic factors (Jensen and Lieberoth, 2019). However, using insects as 43 

animal feed poses fewer aversion and safety issues compared with edible insects. Feed 44 

insects can serve as a substitute for traditional feed ingredients, and they may serve as 45 

alternatives to grain feed such as soybean and corn, as well as fishmeal (Van Raamsdonk 46 

et al., 2017; Nogales-Mérida et al., 2019). In the feed market especially, there has been a 47 

trend towards reducing the proportion of soybeans used in feed by establishing mixing 48 

ratios because of the decrease in crop production caused by global warming (Kępińska-49 

Pacelik and Biel, 2022; Boerema et al., 2016). Edible insects are also being considered 50 

fishmeal substitutes in feed because of the scarcity of fishery resources and to reduce feed 51 

costs. Nogales-Mérida et al. (2019) reported that many feed insects are among the best 52 

alternatives for partially or completely replacing fishmeal because they contain the 53 

essential amino acids and fatty acids necessary for aquaculture. Various insect species 54 

that can be used as feed are gaining attention because of their potential for mass 55 

production. These include larvae of the black soldier fly (Hermetia illucens), mealworm 56 

(Tenebrio molitor), supermealworm (Zophobas morio), housefly (Musca domestica), and 57 

crickets (Acheta domesticus) (Van Raamsdonk et al., 2017). They are being developed 58 

into feed products for various animals such as pigs (Veldkamp and Bosch, 2015; Ji et al., 59 
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2016), poultry (Pieterse et al., 2019; Cullere et al., 2017), fish (Nogales-Mérida et al., 60 

2019; Zarantoniello et al., 2020), and are even used in pet food (Kępińska-Pacelik and 61 

Biel, 2022). The possibility of using them as cattle feed has also been discussed (Drewery 62 

et al., 2022). Ji et al. (2016) conducted a study on the nutritional composition and 63 

efficiency of insect feed. They fed Tenebrio molitor, Musca domestica larvae, and 64 

Zophobas morio powders as dietary proteins to early weaned piglets and reported that 65 

they provided benefits in terms of high amino acid utilization and decreased diarrhea. 66 

They also reported that insect feed did not negatively affect the growth rate of early 67 

weaned piglets. In addition, Caimi et al. (2020) reported no significant difference in the 68 

growth rate of Siberian sturgeon juveniles fed feed mixed with approximately 25% 69 

defatted H. illucens powder compared with those fed regular feed.  70 

Insects are animal proteins, but the use of animal proteins as livestock feed has been 71 

difficult since the emergence of bovine spongiform encephalopathy (van Raamsdonk et 72 

al., 2017). However, regulations regarding feed insects are gradually relaxing in each 73 

country and significant industrial growth is expected. In particular, black soldier fly larvae 74 

(BSFL) have a lower protein content than other insects, but higher fat and chitin content, 75 

making them a valuable feed ingredient. According to Nam et al. (2022) the protein 76 

content of BSFL is approximately 40-43%, while mealworms (Tenebrio molitor) have a 77 

protein content of 46-57%, house crickets (Gryllus bimaculatus) range from 58-60%, and 78 

house flies (Musca domestica) range from 57-63%. Additionally, the fat content was 79 

reported to be around 28-30% for BSFL, 24-37% for Tenebrio molitor, 14-16% for 80 

Gryllus bimaculatus, and 7.3-25% for Musca domestica. BSFL can be raised on food 81 

waste, which is closely related to the United Nations’ Sustainable Development Goals 82 

and corporate Environmental, Social, and Governance goals, because they can also 83 

produce valuable vermicompost. Additionally, adult black soldier flies do not have a 84 
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mouth, so they do not transfer pathogens as other flies (Sheppard et al., 2002). The black 85 

soldier fly typically lays approximately 500 eggs and hatches within 4 d, and the larvae 86 

decompose organic matter for 14 d (Bessa et al., 2020; Diclaro and Kaufman, 2009).  87 

The black soldier fly farming industry is expected to grow rapidly in the insect feed 88 

market; therefore, it is essential to establish a mass-production automation system 89 

(Surendra et al., 2020). There are studies related to mass production automation of black 90 

soldier flies, such as the study on the automatic breeding system for black soldier flies 91 

conducted by Erbland et al. (2021), and it has been reported that Hexafly, Nasekomo 92 

(Thrastardottir et al., 2021), and Korea’s CIEF are currently producing black soldier flies 93 

in an automated factory format. With recent advancements in computer and sensing 94 

technologies, process automation has progressed to smart factorization. In particular, 95 

when producing feed insects, the small size of insects and large quantities required for 96 

processing make quality control difficult. Failure to manage quality can result in 97 

unpleasant odors and mold, which can threaten the quality of the final product (Kępińska-98 

Pacelik and Biel, 2022). In particular, when used as animal or fish feed, it is essential to 99 

understand the general nutrient content of each ingredient. Therefore, there is a need for 100 

a selection technology that can quickly and accurately evaluate the nutrient content. 101 

