1 Isolation, characterization, and comparative genomics of the novel potential

- 2 probiotics from canine feces
- 3 Ngamlak Foongsawat¹, Sirinthorn Sunthornthummas², Kwannan Nantavisai³, Komwit Surachat^{4,5},
- 4 Achariya Rangsiruji⁶, Siriruk Sarawaneeyaruk¹, Kedvadee Insian¹, Sirapan Sukontasing⁷, Nuttika
- 5 Suwannasai¹ and Onanong Pringsulaka^{1,*}

- ¹Department of Microbiology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110,
- 8 Thailand
- ⁹ National Biobank of Thailand (NBT), National Science and Technology Development Agency,
- 10 Pathum Thani, 12120, Thailand
- ³Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok,
- 12 10110, Thailand
- ⁴Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of
- 14 Songkla University, Songkhla, 90110, Thailand
- ⁵Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University,
- 16 Songkhla, 90110, Thailand
- ⁶Department of Biology, Faculty of Science, Srinakharinwirot University, Bangkok, 10110,
- 18 Thailand
- ⁷Faculty of Veterinary Technology, Kasetsart University, Bangkok, 10900, Thailand
- 20 *Corresponding author. Tel: +66 2 649 5000 ext 18517; fax +66 2 260 0127.
- 21 E-mail: onanong@g.swu.ac.th
- 22 Running title Characterization of the novel potential probiotics from canine feces

Isolation, characterization, and comparative genomics of the novel potential

probiotics from canine feces

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

23

24

Abstract

Lactic acid bacteria (LAB) are commonly used as probiotics; however, not all LAB strains have the same beneficial effects. To successfully use LAB as probiotics in canines, LAB species should originate from the canine intestinal tract as they display host specificity. The objective of this study was to investigate the phenotypic and genomic traits of potential probiotic LAB isolated from canine fecal samples. Twenty LAB samples were evaluated for their potential probiotic characteristics including resistance to low pH, bile salts, hydrophobicity, auto-aggregation, coaggregation, adhesion to epithelia or mucosa, and production of inhibitory compounds. Additionally, we evaluated their safety and other beneficial effects to canine health, such as DPPH free radical scavenging, and β-galactosidase. Four strains demonstrated potential probiotic characteristics and were selected: Enterococcus hirae Pom4, Limosilactobacillus fermentum Pom5, Pediococcus pentosaceus Chi8, and Ligilactobacillus animalis FB2. Safety evaluations showed that all strains lacked hemolytic activity, could not produce biogenic amines, and did not carry any pathogenic genes. In addition, Lim. fermentum Pom5 and P. pentosaceus Chi8 displayed susceptibility to all antibiotics and concordant with the absence of antibiotic resistance genes. Based on their phenotypic and genomic characteristics, *Lim. fermentum* Pom5 and *P. pentosaceus* Chi8 were identified as potential probiotic candidates for canines.

43

44

- Keywords Limosilactobacillus fermentum, Pediococcus pentosaceus, Lactic acid bacteria,
- 45 Probiotics, Canine

Introduction

Canines are primarily carnivorous animals that naturally consume a meat-based diet (Macdonald and Rogers, 1984). However, in modern times, urban canines have shifted towards high-carbohydrate diets, leading to lifestyles that resemble those of humans. The gastrointestinal (GI) microbiota of these companion animals plays a crucial role in their health and well-being. Imbalances and alterations in the GI microbiota have been closely associated with various GI diseases and disorders in dogs, including diarrhea (Marks et al., 2011) and dysbiosis such as idiopathic inflammatory bowel disease (Suchodolski et al., 2012). As a result, there is a growing interest in understanding and modulating the gut microbiota to enhance overall canine health. The composition and function of the GI microbiota in dogs can be influenced by numerous factors, including diet, environmental exposures, and host genetics. Investigating the intricate relationship between the canine microbiota and health outcomes has the potential to uncover novel therapeutic approaches and preventive strategies.

Probiotics, defined as live microorganisms that confer health benefits when consumed in sufficient amounts (FAO/WHO, 2002), represent a promising avenue for optimizing the gut microbiota in dogs. The guidelines established by FAO/WHO (2002), the Food and Drug Administration, and the Ministry of Public Health of Thailand outline the requirements for the use of probiotic microorganisms in food, including accurate identification, determination of probiotic characteristics (such as resistance to gastric acid, bile salt resistance, adherence to mucosa, epithelial cells, and cell lines, as well as bile salt hydrolase activity), and safety assessment encompassing antimicrobial resistance (AMR), toxin production, and hemolytic activity (FAO/WHO, 2002; Binda et al., 2020; Notice of the Ministry of Public Health Vol. 128, 2022). These guidelines are equally applicable to canine probiotics.

Probiotic supplements have shown health-promoting properties in both healthy and diseased canines. They help regulate the gut microbiota, stimulate immune function, enhance nutrient metabolism, and contribute to the prevention and mitigation of various diseases, including digestive disorders, infectious diseases, cancer, and allergies (Michail et al., 2006). Probiotics isolated from fecal samples of healthy dogs can serve as potent dietary supplements for canines (Sivamaruthi et al., 2021). In recent years, whole-genome sequence analysis has emerged as a valuable tool for accurate identification and safety evaluation of probiotic products (Soni et al., 2020).

Recognizing the significant role of the GI microbiota in canine health, this study aims to isolate probiotic strains from canine feces and evaluate their potential probiotic properties. The evaluation encompasses a comprehensive range of parameters, including antibacterial activity, tolerance to acid and bile salts, auto- and co-aggregation adhesion, cytotoxicity, hydrophobicity, as well as β-galactosidase and antioxidant activities. Furthermore, whole-genome sequencing will be conducted to explore the presence of genomic determinants related to antimicrobial resistance (AMR), prophage elements, clustered regularly interspaced short palindromic repeats (CRISPR), bacteriocin-encoding genes, β-galactosidases, stress responses, cell adhesion, and secondary metabolite-related genes. This analysis will utilize publicly available databases to gain insights into the safety profile of the probiotics in silico. This study represents the first comprehensive investigation into the probiotic species Enterococcus hirae, Limosilactobacillus fermentum, Pediococcus pentosaceus, and Ligilactobacillus animalis, isolated from dogs. The investigation encompasses both phenotypic and genotypic analysis through whole genome sequencing. Thoroughly examining the characteristics of these probiotic strains will contribute to the development of interventions focused on enhancing the gastrointestinal health of dogs.

92

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

Materials and Methods

Bacterial strains and culture conditions

All strains of lactic acid bacteria (LAB) used in this study were cultivated on de Man, Rogosa, and Sharpe (MRS) agar plates or MRS broth (HiMedia, India) and incubated anaerobically at 37°C. The bacterial strains used for the inhibition tests were *E. coli* ATCC 25922, *B. cereus* JCM 2152, *Salmonella* Typhimurium TISTR 1471, and *S. aureus* ATCC 25923, which were propagated on nutrient agar slants (HiMedia, India).

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

100

94

95

96

97

98

99

LAB isolation

Fecal samples were collected from canines after authorization from the owners. Thirty healthy canines of different breeds (pomeranian (Pom), French bullcanine (FB), chihuahua (Chi), mongrel canines (MD), Shih Tzu (Shi), and poodle (PD)) were sampled for feces to isolate LAB strains. Research involving the use of animals was conducted in accordance with the guidelines of the Institutional of Animals for Scientific Purposes Development (IAD), Thailand, under the reference number U1-00263-2558. The fecal samples were serially diluted and spread onto MRS agar plates supplemented with 0.1% CaCO₃, followed by anaerobic incubation at 37°C for 24-48 h. Colonies exhibiting clear halos were purified and subjected to evaluation for morphological and biochemical characterization, following the method described by Schillinger and Lücke (1987). Amplification of the 16S rDNA was performed using a standard PCR protocol with universal primers 27F (5'-AGAGTTTGATCCTGGCTCAG-3') and 1492R (5'-TACGGYTACCTTGTTACGACTT-3') (Erko and Michael, 1991). The PCR products were separated by electrophoresis on a 1% (w/v) agarose gel and visualized after staining with GelRed (Biosharp, China). Subsequently, the PCR products were purified, and sequencing was carried out. Similar searches were performed in GenBank using BLAST (www.ncbi.nlm.nih.gov/blast).

Determination of probiotic properties

Growth under adverse conditions

A bacterial suspension of 1.5×10^8 CFU/mL (equivalent to McFarland No. 0.5 standard) was prepared, and 1% (v/v) LAB inoculum was added to MRS broth with varying concentrations of ox gall and at different pH levels (3.5 and 4.5). In both experiments, the positive control was prepared using MRS broth at pH 7, without the addition of bile salt. The negative control, on the other hand, consisted of MRS broth without any bacterial inoculation. Growth monitoring was by measurement of absorbance values at OD₆₀₀ after 24 h of culturing at 37 °C (Guo et al., 2010). Growth under unfavorable conditions was indicated as follows: OD equal to negative controls; no growth (-), OD greater than negative control and less than positive control; weak (+), or OD equal to positive control; good growth (++).

Detection of antibacterial activity

E. coli ATCC 25922, B. cereus JCM 2152, Salmonella Typhimurium TISTR 1471, S. aureus ATCC 25923, Latilactobacillus sakei JCM 1157, Lactiplantibacillus (Lactip.) plantarum ATCC 8014, Lactococcus (L.) lactis JCM 7638, L. lactis subsp. cremoris TUA 1344L, Leuconostoc (Leu.) mesenteroides JCM 6124, P. pentosaceus JCM 5885, P. pentosaceus JCM 5890, and Streptococcus salivarius JCM 57077 were used as indicator strains to determine the antibacterial activity in accordance with the method of Pringsulaka et al. (2012). The level of inhibition of the test strains was interpreted based on the diameter of the zone of inhibition as follows: high (>15 mm, +++), medium (10-15 mm, ++), low (<10 mm, +), and absent (-) (Nair, 2000).

Cell surface hydrophobic properties

The adhesion of cells to hydrocarbon (hexadecane) was used to determine cell surface hydrophobic properties. The LAB isolates were allowed to grow in MRS broth at 37°C overnight, washed with sterile 0.85% NaCl, harvested, and re-suspended in MRS broth. Approximately 3-mL aliquots of the bacterial suspensions were exposed to 1 mL of hexadecane (Sigma-Aldrich,

USA). The hydrophobicity index (HPBI) was calculated using the formula:

Hydrophobicity (%) = $[(A1 - A2) / A1] \times 100$,

where A1 represents the OD_{600} of the bacterial suspension before mixing with hexadecane, and A2 represents the OD_{600} of the aqueous phase obtained after thorough mixing with hexadecane and vortexing for 2 min. Isolates exhibiting a HPBI > 70% were categorized as strongly hydrophobic, while those with an HPBI ranging from 50% to 70%, and less than 50% were classified as moderately and weakly hydrophobic, respectively. High hydrophobicity indicates a good adhesive capability (Nostro and Canatelli, 2004).

Auto-aggregation

The MRS broth culture of LAB cells grown for 24 h was collected, washed twice with 0.85% NaCl, resuspended, and diluted to an OD₆₀₀ of 0.5 (approximately 10⁸ CFU/mL). The bacterial cell suspensions were then vortexed for 10 sec and incubated at 37 °C for 5 h. The autoaggregation percentage was calculated using the formula:

Auto-aggregation (%) = $(1 - A_{20}/A_0) \times 100$,

where A_{20} represents the OD_{600} at 20 h and A_0 represents the the OD_{600} at 0 h (Oh et al., 2018).

Co-aggregation

LAB strains were cultivated as previously described, while *E. coli* ATCC 25922, *S. aureus* ATCC 25923, *Salmonella* Typhimurium TISTR 1471, and *B. cereus* JCM 2152 were cultured in nutrient broth for 24 h at 37 °C. LAB and pathogenic bacterial suspensions, each with a volume of 15 mL, were mixed and incubated for 2 h without agitation. Control tubes were prepared with 15 mL of suspension for each bacterial strain. After the incubation period, the absorbances (OD₆₀₀) of both the mixtures and the controls were measured. The co-aggregation percentage was determined using the following formula:

Co-aggregation (%) = $[(1-A_{mix})/(A_{probiotic} + A_{pathogens})/2] \times 100$,

where $A_{probiotic}$ and $A_{pathogens}$ represent the OD_{600} of the LAB and pathogen cell suspensions, respectively, and A_{mix} represents the OD_{600} of the bacterial suspension mixture after 2 h incubation (Oh et al., 2018).

Adhesion to colorectal-adenocarcinoma cell lines

Colorectal adenocarcinoma (Caco-2) (ATCC HTB-37) cells were seed at a density of 1×10^5 cells/mL in 24-well plates and cultured at 37 °C in a humidified atmosphere containing 5% CO₂ prior to the adhesion assays. LAB pellets obtained by centrifugation at $10000 \times g$ was seeded in a 24-well plate at 10^5 CFU/mL per well and further incubated at 37 °C for 4 h. Subsequently, the bacteria were aspirated, and the wells were rinsed with PBS. Next, the wells were treated with 0.5% Triton X-100 to facilitate the separation of bacteria. The bacterial count was determined on MRS agar, and the adhesion rate (%) was calculated according to the following equation:

Adhesion rate (%) = $(N/N_0) \times 100$,

where N represents the CFU of probiotic bacteria after adhesion to the Caco-2 cell line for 4 h, and N₀ represents the CFU the probiotic bacteria that were initially inoculated (Jang et al., 2019).