Spectrometer-based studies of edible and fed insects have also been conducted. Benes et 102 

al. (2022) classified flour and seven types of insect powder and separated them. They 103 

reported that even mixtures of flour and insect powder could be distinguished with an 104 

error rate of 0.65%. Unlike conventional point measurement spectrometers, hyperspectral 105 

imaging (HSI) can measure the chemical characteristics of samples as images, making it 106 

possible to utilize them for the quality control of heterogeneous products such as food 107 

and feed. Furthermore, based on the acquired spectrum, a chemical image can be created, 108 

allowing the visualization of the chemical composition of the sample. Cruz-Tirado et al. 109 
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(2023) used a hyperspectral camera in the range of 928–2524 nm to determine the 110 

individual protein content of BSFL. They developed algorithms using the support vector 111 

machine regression (SVMR) and partial least-squares regression (PLSR) analysis 112 

methods and reported R2 of prediction set values ranging from 0.731 to 0.773, with root 113 

mean square error of prediction (RMSEP) values ranging from 1.567% to 1.664%. 114 

Although studies on insect detection in grains and sex determination using HSI have been 115 

conducted, as well as on the classification of flour and insect powder, research on 116 

monitoring the nutritional components of feed insects for use as feed has not yet been 117 

extensively conducted.  118 

The final color of black soldier fly larvae (BSFL) powder can vary depending on the 119 

killing and drying methods (Saucier et al., 2022; Larouche et al., 2019). One of the main 120 

reasons for this color change is the oxidation of polyphenols and the formation of 121 

complexes between iron and polyphenols during the drying process of BSFL (Larouche 122 

et al., 2019; Janssen et al., 2019a; Janssen et al., 2019b). Given that the color of a sample 123 

can be influenced by various factors, detection methods in the visible light range may be 124 

more sensitive to the color variations of the sample rather than its functional groups, such 125 

as -OH and -CH groups. Using a simple RGB camera or a visible/near-infrared (Vis/NIR) 126 

waveband range may pose difficulties in evaluating the quality of dried BSFL. 127 

Consequently, in this study, a shortwave infrared (SWIR) hyperspectral camera was 128 

employed for analysis. 129 

The SWIR camera, operating in the SWIR range (1000-2500 nm), demonstrates higher 130 

sensitivity to the chemical composition of the sample and is less affected by sample color 131 

compared to the Vis/NIR range (400-1000 nm). Although hyperspectral imaging (HSI) 132 

technology is widely utilized for food quality control, there is a need for optimization and 133 

experimental application processes before its installation in sorting machines becomes 134 
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feasible. Thus, the objective of this study was to develop an algorithm using a SWIR-135 

based HSI system to evaluate the proximate compositions (moisture, crude protein, crude 136 

fat, crude fiber, and crude ash) of dried BSFL and to create an optimized model suitable 137 

for sorting machines. Ultimately, this study aimed to explore the potential of using HSI 138 

for quality monitoring of feed insects based on the algorithm developed. 139 

 140 

Materials and Methods 141 

Sample preparation 142 

The fifth instar live larvae of the black soldier fly (Hermetia illucens) used in this study 143 

were purchased 2 kg from Entomo, a Chung-Ju, South Korea. They were divided into 144 

nine groups of 200 g each and stored frozen at -20°C until just before the experiment. The 145 

experimental design was a 3 × 3 factorial design with three different drying temperatures 146 

(50°C, 60°C, and 70°C) and three different drying times (1 h, 2 h, and 3 h), resulting in 147 

nine different treatment groups. Drying was performed using a hot-air food dryer (LD-148 

918BT, Liquip, Hwasung, Korea) with an air velocity of 2.5-3.0 m/s, and the dried 149 

samples were vacuum-packed and stored at room temperature (23–25°C) in a desiccator 150 

until hyperspectral image acquisition. After drying, 20 g of each sample was placed in a 151 

Petri dish (Ø 90 mm, 15 mm) for SWIR HSI. The samples were homogenized for 1 min 152 

using a grinder (A11 basic, Ika Werke GmbH & Co., Staufen, Germany) after imaging. 153 

The samples were transported to a chemistry laboratory for proximate component 154 

analysis. 155 

 156 

SWIR hyperspectral image acquisition 157 

The camera used was a line-scan camera system (Headwall Photonics, Fitchburg, MA, 158 

USA) capable of capturing 275 wavelengths ranges of 894-2504 nm (Fig. 1). Six 159 
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tungsten-halogen lamps (100 W, 12 V, Light Bank; JCR 12V, Ushio Inc., Tokyo, Japan) 160 

connected to fiber optics were used as light sources for imaging. The imaging sample was 161 

moved towards the camera using a DC motor-driven movable stage to obtain a 162 

hyperspectral image. The speed of the movable stage during the line scan was set at 163 

3.48 mm/s, and the scan range was set to 600 scans/sample. The obtained hyperspectral 164 

image was in the form of a 3D hypercube with two spatial coordinates (x- and y-axes) 165 

and a wavelength range (λ) dimension, with a final size of 384 (x) × 700 (y) × 275 (λ). 166 

For data analysis, only the wavelength range of 1000–2350 nm was used to remove sensor 167 

noise, resulting in 232 wavelengths (Fig. 2). 168 

 169 

Proximate content analysis 170 

After the hyperspectral imaging process, the samples were ground for a period of 1 171 

minute using a grinding mill (A11 basic, IKA Works GmbH & Co. KG, Staufen, 172 

Germany). Proximate composition analysis was conducted by repeating the procedure 173 

three times, according to the AOAC method (AOAC, 2005). Moisture content was 174 

determined by drying the samples (1.0 g) at 105°C for 24 h. The moisture content was 175 

calculated using Equation (1) after 24 h of drying. 176 

 177 

Moisture contents (%) =  
(Weight before drying - Weight after drying)

Weight before drying
× 100   (1)  178 

 179 

The crude protein content was analyzed using the Kjeldahl method. Approximately 180 

0.5 g of each sample was decomposed by adding a catalytic agent (1000 Kjeltabs S/3.5, 181 

FOSS TECATOR) and 12 mL of H2SO4. The sample was heated at 420°C for 1 h and 182 

cooled. The nitrogen content was measured using a Kjeltec device (Kjeltec auto 2300 183 

Analyzer, FOSS TECATOR, Höganäs, Sweden), and the crude protein content was 184 
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calculated by multiplying the nitrogen coefficient (4.76). Typically, a nitrogen coefficient 185 

of 6.25 is used for animal protein. However, there is a possibility of overestimating the 186 

crude protein content in insects owing to the presence of nitrogen in chitin. Therefore, 187 

recent studies have used a nitrogen coefficient of 4.76 to calculate the crude protein 188 

content (Janssen et al., 2017; Cruz-Tirado et al., 2023). The crude fat content was 189 

analyzed by ether extraction using a Soxhlet system. Crude fiber analysis was performed 190 

using filter bags (Ankom Technology, Macedon, NY, USA), and the difference between 191 

the weight of the insoluble residue when treated with 1.25% H2SO4 and 1.25% NaOH 192 

solution and the weight after painting was expressed as a percentage of the sample. The 193 

ash contents of the samples was analyzed using the combustion method. Approximately 194 

2 g of each sample was heated by electric combustion for analysis. The sample was then 195 

placed in a 600°C electric furnace (CT-DMF2, Coretech Co., Korea) for 2 h. After cooling 196 

for 40 min in a desiccator, the sample was weighed to determine the amount of ash present 197 

by calculating the difference in weight before and after combustion. 198 

 199 

Statistics of reference data 200 

A two-way ANOVA test was conducted to analyze the significant differences in the 201 

biochemical composition results of the sample according to the drying time and 202 

temperature, and the interaction P value was calculated for both drying time and 203 

temperature. A one-way ANOVA test was conducted again for each drying time and 204 

temperature, and a post hoc analysis was performed using Duncan’s multiple range test 205 

for samples with significant differences (p<0.05). Basic statistics were obtained using the 206 

R statistical program (version 4.1.2), with the CRAN mirror set to the USA (CA1) and 207 

‘Agricolae’ libraries. 208 

 209 
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Hyperspectral image intensity calibration 210 

To mitigate the influence of external environmental factors, such as dark current noise 211 

and non-uniform lighting, spectral intensity calibration was conducted. For this purpose, 212 

white and dark references were acquired during image acquisition. The white reference 213 

was obtained using a white Teflon board (100% reflectance, 30 cm × 30 cm × 1 cm), 214 

whereas the dark reference was obtained by closing the camera lens cap and capturing an 215 

image with the light source turned off. The intensity calibration of the acquired 216 

hyperspectral image was performed using Equation (2) 217 

𝑋𝑐 =  
𝑇𝑖𝑗

𝑅(λ) −  𝑇𝑖𝑗
𝐷(λ)

𝑇𝑖𝑗
𝑊(λ) −  𝑇𝑖𝑗

𝐷(λ)
      (2) 218 

Wwhere 𝑇𝑖𝑗
𝑅(λ) represents the spectrum of the sample at the pixel, 𝑇𝑖𝑗

𝐷(λ) represents 219 

the spectrum value of the dark reference image, and 𝑇𝑖𝑗
𝑊(λ) represents the spectrum of 220 

the white reference. The final 𝑋𝑐  value represented a pixel-wise intensity-calibrated 221 

hyperspectral image, which is a relative intensity spectral image. Finally, the wavelength 222 

is extracted from the processed hyperspectral images. 223 

 224 

Image processing and spectral data extraction 225 

The calibrated image was used to extract spectra by selecting the region of interest (ROI), 226 

and a masking image was created by setting the threshold value to 0.2 to select only the 227 

sample area. The masking image was then multiplied by all wavelength images to 228 

separate only the sample area of the spectrum (Fig. 2). The spectrum was extracted from 229 

all the pixels of the separated sample area and averaged to obtain the mean spectrum. Ten 230 

average spectra were extracted for each sample image, and 600 sample spectra were 231 

obtained and used for the subsequent multivariate analyses. 232 

 233 
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Preprocessing of spectral data 234 

The acquired spectral data contain considerable noise. Many external factors, such as 235 

baseline correction, band shift, and light scattering, hinder the acquisition of pure data, 236 

and spectra preprocessing is usually performed for noise removal during the analysis. 237 

Normalization and deviation methods are commonly used for preprocessing. As there is 238 

no single best preprocessing technique, this study utilized Seven preprocessing methods 239 

to pre-process the acquired wavelengths. Three normalization methods (minimum, 240 

maximum, and range normalization), standard normal variate (SNV), multiplicative 241 

scatter correction (MSC), Savitzky-Golay 1st derivation, and Savitzky-Golay 2nd 242 

derivation were used in the spectral preprocessing process in this study. 243 

 244 

Building a regression model 245 

Partial least squares regression (PLS-R) is a multivariate analysis method used to 246 

evaluate the correlation between various independent variables X and a dependent 247 

variable Y (Wold et al. 1984). PLS-R was used to predict the dependent variable Y using 248 

a regression equation. The PLS method used in this study is described by Equations (3) 249 

and (4). The PLS regression equation generates a regression model using the spectral data 250 