Cytotoxic activity (MTT assay) of potential probiotic cell extracts

The cytotoxic activities of the four probiotic cell extracts were determined following the method described by Awaisheh et al. (2016). The probiotic cells were cultured in MRS medium at 37 °C for 24 h, and the supernatant was collected by centrifugation at $10,000 \times g$ for 5 min. Subsequently, the resulting supernatant was filtered through a 0.45- μ m filter membrane to obtain the filtered portion, which was used for further testing.

Vero cells were seeded at a density of 2×10^3 cells/well in a 96-well microplate. The cells were then treated with filter-sterilized supernatant of the isolated strain and further incubated in a humidified environment containing 5% CO2 for another 24 h at 37 °C. After treatment, the medium was replaced with 20 μ L solution of 3-(4,5-dimethylthiasol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Merck, USA). along with 180 μ L of completed DMEM. The cells were then further incubated for 4 h at 37 °C. Subsequently, the MTT mixture was carefully discarded, and 0.1 mL of dimethyl sulfoxide (Merck) was added. The absorbance was measured at 570 nm. Untreated cells were used as controls. Cytotoxicity was calculated according to the following equation:

Cell Viability (%) = $(OD_{test sample}/OD_{control}) \times 100$.

Safety evaluation of isolates

Blood hemolysis test

The safety of the selected isolates was evaluated based on their hemolytic activity on Columbia agar supplemented with 5% (v/v) sheep blood, as described by Lombardi et al. (2004). Each isolate was streaked on the agar in three replicates. After incubation at 37 °C for 48 h, the

plates were observed for the presence of hemolytic reactions. Alpha-hemolysis is indicated by the formation of a green zone around the colonies, which indicates partial hemolysis. Beta-hemolysis is indicated by the formation of a clear (transparent) zone around the colonies, which indicates complete hemolysis. Gamma-hemolysis is indicated by no change in the medium, indicating no hemolysis occurred.

Antibiotic sensitivity testing

The antibiotic susceptibility of the LAB strains was determined using an MIC Test Strip (Liofilchem® MTSTM, Italy). Overnight cultures of LAB were adjusted to 0.5 McFarland standard and diluted to 5 × 10⁵ CFU/mL. Subsequently, 0.1 mL of the LAB suspension was plated onto Mueller–Hinton agar plates (HiMedia, India). The MIC Test Strips containing ampicillin, chloramphenicol, erythromycin, gentamicin, and tetracycline (Liofilchem® MTSTM) were positioned at the center of the plate and incubated for 24 h at 37 °C. These antibiotics were chosen based on their inclusion in the European Food Safety Authority (EFSA) list. The MIC of each antibiotic was determined by evaluating the ellipsoid zones of inhibition of bacterial growth and determining the point of intersection between these zones and the concentration mark on the test strip. Susceptibility or resistance was assessed in accordance with the microbial cutoff values recommended by EFSA, 2012.

Biogenic amine production

The biogenic amines production was examined using decarboxylase base medium supplemented with 2% histidine, lysine, ornithine, and tyrosine (Sigma-Aldrich, USA). The base medium was incorporated into MRS broth at a concentration of 0.25% (w/v). After incubation for

4 days at 37 °C, the presence of a purple halo was considered as a positive reaction (Joosten and Northolt, 1989).

DPPH free radical scavenging and β-galactosidase activity

DPPH free-radical activity of the isolates was determined as described by Das and Goyal (2015). Overnight LAB cell suspension (2 mL, 10^9 CFU/mL) was mixed with 2 mL of 0.4 mM DPPH solution (Sigma-Aldrich, USA) in 99.8% methanol, and the mixture was vortexed for 5 min. Subsequently, the mixture was incubated in the dark for 30 min. The samples were subjected to centrifugation at $8000 \times g$ for 10 min and the absorbance was then measured at 517 nm. Ascorbic acid (1 mg/mL) was employed as the positive control. The DPPH scavenging activity was calculated using the following formula:

DPPH scavenging activity (%) = 1-(A_{sample} - $A_{blank}/A_{control}$) × 100, where A_{sample} represents the OD₅₁₇ of the mixture of bacterial cells and DPPH solution, A_{blank} represents the OD₅₁₇ of the mixture of methanol and bacterial cells, and $A_{control}$ represents the absorbance of the DPPH solution.

 β -Galactosidase activity was determined was determined using a method described by Chen et al. (2002), with minor modifications. Overnight cultures were collected by centrifugation, followed by washing with PBS buffer (pH 7.0). The bacterial cells were then added in Z-buffer (60 mM Na₂HPO₄, 40 mM NaH₂PO₄, and 2.7 μL/mL β -mercaptoethanol), and absorbance (A₆₀₀) was measured. Next, 0.1 mL of the cell suspension was mixed with 0.9 mL Z-buffer and 0.02 mL toluene, vortexed, and incubated for 1 h. Then, 0.2 mL of 200 mM ONPG solution (Sigma-Aldrich) was added and further incubated for 30 min. Next, 0.5 mL of 1 M Na₂CO₃ was added to stop the reaction. The absorbances at A₄₂₀ and A₅₆₀ were measured. The activity of β -galactosidase (Miller units) was calculated using the following formula:

 β -Galactosidase activity (Miller unit) = $1000 \times (A_{420} - (1.75 \times A_{550})/T \times V \times A_{600}$, where A_{600} represents the absorbance of cells before the assay, A_{550} represents the absorbance of cell debris after the assay, A_{420} represents the absorbance of o-nitrophenol (ONP) released, T is the reaction time (min). V is the volume of culture used (mL).

Whole-genome analyses

DNA extraction and sequencing

Genomic DNA of the LAB strains were extracted using an AccuPrep® Genomic DNA Extraction Kit (Bioneer, Korea), following the manufacturer's instructions. The DNA concentration and quality were assessed using a NanoDropTM 2000 spectrophotometer (Thermo Fisher Scientific, USA). The purified genomic DNA was submitted to the Beijing Genomics Institute (BGI) in China for short-read sequencing. Next, 1 μg of qualified genomic DNA was randomly fragmented using Covaris. Fragments of 800 bp were selected using the Agencourt AMPure XP-Medium kit. End repair and 30-adenylation were performed on the fragments, followed by ligation of adaptors to the ends of these 30-adenylated fragments for amplification. Subsequently, the PCR products were purified using an Agencourt AMPure XP-medium kit. Splint oligo sequences were used to heat denature and circularise the double-stranded PCR products. Single-stranded circular DNA was used as the final DNA library.

Genome assembly and annotation

De novo assemblies of the LAB genome sequences were constructed using SPAdes v3.12 (Bankevich et al., 2012). The quality and completeness of the genome assemblies were evaluated using Quast v5.0.2 (Gurevich et al., 2013), and genome annotation was performed using Prokka v1.12 (Seemann, 2014).

Bioinformatics analyses

Detection of antimicrobial resistance genes, plasmids, prophage, and virulenceassociated genes

AMR genes, plasmids, prophages, and virulence-related genes were identified to assess the safety of selected probiotic strains. The AMR genes were identified using ResFinder v2.1 (https://cge.cbs.dtu.dk/services/ ResFinder/ 22) with a 90% identity threshold and 60% minimum coverage. Furthermore, the genome stability was evaluated using several pipelines, including PlasmidFinder (Carattoli and Hasman, 2020), PathogenFinder (Cosentino et al., 2013), and the virulence factors database (VFDB, http://www.mgc.ac.cn/VFs/main.htm) with a cut-off of > 75% identity and > 60% coverage. The completeness of the predicted phage-related regions was determined using PHASTER, which classified them as intact (>90%), questionable (90–60%), or incomplete (<60%) regions based on the number of known genes and proteins contained in the bacterial prophage region (Arndt et al., 2016).

Prediction of CRISPR-Cas and bacteriocin-encoding genes

CRISPR and bacteriocin-encoding genes were identified using the CRISPRFinder (Grissa et al., 2007) and BAGEL4 (http://bagel4.molgenrug.nl/databases.php) web servers, respectively (van Heel et al., 2018). Genomic data were visualized using CGView Server v1.0.

Nucleotide sequence accession numbers

The four LAB strains genome sequences were submitted and deposited in the NCBI database under BioProject numbers: PRJNA851936, PRJNA853912, PRJNA857864, and PRJNA857864, respectively.

Results and Discussion

Twenty lactic acid bacteria (LAB) isolates that exhibited gram-positive characteristics and tested negative for both catalase and oxidase were selected. These isolates displayed distinct morphologies, with 6 isolates showing a spherical shape, 8 isolates showing a rod shape, and 6 isolates showing an oval shape. Subsequently, the colonies underwent additional *in vitro* screening to assess their probiotic characteristics.

Growth in adverse conditions

A prerequisite for probiotics is their ability to resist harsh conditions in the stomach and small intestine (Ouwehand et al., 2003). Therefore, all 20 LAB isolates were assessed for their survivability in acidic conditions (pH 3.5, 4.5) and in the presence of 0.3, 0.5, and 1.0% bile salts (Table 1). Most of the isolates showed tolerance to pH 3.5. However, at pH 4.5, only 9 isolates, namely FB2, Pom1, Pom4, Pom5, Pom9, Chi5, Chi8, MD3, and MD12, exhibited growth comparable to the control without pH adjustment. Nearly all of them exhibited growth in the presence of 1.0% bile salts. These findings can be attributed to the exposure of these isolates to low pH and bile salts in the GI tract, as they are commonly found in animal feces. However, the tolerance levels of these isolates to acidic environments varied. This is consistent with the results reported by Kumar et al. (2017), where 9 isolates from canine feces displayed robust growth at pH 4, moderate growth at pH 6, and weak growth at pH 2. Furthermore, all the isolates demonstrated resistance to bile at a concentration of 0.3% oxgall. However, there was a decrease in colony-forming unit (cfu) count for all isolates at the 1% bile salt concentration.

Cell Surface Adherence

To evaluate the hydrophobic properties of the LAB strains, we measured their microbial adhesion to solvents. As shown in Table 1, isolates Pom1 (88.91%) and Pom2 (88.45%) demonstrated the highest degree of hydrophobicity towards hexadecane. It is worth mentioning that a previous study on the isolation of probiotics from canine feces reported a percent hydrophobicity exceeding 80% for L. johnsonii cPRO23 (Kumar et al., 2017). However, it is important to consider that the solvents used in that study were toluene and xylene, which differ from the solvent (hexadecane) employed in our investigation. Previous studies have reported that lactic acid bacteria (LAB) with a higher hydrophobicity of their cell surface may exhibit greater adhesion to Caco-2 cell lines. For instance, Krausova et al. (2019) investigated the cell surface hydrophobicity of 19 strains of *L. fermentum* and *L. casei*, finding that the hydrophobicity values ranged from 0.3% to 68.8%. It is important to note that the variations in cell surface hydrophobicity may stem from different methods used to assess adhesion, such as the Bacterial Adherence to Hydrocarbons (BATH) method, which involves testing adhesion to hydrocarbon compounds. Other factors, including the duration of incubation, composition of the growth medium, and type of hydrocarbon compounds used, can also contribute to these variations.

346

347

348

349

350

351

352

353

354

345

331

332

333

334

335

336

337

338

339

340

341

342

343

344

Antibacterial activity

The inhibitory activity of all isolates was assessed against selected Gram-positive and Gram-negative bacteria. In the agar-well diffusion test, the LAB isolates exhibited varying degrees of inhibitory activity against the indicator strains, with inhibition zones ranging from 11 to 15 mm, as shown in Table 1. Out of the tested strains, 60% (12/20) exhibited inhibitory activity against *B. cereus*. However, only 15% (3/20) of the isolates demonstrated activity against *Salmonella* Typhimurium. Additionally, among the tested indicators, only three isolates (Pom4, Pom5, and Chi8) showed activity against all four indicators. None of the isolates produced bacteriocin when

the different indicator microorganisms were used; however, the three putative bacteriocins open reading frames (ORFs), enterolysin A, hiracin, and class II lanthipeptide were mined from the genome of *E. hirae* Pom4 (data not shown).