(X matrix, N samples × K wavelengths) and acquired parameter values as a reference (Y 251 

matrix, N samples × 1). 252 

X = TPT + E   (3) 253 

Y = UQT + F   (4) 254 

In this context, Y is a matrix of dependent variables representing moisture, crude 255 

protein, crude fat, crude fiber, and crude ash content in the BSFL. X is an n × p matrix of 256 

independent variables corresponding to each spectral variable, where n is the number of 257 

spectra in the sample and p represents each wavelength range (nm). Matrix X is composed 258 
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of a loading matrix P, a score matrix T, and an error matrix E. Matrix Y is composed of a 259 

loading matrix Q, a score matrix U, and an error matrix F. To develop a regression model, 260 

70% of the 600 data points were randomly assigned to the calibration set, and the 261 

remaining 30% were assigned to the validation set during the spectrum analysis. Finally, 262 

420 and 180 data points were included in the calibration and validation datasets, 263 

respectively. 264 

 265 

Regression model performance assessment 266 

In this study, root mean square error (RMSE) was used to calculate the model’s error rate 267 

(Lee et al., 2013). The formula for calculating RMSE is shown in Equation (5). 268 

RMSE =  √
∑ (𝑦𝑖, actual − 𝑦𝑖, predicted)2𝑛

1

𝑛
            (5) 269 

Here, yi,actual and yi,predicted represent the actual reference values obtained through chemical 270 

experiments and the estimated predicted values from the developed PLS model, 271 

respectively. In addition, ‘n’ represents the number of actual samples. The model results 272 

were expressed as the coefficient of determination (R2), which was calculated using 273 

Equation (6). 274 

𝑅2 =  
∑ (ŷ𝑖 − ȳ)2

𝑖

∑ (𝑦𝑖 − ȳ)2
𝑖

             (6) 275 

 276 

Predicted chemical image 277 

One advantage of HSI is its ability to generate chemical images of component 278 

distributions by simultaneously measuring spectral and spatial data (Faqeerzada et al., 279 

2020). The beta coefficients obtained through the PLS-R analysis were used to generate 280 

a chemical image of the sample. In this process, the hyperspectral image was transformed 281 

into a 2D matrix, which was then multiplied by the PLS regression coefficients. The 282 
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resulting 2D matrix was then transformed back into a 3D image, and the PLS chemical 283 

image was generated by summing the corresponding pixels of all band images. The 284 

chemical formula is given in Equation (7): 285 

Chemical image =  ∑ 𝐼𝑖𝑅𝑖 + 𝐶𝑛
𝑖=1  (7) 286 

where Ii represents the hypercube image measured at the ith wavelength band, Ri 287 

represents the beta coefficient values derived from the PLSR model, and C represents a 288 

constant. n denotes the number of wavelengths used in this study. All analyses and 289 

visualizations related to the wavelengths were performed using MATLAB 2021b 290 

(MathWorks, Natick, MA, USA). Fig. 3 shows the experimental flow. 291 

 292 

Results and Discussion 293 

Proximate composition 294 

Table 1 shows the proximate component analysis results for the dry matter of BSFL. 295 

The moisture content of the larvae decreased significantly with increasing drying time 296 

and temperature (p<0.05). The moisture content decreased the most at 70°C during drying. 297 

In this study, the larvae were dried at 70°C for 3 h, which was generally considered to be 298 

the end of the drying process, and the moisture content of the treatment group was found 299 

to be about 14.4%. Chia et al. (2020) reported that the moisture content of BSFL was 300 

around 9–12%. The crude protein content of the larvae increased gradually with 301 

increasing drying time and temperature, and this increase was more significant at higher 302 

temperatures (p<0.05). In this study, the highest crude protein content (26.2%) was 303 

observed in the treatment group dried at 70°C for 3 h. Generally, the protein content of 304 

BSFL powder is reported to be approximately 30–52.9% (Bessa et al., 2020), and Chia et 305 

al. (2020) reported that the protein content of BSFL was approximately 31.7% when fed 306 

agricultural byproducts. This study showed similar results to those of previous studies.  307 
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The crude fat content also increased from 30.1% to 46.2% with increasing drying time 308 

and temperature (p<0.05). As the moisture content decreased, the increasing trend in the 309 

proximate components in the samples led to an increase in the g/100 g protein and fat 310 

percentages, which in turn increased the total crude protein and fat content. In this study, 311 

the fat content was about 46.2% in the sample dried at 70°C for 3 h, which was considered 312 

the end of the drying process. Chia et al. (2020) reported that the fat content of BSFL 313 

varied depending on the feed (p<0.0001) and ranged from 9.5% to 49.0%. Caligiani et al. 314 

(2018) analyzed BSFL using the Soxhlet ethyl ether extraction method and reported a fat 315 

content of approximately 37.1%. Li et al. (2021) reported that fat content varied 316 

depending on the diet of the larvae. The crude fiber content (%) showed a gradual increase 317 

with increasing drying time at 60°C and 70°C, except for the 50°C dry treatment group. 318 

In this study, the crude fiber content increased significantly from 2.7% to 6.8% at the end 319 

of the drying process (p<0.05). Park et al. (2013) reported that the crude fiber contents of 320 

BSFL and pupae were 7.47% and 7.63%, respectively. In this study, the crude fiber 321 

content of BSFL significantly increased with increasing drying time and temperature 322 

(p<0.05) and reached 6.4% after drying for 3 h at 70°C. Park et al. (2013) reported that 323 

BSFL’s dry matter crude fiber content was about 9.41%, and Chia et al. (2020) reported 324 

a crude fiber content range of 6.7–12.1%. In conclusion, as the drying time increased in 325 

this study, the moisture content decreased, and the amounts of crude protein, crude fat, 326 

crude fiber, and ash increased. Furthermore, the results were within a range similar to 327 

those reported in other studies. 328 

 329 

Characteristic of reflectance spectra of the BSFL 330 

Fig. 4 shows the SWIR hyperspectral spectral data of the BSFL. Each spectrum shows 331 

the average spectrum of the group according to drying temperature and drying time. It 332 
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was confirmed that the wavelength intensity and pattern changed with drying time and 333 

temperature within a specific wave range. These results suggest the possibility of a 334 

proximate composition prediction using the wavelength of BSFL in the SWIR region. 335 

The average spectrum can be used to observe the overall spectrum pattern for each group 336 

by comparing the approximate spectral differences between the groups through spectrum 337 

intensity and shape differences. However, spectrum intensity can have a high standard 338 

deviation owing to noise factors such as spectrum shifts, making it more practical to 339 

compare spectrum patterns rather than spectrum intensity (Park et al., 2021). In the case 340 

of Fig. 4, it is difficult to confirm the trends owing to spectrum shifts. Therefore, instead 341 

of comparing the spectral intensity using methods such as ANOVA, we aimed to build a 342 

proximate component prediction regression model for each group by conducting PLS-R 343 

analysis. 344 

 345 

Regression model and Beta coefficient result 346 

Moisture regression model and beta coefficient 347 

The results of the proximate component prediction model for the BSFL are listed in 348 

Table 2 and Fig. 5. The predicted results for moisture content showed a range of R2
P 0.96-349 

0.98 and an RMSEP range of 1.83~2.59%. The preprocessed model showed higher results 350 

than when using raw spectra, with the highest results shown in the model that underwent 351 

maximum normalization (R2
P=0.98, RMSEP=1.83%). To date, no studies have been 352 

conducted on the development of algorithms to predict the proximate component contents 353 

of edible or feed insects. However, the accuracy of the model can be verified by 354 

comparing it with similar experimental results. Yu et al. (2019) used a Vis/NIR 355 

hyperspectral camera to analyze the moisture content of beans using the PLSR method, 356 

with 12 wavelengths and showing Rp=0.966 and RMSEP=5.105%. Huang et al. (2014) 357 
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conducted an experiment to monitor the change in moisture content of beans over drying 358 

time using Vis/NIR, showing Rp values of 0.901–0.973 and RMSEP values in the range 359 

of 4.6–9.2%. The results of the moisture prediction model exhibited an appropriate level 360 

of accuracy.  361 

Fig. 6 shows the beta coefficients of the predicted model. In general, if the beta 362 

coefficient is high or low, the model should be weighed. In this moisture content 363 

prediction model, the wavelengths of 1077, 1165, 1224, 1347, 1412, 1741, and 1882 nm 364 

were determined to have weights. Wavelengths related to -OH groups significantly impact 365 

model construction in predicting moisture content. Gergely and Salgó (2003) studied 366 

three absorption wavelength regions of water and concluded that the ranges of 1890–1920 367 

nm, 1400–1420 nm, 1150–1165 nm, and 1000-1100 nm were related to moisture. Among 368 

them, the 1150–1165 nm range was reported to be a combination of the first overtone of 369 

the O-H stretching and bending bands at 1165 nm. Furthermore, 1425 nm is known as the 370 

first overtone region of the -CH and -OH bonds. In this study, it was determined that the 371 

wavelength in the 1412 nm region helps predict moisture content, and it is also believed 372 

that factors in this region contribute to this effect. According to Barbin et al. (2013), the 373 

1400–1600 nm wavelength range is known as the stretching region of -OH and -NH. The 374 

peak observed in the 1412 nm region in this study is believed to be a signal generated by 375 

this overtone. Williams and Norris (1987) reported that the wavelength range of 1414 nm, 376 

which is similar, is the O-H stretch first overtone. The wavelengths of 1077, 1224, and 377 

1347 nm detected in the range of 1000–1350 nm are signals generated by -CH bonding 378 

(Hoffman et al., 2023; Bobasa et al., 2021). The 1080 nm region is known as the -CH 379 

bonding region (Muradov and Sannikov, 2007), and the 1077 nm region is considered 380 

similar to the -CH bonding region. Kucha et al. (2020) reported that a wavelength of 381 