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

355

356

357

Auto-aggregation and co-aggregation abilities

The auto-aggregation ability is especially crucial as it enables the probiotics to form cellular aggregates, which indicates their capacity to colonize the intestine. Furthermore, coaggregation of probiotics is critical for prevention of surface colonization of pathogenic strains (Collado et al., 2008). The auto-aggregation and co-aggregation abilities of the probiotics against foodborne pathogens were studied by measuring the percentage of aggregation after 20 h of incubation at 37°C. Out of the tested LAB strains, FB1, FB2, and Chi3 showed the highest autoaggregation abilities (80.76 \pm 0.08%, 86.98 \pm 0.12%, and 81.75 \pm 0.14%, respectively). The coaggregation of probiotic strains and E. coli, S. aureus, Salmonella Typhimurium, and B. cereus is shown in Table 1. Co-aggregation of probiotics is critical for prevention of surface colonization of pathogenic strains. Among the LAB strains evaluated, FB2 showed the highest co-aggregation ability with E. coli (82.03 \pm 0.10%), Salmonella Typhimurium, (82.28 \pm 0.15%), S. aureus (82.63 $\pm 0.12\%$), and B. cereus (85.81 $\pm 0.41\%$). Among the pathogens, B. cereus and S. aureus demonstrated the highest auto-aggregation abilities. This implies that the probiotic bacteria can proficiently bind with each other, or other bacteria present in the gut. Such a capability can potentially boost the growth of beneficial gut bacteria, diminish the growth of harmful bacteria, and aid immune function. In a previous report, it was observed that LAB isolated from canines exhibited co-aggregation percentages with Salmonella Typhimurium ranging from 35% to 45%.

This percentage was higher than that of the reference strain *L. acidophilus* NCDC 15, which was isolated from a dairy source.

Identification of the selected LAB strains

The 20 LAB strains demonstrated potential probiotic characteristics, including robust pH tolerance, bile tolerance, and the ability to adhere to the intestinal mucosa, which indirectly indicates hydrophobic properties. These LAB were subjected to 16S rDNA sequence analysis. The isolates, Chi4, and Chi5 were identified as *E. faecium*; FB2 as *Lig. animalis*; Pom4, Chi3, and MD1 as *E. hirae*; Pom5, MD3, MD12, and Shi1 as *Lim. fermentum*; Chi6 as *E. avium*; Chi7 and Chi8 as *P. pentosaceus*; MD2 as *Streptococcus lutetiensis*; MD13 and PD3 as *E. faecalis*; and Pom1, Pom2, and Pom9 as *Lactobacillus* sp. (Supplementary Table S1).

Adhesion and cytotoxicity properties

The present study demonstrated that four representative LAB strains (*E. hirae* Pom4, *Lig. animalis* FB2, *Lim. fermentum* Pom5, and *P. pentosaceus* Chi8) possess significant probiotic properties. These strains are nonpathogenic, exhibit resilience to acid and bile salts, demonstrate a broad spectrum of antibacterial activity against pathogenic strains, adhere to cell surfaces, and show robust growth in MRS broth within a 48-h period, making them well-suited for further experimental cultivation. Consequently, the present study evaluated the adhesion ability of these strains, and it was found that all of them exhibited varying degrees of adherence to Caco-2 cells. Among the strains evaluated, *P. pentosaceus* Chi8 displayed the highest adhesion capacity (95.08 \pm 2.92%), followed by *Lim. fermentum* Pom5 (88.40 \pm 1.85%), *Lig. animalis* FB2 (83.95 \pm 1.70%), and *E. hirae* Pom4 (76.92 \pm 0.56%). These results suggest that adhesion is a strain-specific

property. The capacity to adhere is crucial for transient colonization, antagonism against pathogens, modulation of the immune system, and promoting healing of damaged gastric mucosa (Alander et al., 1999). The LAB isolates from canines were found to exhibit binding to human mucosa, consistent with their binding ability to canine mucosa.

The cytotoxicity of the four strains was evaluated against the Vero cell line using an MTT assay. After incubation for 4 h with cell-free supernatant (CFS) of the respective strains, the cell viability was 74.58–93.26% (data not shown). The CFS of the four probiotic strains was harmless to the noncancerous-Vero kidney cell line, with *Lim. fermentum* Pom5 exhibiting the highest cell viability.

Safety evaluations

Hemolysis test and biogenic amine production

The hemolytic activity and biogenic amine production of LAB isolates were pre-evaluated to confirm that these probiotics are safe to use. None of the selected isolates showed any haemolytic activity (gamma-hemolysis) in the present study. Biogenic amines, when present in high amounts, can be toxic to animals. However, it was determined that the LAB isolates in this study lacked the ability to convert tyrosine, lysine, ornithine, and histidine into tyramine, cadaverine, putrescine, and histamine, respectively. This finding indicates that these isolates are considered safe for canine health.

Antibiotic susceptibility

One of the properties required for specific strains to be considered potential probiotics is the absence of acquired and transferable antibiotic resistance (Courvalin, 2006). Therefore, microbes need to be effectively screened for antibiotic resistance genes before their use as probiotics. Strains were considered resistant when they showed values greater than the MIC breakpoints established by EFSA (2012). All four strains were sensitive to ampicillin, chloramphenicol, gentamicin, and erythromycin. However, *Lig. animalis* FB2 and *E. hirae* Pom4 were resistant to tetracycline (data not shown). Generally, LAB are sensitive to broad-spectrum antibiotics, such as tetracycline, chloramphenicol, and beta-lactams. The most frequently observed resistance genes are for tetracycline and erythromycin resistance, followed by those for chloramphenicol resistance (Cataloluk and Gogebakan 2004).

Antioxidant activity and B-galactosidase activity

The DPPH radical scavenging activities of the four LAB strains were as follows: *Lim. fermentum* Pom5 (36.39%), *E. hirae* Pom4 (28.87%), *Lig. animalis* FB2 (23.34%), and *P. pentosaceus* Chi8 (16.42%). These results demonstrate that the scavenging activity of LAB isolates is strain dependent.

Lactose intolerance refers to the discomfort that arises after consuming milk and dairy products due to insufficient amounts of β -galactosidase (lactase) for lactose digestion in the intestine. The production of β -galactosidase by probiotic strains has been proposed as a potential remedy for alleviating the symptoms of lactose intolerance (Ljungh and Wadström, 2006). The four selected strains showed β -galactosidase activity as follows: *P. pentosaceus* Chi8 (373.48 ± 0.16 Miller unit), *Lig. animalis* FB2 (364.23 ± 0.02 Miller unit), *Lim. fermentum* Pom5 (327.75 ± 0.18 Miller unit), and *E. hirae* Pom4 (301.90 ± 0.01 Miller unit).

A positive correlation was observed between lactose sugar utilization and the genome. A lactose utilization gene cassette was found in the genomes of all four LAB strains, including lacLM, and lacS, which encode β -galactosidase and lactose permease, respectively. Additionally, lacR, which encodes a lactose transport regulator, was found in all strains, except E. hirae Pom4. Even though these strains originated from canine intestines, they still produced β -galactosidase. Therefore, in addition to their established probiotic properties, these strains would improve the digestion of milk and dairy products consumed by canines.

Genomic features and functional annotation

The general genomic features of the four LAB strains are presented in Table 2 and circular representations of the genomes are shown in Fig. 1. Their genome sizes were approximately 1.74–2.92 Mb; *P. pentosaceus* Chi8 had the smallest genome, whereas *E. hirae* Pom4 had the largest (Figure 1). The G + C content varied between 36.6–52.0%.

Detection of AMR genes, plasmids, prophages, and virulence-associated genes

The entire genomes of the four selected LAB strains were screened following the recommendations of the EFSA guidelines to search for AMR, virulence factors (VFs), toxin-related genes, and mobile genetic elements (MGEs) to ensure the safety of probiotic bacteria when used as a dietary supplement. The search was performed using two AMR databases, CARD, and ResFinder. The primary concern regarding antibiotic resistance genes (AMR) in beneficial nonpathogenic bacteria is the potential transfer to other potentially pathogenic bacteria, which can result in complications and reduce the effectiveness of antibiotic treatment. To assess this risk, we specifically investigated two types of mobile genetic elements, plasmids, and bacteriophages, as they are known to play a role in intercellular genetic exchange through processes such as

transformation, conjugation, and transduction. However, it is still necessary to clarify how these AMR genes are acquired and where they are located. If AMR genes are located in MGEs such as plasmids, they can be transferred to other pathogenic species.

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

This study focused on transferable antibiotic-resistance or acquired-AMR genes because probiotics may serve as a reservoir for the potential spread of resistance genes among bacteria. No AMR genes were identified in the genomes of Lim. fermentum Pom5, and P. pentodaceus Chi8 using ResFinder; this suggests that they are safe probiotics. In contrast, AMR genes were detected in E. hirae Pom4 and Lig. animalis FB2 (Supplementary Table S2). Tetracycline is one of the most frequently used antibiotics for human and animal infections, owing to its availability and low cost. The detection of *tetM* and *tetL* in the genome of *E. hirae* Pom4 is consistent with previous reports that tetL, which encodes an efflux pump protein, does not appear alone in LAB but is always detected together with other tetracycline resistance genes. There are two fundamental mechanisms of resistance to tetracyclines in enterococci, flow pumps and ribosome protection, which prevent antibiotic binding (Miller et al., 2014). Additionally, aminoglycoside 6'-N-acetyltransferase (aac(6')-Ian), which is responsible for aminoglycoside resistance, was found in E. hirae Pom4 with 100% identity (Supplementary Table S2). Different plasmid-associated replication genes ensuring genome stability were found only in E. hirae Pom4 and P. pentosaceus Chi8 (Supplementary Table S3). This indicates that the plasmids may have been inserted into the genomes of E. hirae Pom4 and P. pentosaceus Chi8. In E. hirae Pom4, tetracycline resistance genes were found in the same region as the plasmid-related replication genes. Horizontal gene transfer is relevant for disseminating antibiotic resistance in non-human hosts, with plasmids playing a central role in this process. However, P. pentosaceus Chi8 did not exhibit any antibiotic resistance genes in the region of plasmid-associated replication genes. According to the safety guidelines for probiotics, E. hirae Pom4 is not a suitable probiotic candidate, despite it possessing several desirable properties.

Numerous commercially available probiotic products for companion animal consumption include enterococci, the natural flora of canine and feline GI tracts. Some strains can exert their beneficial effects on the host as probiotics, while others can spread antibiotic resistance to other bacterial cells. Therefore, although no probiotic-enterococcal infections have been reported in animals, they pose certain theoretical safety risks. As such, the antibiotic resistance of these bacteria must be carefully evaluated before they are used as commercial probiotics. In the case of *Lig. animalis* FB2, only a tetracycline resistance gene, *tet*M, was detected in the chromosomal regions, representing a low risk of transferring the antibiotic resistance gene.

MGEs, such as prophages, transposases, gene islands, and insertion elements, play a major role in bacterial horizontal gene transfer. Prophages, in particular, may play a crucial role in lateral gene transfer among strains, contributing to genetic diversity and strain specificity. These factors can be used to assess genomic diversity during bacterial evolution (Liu et al., 2022). The presence of prophage sequences in each of the four evaluated probiotics was analyzed using the PHASTER web server. Intact prophages carry all the necessary genes for excision and reinfection, whereas incomplete prophages lack some of these genes, indicating their non-functionality. *E. hirae* Pom4 and *P. pentosaceus* Chi8 carried a single intact prophage region. However, several incomplete prophage regions were identified in *Lim. fermentum* Pom5, *P. pentosaceus* Chi8, and *Lig. animalis* FB2 (Supplementary Table S4).

The PathogenFinder web server predicted that *Lim. fermentum* Pom5 and *P. pentosaceus* Chi8 were non-human pathogens (probability, 0.177). On the other hand, *E. hirae* Pom4 and *Lig. animalis* FB2 were predicted to be human pathogens with probabilities of 0.798 and 0.64, respectively. A BLAST search against VFDB was performed to determine the presence of virulence factors (VFs) within the genomes of all four selected LAB strains. No virulence genes were identified in *Lim. fermentum* Pom5, *P. pentosaceus* Chi8, and *Lig. animalis* FB2. However,

two notable virulence determinants were identified in the genome of *E. hirae* Pom4, *bopD* (maltose operon transcriptional repressor MalR, LacI family, and biofilm formation proteins) and *clpP* (proteolytic subunit of ATP-dependent Clp protease). These genes were identified as VFs in VFDB and are also implicated in the adaptation, survival, and attachment of pathogenic bacteria to adverse environments. The absence of virulence determinants in *E. hirae* Pom4 and *P. pentosaceus* Chi8 represents a precondition for their consideration as potential probiotics.

Prediction of CRISPR-Cas genes

CRISPRs are genetic elements that are formed by the repetition of DNA sequences within a specific genomic area. CRISPRs and their associated *cas* genes play important roles in defending organisms against invasive MGEs (Marraffini and Sontheimer 2008). The CRISPRFinder and BAGEL4 web servers were used to identify a known type of CRISPR region and Cas cluster in *Lim. fermentum* Pom5 and *Lig. animalis* FB2. However, an unknown type of CRISPR region was found in *E. hirae* Pom4 (two regions) and *P. pentosaceus* Chi8 (one region). The presence of the CRISPR/Cas system within these four probiotic strains demonstrates the stability of their bacterial genomes and immunity against the spread of acquired AMR genes by obstruction of multiple pathways involved in horizontal gene transfer.