1224 nm, which is close to the -CH overtone region in the 1220 nm range, can be used to 382 
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detect lipids or fatty acids. The overtone region of the -CH bonding contributes to the 383 

prediction of moisture content because the proximate compositions of the sample are 384 

interdependent, and their percentages add up to 100%. Therefore, when the moisture 385 

content decreased, the percentage of lipids in the sample increased, which was detected 386 

as a weight in the moisture content prediction. Holman and Edmondson (1956) explained 387 

that the strong bands around 1740 and 1770 nm in their study of pure fatty acids and 388 

triglycerides were derived from the C-H vibration of CH2 groups. The first overtone peak, 389 

1880 nm, is known as the absorbance of water and ester (Koumbi-Mounanga et al., 2015). 390 

The wavelengths detected at 1741 nm and 1882 nm are believed to be generated by the 391 

corresponding components. 392 

 393 

Crude protein regression model and beta coefficient 394 

For crude protein, the R2
P values ranged from 0.95 to 0.99, and the RMSEP values ranged 395 

from 0.55 to 0.99%. The maximum normalization method exhibited the highest accuracy 396 

(R2
P=0.99, RMSEP=0.55%). Cruz-Tirado et al. (2023) conducted an experiment to 397 

predict the protein content in individual BSFL using a near-infrared (NIR) spectrometer. 398 

They constructed a model using SVMR and PLSR. They reported R2
p values ranging from 399 

0.731 to 0.773 and RMSEP values ranging from 1.57% to 1.66%. In this study, the authors 400 

attributed the low performance to the difficulty in accurately predicting the components 401 

owing to the overlap of the chitin signal with the protein signal. In contrast, the current 402 

study demonstrated a relatively high accuracy and low RMSEP compared to the previous 403 

study, which may be attributed to the inclusion of additional wavelength information for 404 

predicting moisture, crude protein, and crude fat content in the model. The beta 405 

coefficients for crude protein were 1224, 1353, 1394, 1541, 1735, 1882, and 1941 nm. 406 

Wavelengths of 1224, 1353, and 1735 nm were used to predict -CH in this case (Hoffman 407 
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et al., 2023; Bobasa et al., 2021). Cruz-Tirado et al. (2023) constructed a principal 408 

component (PC) model to predict proteins in BSFL and detected 1760 nm in PC1, which 409 

they reported to be the necessary wavelength for predicting fatty acids. In the current 410 

study, although there was a slight difference in the wavelength, the wavelength range of 411 

1735 nm was assumed to be a signal from the –CH bond because of its similarity to the 412 

necessary wavelength reported by Cruz-Tirado et al. (2023). In addition, wavelengths of 413 

1394 and 1541 nm were also detected in the beta coefficients for moisture content and 414 

belonged to the overtone regions of -NH and -OH, which are overlapping wavelengths 415 

for predicting crude protein. Furthermore, 1882 nm was considered to be the beta value 416 

associated with -OH. According to Cruz-Tirado et al. (2023), the signal at 1900 nm is 417 

assumed to originate from -NH, and the signal at 1941 nm is considered to originate from 418 

this -NH region. 419 

 420 

Crude fat regression model and beta coefficient 421 

According to the study, the prediction of the crude fat content showed an R2
P range of 422 

0.87-0.91 and an RMSEP of 1.34–1.67%, and the best performance was achieved by mean 423 

normalization (R2
P =0.91, RMSEP=1.34%). According to Caporaso et al. (2021), the 424 

standard deviation (SD) of the AOAC method 922.06 for fat content analysis by acid 425 

hydrolysis ranges from 0.7% to 7.5% depending on the type of food analyzed. Therefore, 426 

the model prediction results of this experiment are considered to be applicable to 427 

nondestructive tools. The beta coefficients for fat content were 1224, 1288, 1412, 1723, 428 

and 1888 nm. The peaks at 1224, 1288, and 1723 nm are associated with the overtone 429 

region related to –CH. Choi et al. (2021) stated that this region constitutes fat-and fatty 430 

acid-related areas in the wavelength range of 1600–1800 nm. In addition, 1412 nm and 431 

1888 nm were identified as the regions associated with-OH. The reason why the 432 
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wavelength associated with –OH (1412, 1888 nm) was detected as an important 433 

wavelength for crude fat prediction is that the content of the proximate composition is 434 

calculated in %. When the moisture content of a proximate composition decreases, the % 435 

unit of other crude protein and crude fat, which are relatively reference values, increases. 436 

Based on this result, it is judged that the wavelength region related to moisture also affects 437 

the construction of the crude fat model. 438 

 439 

Crude fiber regression model and beta coefficient 440 

The R2
P of the crude fibers ranged from 0.85 to 0.89, and the RMSEP ranged from 0.46% 441 

to 0.53%. In terms of latent variables (LV), crude fiber showed a diverse range of 14–17 442 

LVs, indicating that the model is complex compared with other models for proximate 443 

composition. Among the preprocessing models for crude fiber, the model with mean 444 

normalization exhibited the highest accuracy (R2
P =0.89, RMSEP=0.46%). The beta 445 

coefficients for the crude fiber model in Fig. 6 show that 16 wavelengths (1142, 1171, 446 

1194, 1241, 1388, 1424, 1541, 1629, 1729, 1894, 1911, 2088, 2146, 2217, 2264, 2270, 447 

and 2270 nm) were relatively important peaks compared to other wavelengths. Chitin is 448 

a representative example of a major component of crude fiber. Chitin is a polysaccharide 449 

structure composed of multiple N-acetyl-D-glucosamine molecules containing nitrogen. 450 