Identification of genes associated with stress responses

Several stress response genes were identified in the genomes of all four strains using subclass system analysis of the Pathosystems Resource Integration Center (PATRIC). Genes encoding proteins involved in stress response encoded in the genome of *E. hirae* Pom4, *Lim. fermentum* Pom5, *Lig. animalis* FB2, and *P. pentosaceus* Chi8 are shown in Supplementary Table S5. Moreover, several genes associated with acid and bile resistance were identified. Membrane-

bound ATP synthases (F0F1-ATPases) serve as primary regulators of cellular pH inside the cell. Under stress conditions, ATP synthases function as ATPases, thereby generating a transmembrane ion gradient at the expense of ATP hydrolysis (Liu et al., 2015). Bile salt tolerance is another essential property required for the survival of probiotic candidates in the small intestine. The bile salt tolerance capacity of candidate probiotic strains was confirmed by detecting ORFs that encode choloylglycine and bile acid hydrolases, glycine betaine ABC transport system, and ornithine decarboxylase in the genome. Additionally, a cluster of genes related to temperature stress (hrcAgrpE-dnaK-dnaJ and GroEL-GroES), which protect proteins against improper folding and aggregation, were identified. Furthermore, the adaptation of probiotic bacteria to high osmolarity environments is explained by the presence of genes encoding the ABC transporter permease and glycerol uptake facilitator proteins, which are involved in the accumulation of compatible solutes such as proline and glycine betaine (Soni et al., 2020). We further identified the following DNA repair and protection genes: DNA repair protein (MutHLS, Rec and UvrABCD system), ImpB/MucB/SamB family protein, exodeoxyribonuclease, and SbcCD exonuclease. In addition, these findings suggest that the four probiotic bacterial strains effectively respond to DNA damage from stressful conditions.

559

560

561

562

563

564

565

566

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

Identification of genes associated with adhesion and aggregation

The probiotics' capability to adhere to the intestinal mucosa and epithelial cells was confirmed by the presence of genes related to adhesion, colonization, fibrinogen/fibronectin binding, enolase, and glyceraldehyde-3-phosphate dehydrogenase (Supplementary Table S6). These adhesion genes may help the strains to exert probiotic effects. For example, mucin and fibrinogen are adhesion proteins that facilitate probiotics in binding to the digestive tract, enhancing colonization and reducing pathogenic adhesion (Granato et al. 2004). Additionally,

genes related to aggregation were also found in the candidate probiotic strains, such as LysM pepticaninelycan-binding domain-containing protein, translation elongation factor Tu GroEL chaperone, and peptidyl-propyl *cis-trans* isomerase. Moreover, proteins associated with exopolysaccharide biosynthesis, including tyrosine-protein kinase transmembrane modulator, UTP--glucose-1-phosphate uridylyltransferase, and glycosyltransferase, were detected in the candidate probiotic strains.

Identification of secondary metabolite-related genes (vitamins and essential amino acids)

The genomes of the candidate probiotic strains were found to contain functionally active biosynthetic genes that encode proteins related to the synthesis of vitamins and essential amino acids (Supplementary Table S7). Genome analysis revealed that *Lim. fermentum* Pom5 carries several genes that are involved in the synthesis of vitamins B1 (thiamine), B2 (riboflavin), B6 (pyridoxine), B7 (biotin), and B9 (folate), and essential amino acids, such as arginine, histidine, lysine, phenylalanine, and threonine. This finding demonstrates that in addition to its potent probiotic activity, *Lim. fermentum* Pom5 also produces essential nutrients that may be beneficial for canine health.

Conclusion

This study examined the traits of four candidate probiotic strains isolated from canine fecal samples in Thailand. Owing to the variation in canine GI microbiota in different areas, potential probiotic candidates were screened for probiotic attributes and evaluated for safety properties through a combination of genome analyses and phenotypic tests. According to EFSA guidelines, genome analyses indicated that *Lim. fermentum* Pom5 and *P. pentosaceus* Chi8 possessed

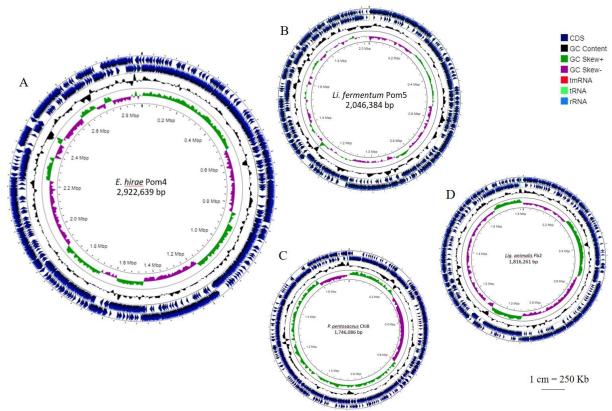
characteristics of safe probiotic strains, including the absence of transferable antibiotic-resistant and VF genes, and genome stability. Additionally, genes coding for proteins responsible for survival under gastric conditions, including stress response, acid and bile tolerance, and adhesion proteins, enhanced the probiotic properties of the candidate strains. These probiotics may affect canine metabolism by synthesizing various essential amino acids such as arginine, histidine, lysine, phenylalanine, threonine, and B group of vitamins. The selected strains were among the host-specific LAB isolated from canines, which could serve as potential probiotics for canines, particularly in Thailand, where all products are imported.

References

Alander M, Satokari R, Korpela R, Saxelin M, Vilpponen-Salmela T, Mattila-Sandholm T, von Wright A. 1999. Persistance of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG after oral consumption. Appl Environ Microbiol 65:351–354. Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res 44(W1):W16–W21. Awaisheh, SS, Obeidat MM, Al-Tamimi HJ, Assaf AM, EL-Qudah JM, Al-khaza'leh JM, Rahahleh RJ. 2016. In vitro cytotoxic activity of probiotic bacterial cell extracts against Caco-2 and HRT-18 colorectal cancer cells. Milchwissenschaft 691:27–31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: A new genome assembly algorithm and its applications to

single-cell sequencing. J Comput Biol 1:455–477.

614	Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, Tremblay A, Ouwehand AC. 2020.
615	Criteria to qualify microorganisms as "probiotic" in foods and dietary supplements. Front
616	Microbiol 11:1–9.
617	Carattoli A, Hasman H. 2020. PlasmidFinder and In silico pMLST: Identification and typing of
618	plasmid replicons in whole-genome sequencing (WGS). Methods Mol Biol 2075:285–294.
619	Cataloluk O, Gogebakan B. 2004. Presence of drug resistance in intestinal lactobacilli of dairy and
620	human origin in Turkey. FEMS Microbiol Lett 236:7–12.
621	Chen, CS, Hsu, CK, Chiang, BH. 2002. Optimization of the enzymic process for manufacturing
622	low-lactose milk containing oligosaccharides. Process Biochem 38:801-808.
623	Collado MC, Meriluoto J, Salminen S. 2008. Adhesion and aggregation properties of probiotic and
624	pathogen strains. Eur Food Res Technol 226:1065-1073.
625	Cosentino S, Larsen MV, Aarestrup FM, Lund O. 2013. PathogenFinder - distinguishing friend
626	from foe using bacterial whole genome sequence data. PLoS ONE 8:e77302.
627	Courvalin P. 2006. Antibiotic resistance: the pros and cons of probiotics. Dig Liver Dis 38:S261–
628	S265.
629	Das D, Goyal A. 2015. Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of
630	probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT - Food Sci
631	Technol 61:263–268.
632	Erko S, Michael G. 1991. Nucleic acid techniques in bacterial systematics. John Wiley & Sons,
633	USA.
634	European Food Safety Authority (EFSA). 2012. Guidance on the assessment of bacterial
635	susceptibility to antimicrobials of human and veterinary importance. EFSA J 10:2740.
636	Food and Agricultural Organization of the United Nations and World Health Organization
637	(FAO/WHO). 2002. Guidelines for the Evaluation of Probiotics in Food. Food and


638	Agriculture Organization of the United Nations/World Health Organization, London,
639	Ontario. Available from: http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf .
640	Accessed at Nov 10. 2021.
641	Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthésy-Theulaz IE. 2004. Cell
642	surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii
643	NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169.
644	Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: A web tool to identify clustered regularly
645	interspaced short palindromic repeats. Nucleic Acids Res 35:W52-W57.
646	Guo XH, Kim JM, Nam HM, Park SY, Kim JM. 2010. Screening lactic acid bacteria from swine
647	origins for multistrain probiotics based on in vitro functional properties. Anaerobe 16:321-
648	326.
649	Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome
650	assemblies. Bioinformatics 29:1072–1075.
651	Jang HR, Park H-J, Kang D, Chung H, Nam MH, Lee Y, Park J-H, Lee H-Y. 2019. A protective
652	mechanism of probiotic Lactobacillus against hepatic steatosis via reducing host intestinal
653	fatty acid absorption. Exp Mol Med 51:1-14.
654	Joosten HMLJ, Northolt D. 1989. Detection, growth and amine-producing capacity of lactobacilli
655	in cheese. Appl Environ Microbiol 55:2356–2359.
656	Krausova G, Hyrslova I, Hynstova I. 2019. In vitro evaluation of adhesion capacity,
657	hydrophobicity, and auto-aggregation of newly isolated potential probiotic strains.
658	Fermentation 5:100.
659	Kumar S, Pattanaik AK, Sharma S, Jadhav SE, Dutta N, Kumar A. 2017. Probiotic potential of a
660	Lactobacillus bacterium of canine faecal-origin and its impact on select gut health indices
661	and immune response of dogs. Probiotics Antimicrob 9:262-277

662	Liu CJ, Wang R, Gong FM, Liu XF, Zheng HJ, Luo YY, Li X-R. 2015. Complete genome
663	sequences and comparative genome analysis of Lactobacillus plantarum strain 5-2 isolated
664	from fermented soybean. Genomics 106:404–411.
665	Liu D-M, Huang Y-Y, Liang M-H. 2022. Analysis of the probiotic characteristics and adaptability
666	of Lactiplantibacillus plantarum DMDL 9010 to gastrointestinal environment by complete
667	genome sequencing and corresponding phenotypes. LWT - Food Sci Technol 158:113129.
668	Ljungh A, Wadström T. 2006. Lactic acid bacteria as probiotics. Curr Iss Intest Microbiol 7:73-
669	90.
670	Lombardi A, Gatti M, Rizzotti L, Torriani S, Andrighetto C, Giraffa G. 2004. Characterization of
671	Streptococcus macedonicus strains isolated from artisanal Italian raw milk cheeses. Int.
672	Dairy J 14:967–976.
673	Marks, SL, Rankin SC, Byrne BA, Weese JS. 2011. Enteropathogenic bacteria in canines and cats:
674	Diagnosis, epidemiology, treatment, and control. Vet Intern Med 25:1195-1208.
675	Macdonald ML, Rogers QR. 1984. Nutrition of the domestic cat, a mammalian carnivore. Annu
676	Rev Nutr 4:521–562.
677	Marraffini LA, Sontheimer EJ. 2008. CRISPR interference limits horizontal gene transfer in
678	staphylococci by targeting DNA. Science 322:1843–1845.
679	Michail S, Sylvester F, Fuchs G, Issenman R. 2006. Clinical efficacy of probiotics: Review of the
680	evidence with focus on children. J Pediatr Gastroenterol Nutr 43:550-557.
681	Miller WR, Munita JM, Arias CA. 2014. Mechanisms of antibiotic resistance in enterococci.
682	Expert Rev Anti Infect Ther 12:1221–1236.
683	Nair PS. 2000. Studies on lactic acid bacteria from tropical fish and shellfish. Ph.D. thesis, Cochin
684	Univ. Sci. Tech. Cochin, India.

- Narvhus JA, Axelsson L. 2003. Lactic acid bacteria. In Encyclopedia of food sciences and
- 686 nutrition. 2nd ed. Caballero B (ed). pp 3465-3472. Academic Press, San Diego, Calif.
- Nostro A, Canatelli MA. 2004. Modification of hydrophobicity in vitro adherence and cellular
- aggregation. Lett Appl Microbiol 38:423–427.
- 689 Notice of the Ministry of Public Health Vol. 128. 2012. Available from:
- 690 https://dl.parliament.go.th/backoffice/viewer2300/web/viewer.php. (in Thai). Accessed at
- 691 Nov 10. 2022.
- 692 Oh, NS, Joung, JY, Lee, JY, Kim, Y. 2018. Probiotic and anti-inflammatory potential of
- 693 Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.
- 694 PLoS ONE 13: e0192021.
- Ouwehand AC, Salminen S, Roberts PJ, Ovaska J, Salminen E. 2003. Disease-dependent adhesion
- of lactic acid bacteria to the human intestinal mucosa. Clin Diagn Lab Immunol 10:643–
- 697 646.
- 698 Pringsulaka O, Thongngam N, Suwannasai N, Atthakor W, Pothivejkul K, Rangsiruji A. 2012.
- Partial characterisation of bacteriocins produced by lactic acid bacteria isolated from Thai
- fermented meat and fish products. Food Cont 23:547–551.
- Schillinger U, Lücke FK. 1987. Identification of lactobacilli from meat and meat products. Food
- 702 Microbiol 4:199–208.
- No. 3012 Seemann T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069.
- Sivamaruthi BS, Kesika P, Chaiyasut C. 2021. Influence of probiotic supplementation on health
- status of the canines: A review. Appl Sci 11:11384.
- 706 Soni R, Nanjani S, Keharia H. 2020. Genome analysis reveals probiotic propensities of
- 707 *Paenibacillus polymyxa* HK4. Genomics 113:861–873.

708	Suchodolski JS, Dowd SE, Wilke V, Steiner JM, Jergens AE, Hoshino Y. 2012. 16S rRNA gene
709	pyrosequencing reveals bacterial dysbiosis in the duodenum of canines with idiopathic
710	inflammatory bowel disease. PloS One:e39333.
711	van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. 2018. BAGEL4: A user-friendly
712	web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res 46:W278-
713	W281.
714	Zhang D, Li C, Shi R, Zhao F, Yang Z. 2020. Lactobacillus fermentum JX306 restrain D-galactose-
715	induced oxidative stress of mice through its antioxidant activity. Pol J Microbiol 69:205-
716	215.
717	
718	

Figure legends

Fig. 1. Genome visualization of the four selected LAB strains. (A) *E. hirae* Pom4, (B) *Lim. fermentum* Pom5, (C) *P. pentosaceus* Chi8, and (D) *Lig. animalis* FB2. The element colors of each circle are indicated. All genes found on forward and reverse strands are colored according to the assigned COG classes.

Table legends

Table 1. The summary of the specific characteristics of the selected LAB strains

	Gr	owth	under un	favoral	ole										
	condition					Inhibition zone against pathogenic strain (mm)			Hydro- Auto-		Co-aggregation (%)				
LAB strain	pН		% (w/v) bile salt		-				phobicity	aggregation					
	3.5	4.5	0.15%	0.3%	1%	E. coli	Salmonella Typhimurium		B. cereus	(%)	(%)	E. coli	Salmonella Typhimurium	S. aureus	B. subtilis
FB1	+	+	++	++	+	-	-	13±0.15	-	1.03±1.5	80.76±0.08	76.16±0.15	72.73±0.11	75.86±0.20	78.75±0.22
FB2	+	++	++	+	+	13.42±0.1	13.42±.0.13	-	14±0.11	56.66±0.2	79.73±0.12	79.73±0.10	77.22±0.15	76.68±0.12	81.50±0.2
Pom1	+	++	+++	+	+	13±0.15		15±0.06	14±0.13	88.91±1.2	58.34±0.10	68.33±0.17	60.39±0.25	71.21±0.45	72.52±0.25
Pom2	+	+	+++	++	+	13±0.1	-	13±0.02	14±0.12	88.45±1.5	52.34±0.50	69.08±0.14	61.61±0.20	71.58±0.23	72.53±0.14
Pom4	+	++	+++	+++	+++	10.88±0.12	9.62±.0.13	9.80±0.1	8.40±0.1	15.59±0.09	68.14±0.05	75.97±0.10	58.45±0.2	72.48±0.4	75.17±0.1
Pom5	+	++	+	+	++	10.43±0.10	13.05±0.12	11.95±0.2	15±0.12	32.27±0.16	70.31±0.04	77.64±0.14	5155±0.3	73.16±0.2	76.22±0.12
Pom9	+	++	+	+	+	-	11±0. 13	15±0.1	14±0.13	34.25±0.3	57.91±0.20	66.88±0.17	60.42±0.37	70.50±0.41	72.67±0.25
Chi3	+	+	++	+	+	12±0.1	-	-	12±0.14	1.01±0.4	81.75±0.14	68.55±0.12	64.24±0.18	71.74±0.36	72.94±0.21
Chi4	+	+	++	++	+	12±0.12	-	-	-	22.13±0.1	64.11±0.16	69.78±0.23	62.11±0.38	71.19±0.22	72.42±0.33
Chi5	+	++	+++	+++	+++	13±0.14	-	-	12±0.11	0.37±1.0	66.04±0.17	67.75±0.14	57.90±0.34	68.60±0.77	72.27±0.68
Chi6	+	+	++	+	+	-	-	-	-	0.42±1.0	64.27±0.10	71.41±0.33	63.29±0.22	72.13±0.66	72.81±0.55

Chi7	+	+	+++	+++	+++	14±0.11	-	-	15±0.1	1.72±1.2	76.35±0.21 69.18±0.32	59.04±0.23	69.52±0.27 72.63±0.77
Chi8	+	++	+++	+++	+++	12.79±0.1	13.42±0.12	13±0.14	14±0.2	22.91±0.12	57.40±0.15 52.73±0.11	51.55±0.09	79.17±0.3 72.52±0.21
MD1	+	+	++	++	+	12±0.15	-	12±0.11	-	5.84±1.1	71.57±0.16 64.82±0.25	53.79±0.41	66.73±0.55 67.13±0.41
MD2	+	+	+	+	+	-	-	-	14±0.2	8.05±0.3	31.68±0.41 62.50±0.45	48.49±0.56	64.21±0.47 65.59±0.17
MD3	+	++	+	+	+	-	-	-	13±0.3	0.04±0.4	27.34±0.15 62.69±0.25	51.85±0.74	65.79±0.36 66.43±0.28
MD12	+	++	+	+	+	-	-	15±0.13		0.31±0.4	60.38±0.23 66.24±0.29	57.67±0.05	68.16±0.24 70.48±0.09
MD13	+	+	+	+	+	-	-	-	-	63.89±1.0	58.99±0.20 66.19±0.41	57.36±0.10	69.57±0.61 69.54±0.14
Shi1	+	+	+	+	+	-	-	12±0.2	12±0.3	0.64±1.5	63.78±0.19 61.52±0.39	51.19±0.36	65.29±0.57 69.93±0.14
PD3	+	+	+	+	+	-	-	-	-	5.57±1.4	48.21±0.21 64.53±0.36	55.19±0.25	67.63±0.23 69.36±0.09

Table 2. Genomic features of selected probiotic strains

	Probiotic strain	E. hirae Pom4	Lim.	Р.	Lig. animalis
			fermentum	pentosaceus	FB2
Feature			Pom5	Chi8	
S	size (bp)	2,922,639	2,046,384	1,746,086	2,046,384
N	V50 (bp)	222,522	72,163	331,800	254,780
(Contigs	78	262	18	62
GC	content (%)	36.6	52.0	37.1	41.3
Prote	in-encoding	2727	2114	1740	2114
se	equences				
Numl	per of RNAs	66	66	56	66
I	Plasmid	Present		Present	-
Numbe	er of plasmids	4	-	1	-
Antimica	robial resistance	3			1
(A)	MR) gene	3	-	-	1
P	rophage	1	3	4	8
(CRISPR	2	1	1	2
Bacteri	ocin-encoding	4	<u>-</u>	-	-
	genes				
β-gal	lactosidases	2	2	1	2
	lacS	1	1	1	3
	lacR	-	1	1	3

Table S1. Identification of the selected LAB strains

Isolate	Identification result	BLAST result	Accession number	Similarity (%)	Length of obtained sequencing read
FB1	Enterococcus faecium	Enterococcus faecium strain K6	KY490549.1	99	1424/1425
FB2	Ligilactobacillus animalis	Ligilactobacillus animalis strain: JCM 8692	AB911530.1	99	1382/1383
Pom1	Lactobacillus sp.	Lactobacillus sp. strain CC-MHH1034	MH379635.1	99	1375/1381
Pom2	Lactobacillus sp.	Lactobacillus sp. strain CC-MHH1034	MH379635.1	99	1372/1376
Pom4	Enterococcus hirae	Enterococcus hirae strain NCTC12368	LR134297.1	99	1422/1427
Pom5	Limosilactobacillus fermentum	Lactobacillus salivarius strain HBUAS54044	MH473275.1	99	1380/1381
Pom9	Lactobacillus sp.	Lactobacillus sp. strain CC-MHH1034	MH3796	99	1370/1376
Chi3	Enterococcus hirae	Enterococcus hirae strain NCTC12368	LR134297.1	99	1383/1385
Chi4	Enterococcus faecium	Enterococcus faecium strain K6	KY490549.1	100	1437/1437
Chi5	Enterococcus faecium	Enterococcus faecium strain HCD4-5	MH111453.1	100	1438/1438
Chi6	Enterococcus avium	Enterococcus avium strain HCD9-2	MH111483.1	99	1420/1421
Chi7	Pediococcus pentosaceus	Pediococcus pentosaceus strain HBUAS53395	MK402182.1	99	1396/1398
Chi8	Pediococcus pentosaceus	Pediococcus pentosaceus strain HBUAS53395	MK402182.1	99	1414/1416
MD1	Enterococcus hirae	Enterococcus hirae strain: ZZU A1	LC119115.1	99	1413/1418
MD2	Streptococcus lutetiensis	Streptococcus lutetiensis strain HCD23-2	MH111574.1	99	1425/1427

MD3	Limosilactobacillus fermentum	Lactobacillus fermentum strain YL-11	CP034193.1	99	1078/1081
MD12	Limosilactobacillus fermentum	Lactobacillus fermentum strain LMEM 5	MK418591.1	99	1449/1451
MD13	Enterococcus faecalis	Enterococcus faecalis strain LMEM 50	MK418586.1	99	1029/1030
Shi1	Limosilactobacillus fermentum	Lactobacillus fermentum strain YL-11	CP034193.1	99	1426/1427
PD3	Enterococcus faecalis	Enterococcus faecalis strain ACD47-2	MH127511.1	100	1424/1424

Table S2. List of antimicrobial resistance genes and their locations in E. hirae Pom4 and Lig. animalis FB2 genome

Probiotic strain	RGI criterion	ARO term	Detection criterion	AMR gene family	Drug class	Resistance mechanism	Identity of matching region (%)	Length of reference sequence (%)
E. hirae Pom4	Perfect	AAC(6')-Ian	Protein homolog model	AAC(6')	Aminoglycoside antibiotic	Antibiotic inactivation	100	100
	Strict	tet(45)	Protein homolog model	Major facilitator superfamily (MFS) antibiotic efflux pump	Tetracycline antibiotic	Antibiotic efflux	76.71	93.45
	Strict	tetM	Protein homolog model	Tetracycline- resistant ribosomal protection protein	Tetracycline antibiotic	Antibiotic target protection	94.52	100
Lig. animalis FB2	Strict	tetM	Protein homolog model	Tetracycline- resistant ribosomal protection protein	Tetracycline antibiotic	Antibiotic target protection	98.28	100.3

Table S3. Plasmid information of E. hirae Pom4 and P. pentosaceus Chi8

Probiotic strain	Plasmid	Contig	Plasmid	
			Identity (%)	Plasmid replicon type
E. hirae	Plasmid 1	NODE_19_length_21758_cov_274.41128	100	repUS43
Pom4				(Rep_trans)
	Plasmid 2	NODE_23_length_7056_cov_287.63347	100	Rep2
				(Inc18)
	Plasmid 3	NODE_19_length_21758_cov_274.411282	98.27	repUS15
				(RepA_N)
	Plasmid 4	NODE_19_length_21758_cov_274.411282	99.75	repUS12
				(Rep1)
<i>P</i> .	Plasmid 1	NODE_6_length_10603_cov_2129.251663	99.78	Rep28
pentosaceus				(Rep3)
Chi8				

Table S4. Prophage information of the selected LAB strains

Probiotic strain	Region	Region length (kb)	Completeness	Total CDS	Most common phage	GC content (%)
E. hirae Pom4	1	54	Intact	67	PHAGE_Bacill_phBC6A52_NC_004821(11)	34.82
Lim.	1	8.4	Incomplete	10	PHAGE_Nodula_vB_NspS_kac65v151_NC_048756(2)	51.18
fermentum	2	10.5	Incomplete	11	PHAGE_Lactob_Sha1_NC_019489(2)	44.22
Pom5	3	9.6	Incomplete	10	PHAGE_Lactob_CL1_NC_028888(2)	51.75
Р.	1	52.8	Intact	56	PHAGE_Lactob_Sha1_NC_019489(14)	36.56
pentosaceus	2	41.6	Incomplete	13	PHAGE_Bacill_G_NC_023719(2)	36.00
Chi8	3	15.1	Incomplete	22	PHAGE_Entero_phiFL3A_NC_013648(2)	33.43
	4	10.5	Incomplete	13	PHAGE_Lactob_BH1_NC_048737(1)	36.04
Lig. animalis	1	10.4	Incomplete	11	PHAGE_Klebsi_ST147_VIM1phi7.1_NC_049451(1)	42.77
FB2	2	7.9	Incomplete	8	PHAGE_Klebsi_ST147_VIM1phi7.1_NC_049451(1)	41.03
	3	22.7	Questionable	28	PHAGE_Geobac_E2_NC_009552(4)	41.32
	4	9	Incomplete	8	PHAGE_Synech_S_SSM4_NC_020875(1)	43.27
	5	8.2	Incomplete	8	PHAGE_Bacill_G_NC_023719(2	41.54
	6	8	Incomplete	8	PHAGE_Bacill_G_NC_023719(2)	42.46
	7	8.7	Incomplete	7	PHAGE_Bacill_G_NC_023719(3)	41.79
	8	6.9	Incomplete	7	PHAGE_Entero_phiEF24C_NC_009904(4)	40.85