The exoskeletons of insects and crustaceans, including BSFL, are composed of chitin. 451 

Brigode et al. (2020) conducted a study to evaluate the properties of biopolymer films 452 

produced using chitin from BSFL. And also this chitin can be applied to making other 453 

functional materials like chitosan. Chitosan can be obtained due to the deacetylation of 454 

chitin, has antibacterial properties against fungi and bacteria, and can be used to reduce 455 

the use of antibiotics in animals (Riaz Rajoka et al., 2020). Typically, the chitin content 456 

of black soldier fly prepupae is reported to be approximately 9-10% (Soetmans et al., 457 
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2020). Cruz-Tirado et al. (2023) reported that the regions at 2150 nm, 2256 nm, and 458 

2337 nm are associated with chitin content and are connected with 2 × amide I + 2 × 459 

amide II, O-H stretching + O-H deformation, and C-H stretching + C-H deformation 460 

(Cruz-Tirado et al., 2023; Osborne, 2006; Shetty et al., 2012). Cruz-Tirado et al. (2023) 461 

estimated that the 2000–2500 nm range is associated with chitin. Although crude fiber 462 

does not completely represent chitin, it is assumed that chitin is mixed with some of the 463 

substances that make up crude fiber. In this study, wavelengths ranging from 2100 to 464 

2350 nm were helpful in predicting the crude fiber content. 465 

 466 

Crude ash regression model and beta coefficient 467 

The model accuracy of the crude ash sample had an R2
P range of 0.94-0.96, and an 468 

RMSEP range of 0.25-0.32%. Among them, the preprocessing method using the mean 469 

normalization technique showed the highest accuracy for R2
P at 0.96 and the lowest 470 

RMSEP at 0.25% (Table 2). The main beta coefficient wavelengths of the ash samples 471 

were found in the 1224, 1353, 1400, 1735, and 1923 nm regions, and their shapes were 472 

similar to those of the beta coefficients of crude protein (Fig. 6). In theory, energy is not 473 

absorbed by inorganic substances such as ash in the NIR region. Therefore, the ash 474 

content cannot be directly determined by NIR (He et al., 2023). However, many 475 

wavelengths in the NIR region used in the calibration development process are expected 476 

to be predicted by correlation with the total amount of organic compounds and moisture 477 

because they provide important information. (Pojić et al., 2010).  478 

 479 

Chemical image of BSFL 480 

Unlike spectrometers, hyperspectral images contain wavelength information for each 481 

pixel, making it possible to visualize information that is difficult to see with the naked 482 
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eye. Therefore, in this study, chemical images were created for each component, including 483 

moisture, crude protein, crude fat, crude fiber, and crude ash content, and visualized 484 

according to their respective concentrations (Fig. 7). Red pixels represent high 485 

concentrations and dark blue pixels indicate low concentrations. As the drying time and 486 

temperature increased, the moisture content decreased gradually, which was monitored 487 

by observing an increasing number of blue pixels. For crude protein, crude fat, crude fiber, 488 

and crude ash, the number of red pixels increased with the drying time and temperature. 489 

It is confirmed that the proposed prediction model performs well. 490 

 491 

Conclusion 492 

In this study, we developed a proximate component prediction algorithm based on 493 

SWIR HSI in the 1000–2350 nm range for dried raw materials, according to the drying 494 

time and drying temperature of BSFL. A model was developed for moisture, crude protein, 495 

crude fat, crude fiber, and crude ash contents. Through this study, it is anticipated that it 496 

will be possible to classify defective factors and incompletely dried individuals in the 497 

dried raw materials of BSFL. The results of this study are deemed suitable for detecting 498 

the nutritional components in BSFL and for use in the manufacturing of mixed feed by 499 

feed companies. We anticipate that this will enable quality control of dried raw materials 500 

from BSFL. However, further development of a rapid detection technology for BSFL is 501 

necessary for real-time sorting machine production, and additional research is required 502 

for this purpose. In particular, for BSFL, it is necessary to classify them based not only 503 

on the feed source but also on the individuals raised using food waste and the larvae used 504 

for composting livestock manure, as their nutritional components can vary depending on 505 

the feed source. In Korea, BSFL raised using livestock manure cannot be used as feed; 506 

therefore, it is necessary to develop a classification technology for such larvae. We hope 507 
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that the results of this study can be utilized as a basis for the development of sorting 508 

machines for BSFL. 509 

  510 
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 732 
Fig. 1. The SWIR Hyperspectral sample images of black soldier fly larvae samples. 733 

  734 
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 735 

Fig. 2. Image acquisition step using SWIR hyperspectral imaging system. 736 
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 738 

 739 
Fig. 3. The algorithm development workflow for making black soldier fly larvae 740 

proximate content prediction model. 741 
742 
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 743 
Fig. 4. The results of range normalizationMSC preprocessed spectrum (1000-2350 nm) 744 

in black soldier fly larvae. 745 

  746 
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 747 

Fig. 5. The scattering plot of a prediction model for black soldier fly larvae proximate 748 

content. 749 
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 750 

Fig. 6. Beta coefficient of full wavelength range (1000 to 2350 nm) prediction models 751 
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 752 

Fig. 7. The chemical images of black soldier fly larvae. 753 

  754 
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Table 1. Black soldier fly larvae proximate composition (%) results 755 

Dry temperature 50℃  60℃  70℃  

SEM 

 P value 

Dry time 
1 

hour 
2 

hours 
3 

hours 
 

1 
hour 

2 
hours 

3 
hours 

 
1 

hour 
2 

hours 
3 

hours 
  

Temp 
(T1) 

Time 
(T2) 

Inter 
(T1× 

T2) 

Moisture (%) 54.2ax 52.0bx 48.8cx  48.6ay 43.7by 41.0by  45.4az 33.2bz 14.4cz  0.97  *** *** *** 

Crude protein (%) 9.9cz 10.3bz 11.2az  11.7by 14.0ay 14.2ay  12.4cx 18.1bx 26.2ax  0.40  *** *** *** 

Crude fat (%) 30.1cz 31.6bz 33.0az  32.7by 34.4ay 35.2ay  34.9cx 39.5bx 46.2ax  0.41  *** *** *** 

Crude fiber (%) 3.2by 3.3by 4.0ay  3.8bx 4.7bx 5.9ax  4.1bx 4.3bx 6.4ax  0.12  *** *** ** 

Crude ash (%) 2.7cz 2.8bz 3.0az  3.2by 3.7ay 3.7ay  3.2cx 4.8bx 6.8ax  0.10  *** *** *** 

Temp: p-value of the dry temperature; Time: p-value of the dry time; Inter(T1×T2): interaction p-value of the dry temperature with 756 
the dry time. *: p-value < 0.05; **: p-value <0.01, ***: p-value <0.001; SEM: Standard error of the mean. 757 
a-c: Mean values within each row with different superscripts are significantly different about drying time (p-value < 0.05). 758 
x-z: Mean values within each row with different superscripts are significantly different about drying temperature (p-value < 0.05). 759 
Proximate contents were calculated as dry matter (DM). 760 

761 
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Table 2. Prediction model results of black soldier fly larvae proximate contents using the 762 

SWIR hyperspectral imaging system 763 

 764 

Parameter Preprocessing 

Whole insect sample  

Rc
2 

RMSEC 
(%) 

Rp
2 

RMSEP 
(%) 

LV  

Moisture 

Mean norm 0.97 1.80 0.98 1.92 5  

Max norm 0.97 1.79 0.98 1.83 5  

Range norm 0.95 2.22 0.96 2.44 4  

MSC 0.96 2.00 0.97 2.07 4  

SNV 0.96 1.97 0.97 2.05 5  

SG 1st 0.94 2.55 0.96 2.41 5  

SG 2nd 0.93 2.71 0.96 2.59 3  

Raw 0.94 2.59 0.96 2.46 5  

Crude protein 

Mean norm 0.98 0.59 0.98 0.57 4  

Max norm 0.98 0.58 0.99 0.55 5  

Range norm 0.97 0.73 0.97 0.78 4  

MSC 0.98 0.62 0.98 0.61 4  

SNV 0.98 0.61 0.98 0.59 5  

SG 1st 0.96 0.92 0.95 0.98 5  

SG 2nd 0.96 0.93 0.95 0.99 3  

Raw 0.96 0.92 0.95 0.97 5  

Crude fat 

Mean norm 0.91 1.34 0.91 1.34 4  

Max norm 0.90 1.44 0.90 1.41 4  

Range norm 0.89 1.47 0.90 1.44 4  

MSC 0.91 1.36 0.91 1.39 4  

SNV 0.91 1.37 0.91 1.38 5  

SG 1st 0.88 1.57 0.88 1.61 4  

SG 2nd 0.87 1.60 0.88 1.61 3  

Raw 0.87 1.63 0.87 1.67 4  

Crude fiber 

Mean norm 0.87 0.45 0.89 0.46 16  

Max norm 0.87 0.46 0.89 0.46 17  

Range norm 0.87 0.46 0.89 0.46 17  

MSC 0.85 0.48 0.85 0.53 15  

SNV 0.85 0.49 0.85 0.52 16  

SG 1st 0.87 0.46 0.86 0.51 14  

SG 2nd 0.86 0.47 0.85 0.53 14  

Raw 0.86 0.48 0.86 0.51 17  

Crude ash 

Mean norm 0.95 0.24 0.96 0.25 4  

Max norm 0.96 0.23 0.96 0.25 5  

Range norm 0.94 0.27 0.94 0.30 4  

MSC 0.95 0.25 0.96 0.26 4  

SNV 0.95 0.24 0.95 0.27 5  

SG 1st 0.93 0.29 0.95 0.30 5  

SG 2nd 0.92 0.30 0.94 0.32 3  

Raw 0.92 0.30 0.94 0.30 5  

SWIR: short wavelength infrared hyperspectral imaging system; Mean norm: mean normalization; Maximum norm: Maximum 765 
normalization; Range norm: Range normalization; MSC: multiplicative scatter correction; SNV: regular normal variate; SG 1st : 766 
Savitzky-Golay 1st derivation, SG 2nd : Savitzky-Golay 2nd derivation; Raw: Raw spectrum; RC

2: coefficient of determination of 767 
calibration set; RMSEC: root mean square error of calibration set; RP

2: coefficient of determination of prediction set; RMSEP: root 768 
mean square error of prediction set; LV: Latent variables 769 

 770 

 771 