Table S5. Genes associated with stress responses

Stress response protein		Function	Probiotic strain				
Protein class	Protein subsystem	Protein	_	E. hirae Pom4	Lim. fermentum Pom5	P. pentosaceus Chi8	Lig.animalis FB2
Cell envelope, capsule and slime layer	Gram- positive (monoderm) cell wall components	D- alanylation of teichoic acid	D-alanyl carrier protein	Poly(glyceropho sphate_chain)_D - alanine_transfer_ protein_DltD	Acyl_carrier_protein		Undecaprenyl-diphosphatase_(EC_3.6.1. 27)
		dTDP-rhamnose	EPS-producing	D-alanine poly(phosphoribi tol)_ligase_subu nit_1_(EC_6.1.1. 13) D-alanine poly(phosphoribi tol)_ligase_ACP _subunit_(EC_6. 1.1.13) Acyl_carrier_pro tein Acyl_carrier_pro tein D- alanyl_transfer_p rotein_DltB	D-alanine poly(phosphoribitol)_ligas e_ACP_subunit_(EC_6.1. 1.13) D-alanine poly(phosphoribitol)_ligas e_subunit_1_(EC_6.1.1.13) D- alanyl_transfer_protein_D ltB Component_involved_in_ D- alanylation_of_teichoic_a cids Poly(glycerophosphate_ch ain)_D- alanine_transfer_protein_ DltD dTDP-glucose_4,6- dehydratase_(EC_4.2.1.46)		UDP-galactopyranose_mutase_(EC_5.4.99.9)
		synthesis	▼		Cell envelope-associated LytR-CpsA-Psr transcriptional attenuators		

		Cell envelope- associated LytR-CpsA- Psr transcriptional attenuators Wall polysaccharid e pyruvylation	Bacterial cell envelope maintenance Peptidoglycan- associated polymer biosynthesis	Polysaccharide_pyruvyl_tr ansferase_CsaB	Cell_envelope- associated_transcriptional _attenuator_LytR-CpsA- Psr,_subfamily_F2 Cell_envelope- associated_transcriptional _attenuator_LytR-CpsA- Psr,_subfamily_F2 Polysaccharide_pyruvyl_tr ansferase_CsaB
Cell cycle, cell division and death	Programmed cell death and toxin- antitoxin systems	YoeB-YefM toxin- antitoxin system	Regulating cell growth and death under various stress conditions	YoeB_toxin_protein	
DNA processing	DNA repair	Cell cycle, Cell division and death DNA repair	Regulation of cell growth and death	DNA_repair_protein_Rec N DNA_repair_protein_Rad A Exodeoxyribonuclease_VI I_large_subunit_(EC_3.1. 11.6) Exodeoxyribonuclease_III _(EC_3.1.11.2) Exodeoxyribonuclease_VI I_small_subunit_(EC_3.1. 11.6)	MazEF toxin-antitoxing (programmed cell death) system DNA_repair_protein_Rec N DNA_repair_protein_Rad A DNA_polymerase_IV_(E C_2.7.7.7) DNA_repair_exonuclease _family_protein_YhaO Exodeoxyribonuclease_VI I_large_subunit_(EC_3.1. 11.6)

			Methylated-DNA protein- cysteine_methyltransferas e_(EC_2.1.1.63) Single-stranded_DNA- binding_protein SOS- response_repressor_and_p rotease_LexA_(EC_3.4.21 .88)	Exodeoxyribonuclease_VI I_small_subunit_(EC_3.1. 11.6) Endonuclease_IV_(EC_3. 1.21.2) Exodeoxyribonuclease_III_(EC_3.1.11.2) DinG_family_ATP-dependent_helicase_YoaA Methylated-DNAprotein-cysteine_methyltransferas e_(EC_2.1.1.63) Single-stranded_DNA-binding_protein SOS-response_repressor_and_protease_LexA_(EC_3.4.21.88)	DinG_family_ATP-dependent_helicase_YoaA
DNA repair,	Repair of	ATP-	ATP-	ATP-	ATP-
bacterial	double-	dependent_helica	dependent_helicase/nuclea	dependent_helicase/nuclea	dependent_helicase/nuclea
RecBCD pathway	stranded DNA breaks by	se/nuclease_Add AB,_subunit_A	se_AddAB,_subunit_A	se_AddAB,_subunit_A	se_AddAB,_subunit_A
patifway	homologous	ATP-	ATP-		ATP-
	recombination	dependent_helica	dependent_helicase/nuclea		dependent_helicase/nuclea
		se/nuclease_Add AB,_subunit_B	se_AddAB,_subunit_B		se_AddAB,_subunit_B
		RecD-	RecD-	RecD-	RecD-
		like_DNA_helic ase_YrrC	like_DNA_helicase_YrrC	like_DNA_helicase_YrrC	like_DNA_helicase_YrrC
DNA repair,	Cleavage of	ase_TITC	Exonuclease_SbcC		Exonuclease_SbcC
bacterial	DNA hairpin		Exonuclease_SbcD		Exonuclease_SbcD
SbcCD exonuclease	structures				
DNA repair,	DNA double-			ATP-	
bacterial	strand-break			dependent_DNA_helicase	
RecFOR pathway	repair through ESDSA		DNA_recombination_and	_RecQ DNA_recombination_and	
paniway	LODOA		_repair_protein_RecF	_repair_protein_RecF	

					DNA_recombination_and _repair_protein_RecO Nucleoid- associated_protein_YaaK RecA_protein	DNA_recombination_and _repair_protein_RecO Nucleoid- associated_protein_YaaK RecA_protein	RecA_protein
					Regulatory_protein_RecX	Regulatory_protein_RecX	Regulatory_protein_RecX
					Recombination_protein_R ecR Single-stranded-DNA- specific_exonuclease_Rec J Single-stranded_DNA-	Recombination_protein_R ecR Single-stranded-DNA- specific_exonuclease_Rec J Single-stranded_DNA-	
		DNA repair,	DNA repair,		binding_protein ATP-	binding_protein ATP-	ATP-
		bacterial UvrD and related	replication, and recombination		dependent_DNA_helicase _UvrD/PcrA_(EC_3.6.4.1 2)	dependent_DNA_helicase _UvrD/PcrA_(EC_3.6.4.1 2)	dependent_DNA_helicase _UvrD/PcrA_(EC_3.6.4.1 2)
		helicases	X7 11		E i i ARG I	E i i ADG i	F : 1 APC 1
		DNA repair, UvrABC	Nucleotide excision repair		Excinuclease_ABC_subun it_A	Excinuclease_ABC_subun it_A	Excinuclease_ABC_subun it_A
		system			Excinuclease_ABC_subun	Excinuclease_ABC_subun	Excinuclease_ABC_subun
					it_B Excinuclease_ABC_subun	it_B Excinuclease_ABC_subun	it_B Excinuclease_ABC_subun
					it_C	it_C	it_C
		DNA repair, bacterial	Recognition and repair of		DNA_mismatch_repair_pr otein_MutS	DNA_mismatch_repair_pr otein_MutS	DNA_mismatch_repair_pr otein_MutS
		MutHLS	mispaired		Recombination_inhibitory _protein_MutS2	Recombination_inhibitory _protein_MutS2	Recombination_inhibitory
		system	bases		_protein_MutS2 DNA_mismatch_repair_pr otein_MutL	protein_MutS2 DNA_mismatch_repair_pr otein_MutL	_protein_MutS2
	DNA protection	ImpB/MucB/S amB family protein	Ultraviolet (UV) protection	ImpB/MucB/Sa mB family protein	_	_	
Fatty acids, lipids, and isoprenoids	Fatty acids	Putative oxidase COG2907	Synthesis of CFAs, salt- stress adaptation	protein	Oxidoreductase, short-chain_dehydrogenase/reductase_family_(EC_1.1.1) Cyclopropane-fatty-acyl-phospholipid_synthase_(EC_2.1.1.79)		

Stress response	Stress response	Universal stress protein family	Cellular responses adaptation to stationary		Universal_stress_protein_f amily	Universal_stress_protein_f amily	Universal stress protein family
		Glutathione biosynthesis and gamma- glutamyl cycle	phase	Glutaredoxin-like_protein_Nrd H,_required_for_reduction_of_Ri bonucleotide_red uctase_class_Ib Glutathione_reductase_(EC_1.8.1.7)	Glutamate cysteine_ligase_(EC_6.3.2 .2)		Glutamate cysteine_ligase_(EC_6.3.2 .2)
		Hfl operon	GTPase, modulator of FtsH protease				Ribosome_LSU- associated_GTP- binding_protein_HflX
	Heat/cold shock	Heat shock dnaK gene cluster extended, cluster containing glutathione synthetase	Response to sudden increases of environmental temperature by assisting protein folding		16S_rRNA_(cytidine(140 2)-2'-O)- methyltransferase_(EC_2. 1.1.198) 16S_rRNA_(uracil(1498)- N(3))- methyltransferase_(EC_2. 1.1.193)	16S_rRNA_(cytidine(140 2)-2'-O)- methyltransferase_(EC_2. 1.1.198) 16S_rRNA_(uracil(1498)- N(3))- methyltransferase_(EC_2. 1.1.193) Chaperone_protein_DnaJ	16S_rRNA_(cytidine(140 2)-2'-O)- methyltransferase_(EC_2. 1.1.198) 16S_rRNA_(uracil(1498)- N(3))- methyltransferase_(EC_2. 1.1.193) Chaperone_protein_DnaJ
						Chaperone_protein_DnaK DNA_replication_intiation _control_protein_YabA Heat_shock_protein_10_k Da_family_chaperone_Gr oES Heat_shock_protein_60_k Da_family_chaperone_Gr oEL	Chaperone_protein_DnaK DNA_replication_initiation _control_protein_YabA

Putative pre-16S_rRNA_nuclease_Yqg Cold_shock_p Response to Cold shock protein of CSP rotein of CS rapid family P family temperature downshift Choline uptake ABC_transporter,_permea Osmotic Choline uptake and se_protein_(cluster_13,_o stress conversion to smolytes) Betaine ABC tr betaine clusters ansporter, ATPbinding_protein_ (osmoregulati BusAA on) Betaine ABC tr ansporter,_perme ase_protein_Bus AB.1 Betaine_ABC_tr ansporter, substr atebinding_protein_

BusAB.2

Heatinducible_transcription_re pressor_HrcA Heat shock protein GrpE Heatinducible_transcription_re pressor_HrcA Nucleoside 5-Nucleoside 5triphosphatase_RdgB_(dH triphosphatase_RdgB_(dH APTP,_dITP,_XTP-APTP,_dITP,_XTPspecific)_(EC_3.6.1.66) specific)_(EC_3.6.1.66) Ribosomal_protein_L11_ Ribosomal_protein_L11_ methyltransferase methyltransferase tmRNAtmRNAbinding_protein_SmpB binding_protein_SmpB Translation_elongation_fa Translation_elongation_fa ctor_LepA ctor_LepA Putative pre-16S_rRNA_nuclease_Yqg Cold_shock_protein_of_C Cold shock proteins of SP family CSP family

			Glycine_betaine _ABC_transport _system,_ATP- binding_protein_ OpuAA_(EC_3.		Betaine/carnitine/choline_transporter_(BCCT)_family Choline_ABC_transport_s ystem,_permease_protein_ OpuBB Choline_ABC_transport_s ystem,_choline-binding_protein_OpuBC Choline_ABC_transport_s ystem,_permease_protein_ OpuBD Choline_ABC_transport_s ystem,_ATP- binding_protein_OpuBA Glycine_betaine_ABC_tra nsport_system,_ATP- binding_protein_OpuAA_ (EC_3.6.3.32)	Glycine_betaine_ABC_tra nsport_system,_ATP- binding_protein_OpuAA_ (EC_3.6.3.32)
			6.3.32) Glycine_betaine _ABC_transport _system,_permea se_protein_Opu AB		Glycine_betaine_ABC_tra nsport_system,_permease _protein_OpuAB	Glycine_betaine_ABC_tra nsport_system,_permease _protein_OpuAB
			Glycine_betaine _ABC_transport _system,_glycine _betaine- binding_protein_ OpuAC		Glycine_betaine_ABC_tra nsport_system,_glycine_b etaine- binding_protein_OpuAC	Glycine_betaine_ABC_tra nsport_system,_glycine_b etaine- binding_protein_OpuAC
	Osmoregulati on	Osmotic balance	Орилс	Glycerol_uptake_facilitato r_protein	Glycerol_uptake_facilitato r_protein	Glycerol_uptake_facilitato r_protein
					Aquaporin_Z	
Acid/ bile resistance	Amino acid permease	Acquisition of exogenous amino acid	Amino acid permease family protein			

	Uncharacterized amino acid permease, GabP family	Uncharacterized amino acid permease, GabP family	Uncharacterized amino acid permease, GabP family	Uncharacterized amino acid permease, GabP family
	Uncharacterized amino acid permease YdaO	Uncharacterized amino acid permease YdaO	Uncharacterized amino acid permease YdaO	Uncharacterized amino acid permease YdaO
	permease reac			Uncharacterized GabP- family amino acid permease LBA0729 Uncharacterized GabP- family amino acid permease LBA0995
Alcohol ETC dehydrogenas e	Alcohol dehydrogenase (EC 1.1.1.1)	Alcohol dehydrogenase (EC 1.1.1.1)	Alcohol dehydrogenase (EC 1.1.1.1)	Alcohol dehydrogenase (EC 1.1.1.1)
	Acetaldehyde dehydrogenase (EC 1.2.1.10) / Alcohol dehydrogenase (EC 1.1.1.1)	Acetaldehyde dehydrogenase (EC 1.2.1.10) / Alcohol dehydrogenase (EC 1.1.1.1)		Acetaldehyde dehydrogenase (EC 1.2.1.10) / Alcohol dehydrogenase (EC 1.1.1.1)
			Aryl-alcohol dehydrogenase related	
		Benzyl alcohol dehydrogenase	enzyme	
	Zinc-type alcohol dehydrogenase- like protein Bifunctional protein: zinc- containing alcohol dehydrogenase; quinone oxidoreductase (NADPH:quino ne reductase)		Zinc-type alcohol dehydrogenase-like protein	

Lactate dehydrogenas e	Restores NAD+/NADH balance	(EC 1.1.1); Similar to arginate lyase L-lactate dehydrogenase (EC 1.1.1.27)	D-lactate dehydrogenase (EC 1.1.1.28) L-lactate dehydrogenase (EC 1.1.1.27) Predicted L-lactate dehydrogenase, Fe-S oxidoreductase subunit YkgE Predicted L-lactate dehydrogenase, Ironsulfur cluster-binding subunit YkgF Predicted L-lactate dehydrogenase, hypothetical protein subunit YkgG	D-lactate dehydrogenase (EC 1.1.1.28) L-lactate dehydrogenase (EC 1.1.1.27)	D-lactate dehydrogenase (EC 1.1.1.28) L-lactate dehydrogenase (EC 1.1.1.27) Predicted L-lactate dehydrogenase, Fe-S oxidoreductase subunit YkgE Predicted L-lactate dehydrogenase, Ironsulfur cluster-binding subunit YkgF Predicted L-lactate dehydrogenase, hypothetical protein subunit YkgG
Alanine dehydrogenas e	Oxidative deamination reaction			Alanine dehydrogenase (EC 1.4.1.1)	Ü
F0F1-type ATP synthase	Proton translocation		ATP_synthase_F0_sector_subunit_a_(EC_3.6.3.14) ATP_synthase_F0_sector_subunit_b_(EC_3.6.3.14) ATP_synthase_F0_sector_subunit_c_(EC_3.6.3.14) ATP_synthase_alpha_chain_(EC_3.6.3.14) ATP_synthase_beta_chain_(EC_3.6.3.14) ATP_synthase_delta_chain_(EC_3.6.3.14) ATP_synthase_epsilon_chain_(EC_3.6.3.14) ATP_synthase_epsilon_chain_(EC_3.6.3.14) ATP_synthase_gamma_chain_(EC_3.6.3.14)	ATP_synthase_F0_sector_subunit_a_(EC_3.6.3.14) ATP_synthase_F0_sector_subunit_b_(EC_3.6.3.14) ATP_synthase_F0_sector_subunit_c_(EC_3.6.3.14) ATP_synthase_alpha_chain_(EC_3.6.3.14) ATP_synthase_beta_chain_(EC_3.6.3.14) ATP_synthase_delta_chain_(EC_3.6.3.14) ATP_synthase_epsilon_chain_(EC_3.6.3.14) ATP_synthase_epsilon_chain_(EC_3.6.3.14) ATP_synthase_gamma_chain_(EC_3.6.3.14)	ATP_synthase_F0_sector_subunit_a_(EC_3.6.3.14) ATP_synthase_F0_sector_subunit_b_(EC_3.6.3.14) ATP_synthase_F0_sector_subunit_c_(EC_3.6.3.14) ATP_synthase_alpha_chain_(EC_3.6.3.14) ATP_synthase_beta_chain_(EC_3.6.3.14) ATP_synthase_delta_chain_(EC_3.6.3.14) ATP_synthase_delta_chain_(EC_3.6.3.14) ATP_synthase_epsilon_chain_(EC_3.6.3.14) ATP_synthase_gamma_chain_(EC_3.6.3.14)

DegP protein	Protease and chaperone activities	Serine protease, DegP/HtrA, do- like (EC 3.4.21)	Serine protease, DegP/HtrA, do-like (EC 3.4.21)	Serine protease, DegP/HtrA, do-like (EC 3.4.21)	
Agrinine/ormi thine antiporter	Import of arginine and export of ornithine	Arginine/ornithin e antiporter ArcD	Arginine/ornithine antiporter ArcD	Arginine/ornithine antiporter ArcD	
Glutaminase	Conversion of glutamine to glutamate	Glutaminase (EC 3.5.1.2)			
Glutamate decarboxylase	Conversion of glutamate to gamma-amino butyric acid		Glutamate decarboxylase (EC 4.1.1.15)		
Na+/H+ antip orter	Proton transporter	Na+/H+ antiporter	Na(+)/H(+) antiporter	Na+/H+ antiporter	Na(+)/H(+) antiporter
		Na+/H+ antiporter NapA	Na+/H+ antiporter NapA	Na+/H+ antiporter NapA	Na+/H+ antiporter NapA
Bile hydrolysis	Catalysis the hydrolysis of the amide bond in conjugated bile acids		Bile hydrolysis	Choloylglycine_hydrolase _(EC_3.5.1.24)	Choloylglycine_hydrolase _(EC_3.5.1.24)

Table S6. Genes associated with adhesion and aggregation

Stress respon	ise protein		Function	Probiotic strain			
Protein class	Protein subsystem	Protein	-	E. hirae Pom4	Lim. fermentum Pom5	P. pentosaceus Chi8	Lig. animalis FB2
Adhesion and aggregation	Adhesion	Sortase A, LPXTG specific Fibronectin/fibr inogen-binding protein	Binding to mucus Facilitating binding to epithelial cells/ extracellular matrix	Sortase A, LPXTG specific Fibronectin/fibrinogen-binding protein	Sortase A, LPXTG specific Fibronectin/fibrinogen- binding protein	Sortase A, LPXTG specific Fibronectin/fibrinogen- binding protein	Sortase A, LPXTG specific Fibronectin/fibri nogen-binding protein
		Enolase (EC 4.2.1.11)	Binding to plasma components	Enolase (EC 4.2.1.11)	Enolase (EC 4.2.1.11)	Enolase (EC 4.2.1.11)	Enolase (EC 4.2.1.11)
		Pyruvate dehydrogenase E1 component beta subunit (EC 1.2.4.1)	Fibronectin	Pyruvate dehydrogenase E1 component beta subunit (EC 1.2.4.1)	Pyruvate dehydrogenase E1 component beta subunit (EC 1.2.4.1)	Pyruvate dehydrogenase E1 component subunit beta	Pyruvate dehydrogenase E1 component beta subunit (EC 1.2.4.1)
		Pyruvate dehydrogenase E1 component subunit alpha	binding protein	Pyruvate dehydrogenase E1 component alpha subunit (EC 1.2.4.1)	Pyruvate dehydrogenase E1 component alpha subunit (EC 1.2.4.1)	Pyruvate dehydrogenase E1 component subunit alpha	Pyruvate dehydrogenase E1 component alpha subunit (EC 1.2.4.1)
		Predicted cell- wall-anchored protein SasA (LPXTG motif)	LPXTG- anchored cell wall proteins			Predicted cell-wall- anchored protein SasA (LPXTG motif)	
		Internalin, putative (LPXTG motif)	Adhesion to mucus			internalin, putative (LPXTG motif)	
		Glyceraldehyde -3-phosphate dehydrogenase	Adhesion to plasma components		NAD-dependent glyceraldehyde-3- phosphate dehydrogenase (EC 1.2.1.12)	Glyceraldehyde-3- phosphate dehydrogenase	NAD-dependent glyceraldehyde- 3-phosphate dehydrogenase (EC 1.2.1.12)

Aggregra- tion	Aggregation substance precursor LysM peptidoglycan- binding domain- containing protein	Increased bacterial adherence Cell wall binding domain	Aggregation promoting factor	Aggregation promoting factor Peptidoglycan-binding LysM	Aggregation promoting factor LysM domain	Aggregation promoting factor
	Translation elongation factor Tu GroEL chaperon	Adhesion to host extracellular matrix components	Translation elongation factor Tu	Translation elongation factor Tu	Translation elongation factor Tu	Translation elongation factor Tu
	Peptidyl-propyl cis-trans isomerase (EC 5.2.1.8)	Pathogen aggregation			Peptidyl-prolyl cis-trans isomerase (EC 5.2.1.8)	
Exopoly- saccharide production	Exopolysacchar ide biosynthesis	EPS production	Tyrosine-protein kinase EpsD (EC 2.7.10.2)	Tyrosine-protein kinase transmembrane modulator EpsC	Tyrosine-protein kinase transmembrane modulator EpsC	
			Tyrosine-protein kinase transmembrane modulator EpsC Undecaprenyl-phosphate galactosephosphotransfera se (EC 2.7.8.6) Lipopolysaccharide cholinephosphotransferase LicD3 (EC 2.7.8)	Tyrosine-protein kinase EpsD (EC 2.7.10.2)	Tyrosine-protein kinase EpsD (EC 2.7.10.2)	
	UTPglucose- 1-phosphate uridylyltransfer ase (EC 2.7.7.9)	Synthesis of UDP- glucose		UTPglucose-1- phosphate uridylyltransferase (EC 2.7.7.9)	UTPglucose-1- phosphate uridylyltransferase (EC 2.7.7.9)	UTPglucose-1- phosphate uridylyltransfera se (EC 2.7.7.9)
	Glycosylphosph otransferase	Synthesis of complex carbohydrate s	Glycosyltransferase	Glycosyltransferase	Glycosyltransferase	

Table S7. Genes associated with secondary metabolites (vitamins and essential amino acids)

Essential	Pathway	Probiotic strain					
amino acid/ cofactor		E. hirae Pom4	Lim. fermentum Pom5	P. pentosaceus Chi8	Lig. animalis FB2		
Arginine	Arginine biosynthesis Histidine		Argininosuccinate_synthase_(EC6.3.4.5) N-acetyl-gamma-glutamyl-phosphate_reductase_(EC_1.2.1.38) N-acetylglutamate_synthase_(EC_2.3.1.1) Argininosuccinate_lyase_(EC_4.3.2.1) N-acetylglutamate_kinase_(EC_2.7.2.8) N-acetylglutamate_kinase_(EC_2.7.2.8) N-acetylornithine_aminotransferase_(EC_2.6.1.11) Ornithine_carbamoyltransferase_(EC_2.1.3.3) Glutamate_N-acetyltransferase_(EC_2.3.1.35) Histidinol-				
	biosynthesis		phosphate_aminotransferase_(EC _2.6.1.9) Imidazole_glycerol_phosphate_s ynthase_cyclase_subunit Phosphoribosylformimino-5- aminoimidazole_carboxamide_ri botide_isomerase_(EC_5.3.1.16) Imidazole_glycerol_phosphate_s ynthase_amidotransferase_subuni t_HisH ATP_phosphoribosyltransferase_ (EC_2.4.2.17)_=>_HisGs				

ATP_phosphoribosyltransferase_ regulatory_subunit_(EC_2.4.2.17)	
A low low or and story (T)	
Adenylosuccinate_synthetase_(E	
C_6.3.4.4)	
Histidinol_dehydrogenase_(EC_	
1.1.1.23)	
Histidinol-	
phosphatase_(EC_3.1.3.15)	
Imidazole_glycerol_phosphate_s	
ynthase_cyclase_subunit	
Imidazole_glycerol_phosphate_s	
ynthase_amidotransferase_subuni	
t_HisH	
Phosphoribosyl-	
ATP_pyrophosphatase_(EC_3.6.	
1.31)	
Phosphoribosyl-	
AMP_cyclohydrolase_(EC_3.5.4	
.19)	
Imidazoleglycerol-	
phosphate_dehydratase_(EC_4.2.	
1.19)	
Imidazole_glycerol_phosphate_s	
ynthase_cyclase_subunit	
Lysine Lysine DAP 4-hydroxy-	
biosynthetic pathway tetrahydrodipicolinate_synthase_ (EC_4.3.3.7) tetrahydrodipicolinate_synthase_ (EC_4.3.3.7)	ntnase_
N-acetyl-L,L- N-acetyl-L,L-	
diaminopimelate_deacetylase_(E diaminopimelate_deacety	laca (F
C_3.5.1.47) C_3.5.1.47)	lasc_(L
Diaminopimelate_decarboxylase Diaminopimelate_decarb	oxylase
_(EC_4.1.1.20)(EC_4.1.1.20)	myrase
Aspartate- Aspartate-	
semialdehyde_dehydrogenase_(E semialdehydrogenase_(E	nase (E
$C_{1.2.1.11}$	_\
FIG138056:_a_glutathione- FIG138056:_a_glutathion	e-
dependent_thiol_reductase dependent_thiol_reductase	

		4-hydroxy- tetrahydrodipicolinate_reductase _(EC_1.17.1.8) 2,3,4,5-tetrahydropyridine-2,6- dicarboxylate_N- acetyltransferase_(EC_2.3.1.89) Aspartokinase_(EC_2.7.2.4)	4-hydroxy- tetrahydrodipicolinate_reductase _(EC_1.17.1.8) 2,3,4,5-tetrahydropyridine-2,6- dicarboxylate_N- acetyltransferase_(EC_2.3.1.89) Aspartokinase_(EC_2.7.2.4)
	Diaminopimelate synthesis	Diaminopimelate_epimerase_(E C_5.1.1.7)	Diaminopimelate_epimerase_(E C_5.1.1.7) Diaminopimelate_decarboxylase _(EC_4.1.1.20) Aspartokinase_(EC_2.7.2.4)
Di II			4-hydroxy- tetrahydrodipicolinate_reductase _(EC_1.17.1.8) N-acetyl-L,L- diaminopimelate_deacetylase_(E C_3.5.1.47) Diaminopimelate_epimerase_(E C_5.1.1.7) Aspartate- semialdehyde_dehydrogenase_(E C_1.2.1.11) 4-hydroxy- tetrahydrodipicolinate_synthase_ (EC_4.3.3.7) 2,3,4,5-tetrahydropyridine-2,6- dicarboxylate_N- acetyltransferase_(EC_2.3.1.89)
Phenylalan ine	Phenylalanine and tyrosine synthesis 1	Biosynthetic_Aromatic_amino_a cid_aminotransferase_alpha_(EC _2.6.1.57) Prephenate_dehydrogenase_(EC_ 1.3.1.12) Chorismate_mutase_I_(EC_5.4.9 9.5)	
Theronine	Aspartate to threonine Module	Threonine_synthase_(EC_4.2.3.1)	

		Homoserine_kinase_(EC_2.7.1.3 9) Homoserine_dehydrogenase_(EC_1.1.1.3) Aspartokinase_(EC_2.7.2.4) Homoserine_dehydrogenase_(EC		
		_1.1.1.3) Aspartate- semialdehyde_dehydrogenase_(E C_1.2.1.11)		
Tryptophan e Valine				
Isoleucine Leucine				
Methionine				
Riboflavin	Riboflavin, FMN and	Riboflavin_kinase_(EC_2.7.1.26)	Riboflavin_kinase_(EC_2.7.1.26)	Riboflavin_kinase_(EC_2.7.1.26)
	FAD metabolism with fusion events	Substrate- specific_component_RibU_of_ri boflavin_ECF_transporter tRNA_pseudouridine(55)_syntha se_(EC_5.4.99.25) Diaminohydroxyphosphoribosyla minopyrimidine_deaminase_(EC _3.5.4.26) 3,4-dihydroxy-2-butanone_4- phosphate_synthase_(EC_4.1.99. 12) ADP- ribose_pyrophosphatase_of_CO G1058_family_(EC_3.6.1.13) EMN_adenylytransferase_(EC_2.2.12)	Substrate-specific_component_RibU_of_ri boflavin_ECF_transporter tRNA_pseudouridine(55)_syntha se_(EC_5.4.99.25) Diaminohydroxyphosphoribosyla minopyrimidine_deaminase_(EC_3.5.4.26) 3,4-dihydroxy-2-butanone_4-phosphate_synthase_(EC_4.1.99.12) ADP-ribose_pyrophosphatase_of_COG1058_family_(EC_3.6.1.13) EMN_adenylyltransferase_(EC_2.2.6.1.13)	Substrate- specific_component_RibU_of_ri boflavin_ECF_transporter tRNA_pseudouridine(55)_syntha se_(EC_5.4.99.25)
		FMN_adenylyltransferase_(EC_2 .7.7.2) 5-amino-6-(5-phosphoribosylamino)uracil_redu ctase_(EC_1.1.1.193)	FMN_adenylyltransferase_(EC_2 .7.7.2) 5-amino-6-(5-phosphoribosylamino)uracil_redu ctase_(EC_1.1.1.193)	FMN_adenylyltransferase_(EC_2 .7.7.2)

		Riboflavin_synthase_eubacterial/ eukaryotic_(EC_2.5.1.9) eukaryotic_(EC_2.5.1.9) eukaryotic_(EC_2.5.1.9) GTP_cyclohydrolase_II_(EC_3.5 .4.25) GTP_cyclohydrolase_II_(EC_3.5 .4.25)	
Biotin	Biotin synthesis and utilization	6,7-dimethyl-8- ribityllumazine_synthase_(EC_2. 5.1.78) Biotin_carboxylase_of_acetyl- CoA_carboxylase_(EC_6.3.4.14) Substrate- specific_component_BioY_of_bi otin_ECF_transporter Biotin 14.25) 6,7-dimethyl-8- ribityllumazine_synthase_(EC_2. 5.1.78) Biotin_carboxylase_of_acetyl- CoA_carboxylase_(EC_6.3.4.14) Substrate- specific_component_BioY_of_bi otin_ECF_transporter Biotin	
		protein_ligase_(EC_6.3.4.9)(EC_ 6.3.4.10)(EC_6.3.4.11)(EC_6.3.4	
Pyridoxin	Pyridoxin (Vitamin B6) biosynthesis	3-ketoacyl- CoA_thiolase_(EC_2.3.1.16) NAD-dependent_glyceraldehyde- 3- phosphate_dehydrogenase_(EC_ 1.2.1.12) D-3-	NAD-dependent_glyceraldehyde- 3- phosphate_dehydrogenase_(EC_ 1.2.1.12)
		phosphoglycerate_dehydrogenase _(EC_1.1.1.95) Pyridoxal_kinase_(EC_2.7.1.35)	Pyridoxal_kinase_(EC_2.7.1.35)
Folate	Folate biosynthesis	Phosphoserine_aminotransferase _(EC_2.6.1.52) 1-deoxy-D-xylulose_5- phosphate_synthase_(EC_2.2.1.7) 2-amino-4-hydroxy-6- hydroxymethyldihydropteridine_	
		pyrophosphokinase_(EC_2.7.6.3) 5-formyltetrahydrofolate_cyclo- ligase_(EC_6.3.3.2) 5-formyltetrahydrofolate_cyclo- ligase_(EC_6.3.3.2)	

ATPase_component_of_general_ energizing_module_of_ECF_tran sporters ATPase_component_of_general_ energizing_module_of_ECF_tran sporters	ATPase_component_of_general_ energizing_module_of_ECF_tran sporters ATPase_component_of_general_ energizing_module_of_ECF_tran sporters	
Cell_division-associated,_ATP-dependent_zinc_metalloprotease _FtsH Dihydroneopterin_aldolase_(EC_	Cell_division-associated,_ATP-dependent_zinc_metalloprotease_FtsH	Cell_division-associated,_ATP-dependent_zinc_metalloprotease_FtsH
4.1.2.25) Dihydropteroate_synthase_(EC_ 2.5.1.15)		
Dihydrofolate_synthase_(EC_6.3 .2.12) Dihydrofolate_reductase_(EC_1.	Dihydrofolate_synthase_(EC_6.3 .2.12) Dihydrofolate_reductase_(EC_1.	
5.1.3) Dihydrofolate_synthase_(EC_6.3	5.1.3)	
.2.12) Folylpolyglutamate_synthase_(E C_6.3.2.17)	Folylpolyglutamate_synthase_(E C_6.3.2.17)	
Folylpolyglutamate_synthase_(E C_6.3.2.17)		
Formate tetrahydrofolate_ligase_(EC_6.3. 4.3)	Formate tetrahydrofolate_ligase_(EC_6.3. 4.3)	
GTP_cyclohydrolase_I_(EC_3.5. 4.16)_type_1	GTP_cyclohydrolase_II_(EC_3.5 .4.25)	
GTP_cyclohydrolase_II_(EC_3.5 .4.25)	II a setting	II a setting
Hypoxanthine- guanine_phosphoribosyltransfera se_(EC_2.4.2.8)	Hypoxanthine- guanine_phosphoribosyltransfera se_(EC_2.4.2.8)	Hypoxanthine- guanine_phosphoribosyltransfera se_(EC_2.4.2.8)
Methionyl- tRNA_formyltransferase_(EC_2. 1.2.9)	Methionyl- tRNA_formyltransferase_(EC_2. 1.2.9)	
Methylenetetrahydrofolate_dehy drogenase_(NADP+)_(EC_1.5.1. 5)	Methylenetetrahydrofolate_dehy drogenase_(NADP+)_(EC_1.5.1. 5)	

		S-	Ş-	
		adenosylmethionine_synthetase_(adenosylmethionine_synthetase_(
		EC_2.5.1.6)	EC_2.5.1.6)	
		Serine_hydroxymethyltransferase	Serine_hydroxymethyltransferase	
		_(EC_2.1.2.1)	_(EC_2.1.2.1)	
			Substrate-	
			specific_component_FolT_of_fol	
			ate_ECF_transporter	
		Thymidylate_synthase_(EC_2.1. 1.45)	Thymidine_kinase_(EC_2.7.1.21)	
		Thymidine_kinase_(EC_2.7.1.21	Thymidylate_synthase_(EC_2.1.	
) , – – – –	1.45)	
		Transmembrane_component_of_	Transmembrane_component_of_	
		general_energizing_module_of_	general_energizing_module_of_	
		ECF_transporters	ECF_transporters	
		tRNA(Ile)-	tRNA(Ile)-	tRNA(Ile)-
		lysidine_synthetase_(EC_6.3.4.1	lysidine_synthetase_(EC_6.3.4.1	lysidine_synthetase_(EC_6.3.4.1
		9)	9)	9)
Thiamin	Thiamin, thiazole,	Cysteine_desulfurase_(EC_2.8.1.	Cysteine_desulfurase_(EC_2.8.1.	Cysteine_desulfurase_(EC_2.8.1.
	hydroxymethylpyrim	7),_associated_with_tRNA_4-	7),_associated_with_tRNA_4-	7),_associated_with_tRNA_4-
	idine salvage and	thiouridine_synthase	thiouridine_synthase	thiouridine_synthase
	uptake	Duplicated_ATPase_component_		
		YkoD_of_energizing_module_of thiamin-		
		regulated_ECF_transporter_for_		
		HydroxyMethylPyrimidine		
		Hydroxymethylpyrimidine_kinas		
		e_(EC_2.7.1.49)		
		Hydroxyethylthiazole_kinase_(E		
		C_2.7.1.50)		
		Substrate-		
		specific_component_YkoE_of_th		
		iamin-		
		regulated_ECF_transporter_for_		
		HydroxyMethylPyrimidine		
		tRNA_4-	tRNA_4-	tRNA_4-
		thiouridine_synthase_(EC_2.8.1.	thiouridine_synthase_(EC_2.8.1.	thiouridine_synthase_(EC_2.8.1.
		4)	4)	4)
		Thiamin_pyrophosphokinase_(E	Thiamin_pyrophosphokinase_(E	Thiamin_pyrophosphokinase_(E
		C_2.7.6.2)	C_2.7.6.2)	C_2.7.6.2)

		Thiaminase_II_(EC_3.5.99.2)_in volved_in_salvage_of_thiamin_p yrimidine_moiety Transmembrane_component_Yk oC_of_energizing_module_of_th iamin-regulated_ECF_transporter_for_HydroxyMethylPyrimidine	Thiamin_ABC_transporter_ThiY ,_substrate-binding_component	
Lipoic acid Lipoic acid metabolism	Lipoate-protein_ligase_A	Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)	Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)	Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)
	Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)	Lipoate-protein_ligase_A	Lipoate-protein_ligase_A	Lipoate-protein_ligase_A
	Lipoate-protein_ligase_A	Lipoamidase		
Lipoylated proteins		Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)	Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)	Dihydrolipoamide_dehydrogenas e_of_pyruvate_dehydrogenase_c omplex_(EC_1.8.1.4)
		Dihydrolipoamide_dehydrogenase_c e_of_pyruvate_dehydrogenase_c omplex_(EC_1.8.1.4)	Dihydrolipoamide_dehydrogenase e_of_pyruvate_dehydrogenase_c omplex_(EC_1.8.1.4)	Dihydrolipoamide_acetyltransfer ase_component_of_pyruvate_deh ydrogenase_complex_(EC_2.3.1. 12)
		Pyruvate_dehydrogenase_E1_co mponent_alpha_subunit_(EC_1.2 .4.1)	Pyruvate_dehydrogenase_E1_co mponent_alpha_subunit_(EC_1.2 .4.1)	Pyruvate_dehydrogenase_E1_co mponent_beta_subunit_(EC_1.2. 4.1)
		Pyruvate_dehydrogenase_E1_co mponent_beta_subunit_(EC_1.2. 4.1)	Pyruvate_dehydrogenase_E1_co mponent_beta_subunit_(EC_1.2. 4.1)	Pyruvate_dehydrogenase_E1_co mponent_alpha_subunit_(EC_1.2 .4.1)