1	TITLE PAGE
2 - Food S	cience of Animal Resources -
3 Upload this con	npleted form to website with submission
	Fill in information in each box below
Article Type	
Article Title	Influences of aging methods and temperature on meat quality of pork belly from purebred Berkshire and crossbred Landrace × Yorkshire × Duroc (LYD) pigs
Running Title (within 10 words)	Aging methods and temperature of Berkshire and LYD pork
Author	Sang-Keun Jin ^{1*} , and Dong Gyun Yim ^{2*}
	¹ Department of Animal Resources Technology, Gyeongsang National University, Jinju 52725, Korea ² Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
Special remarks – if authors have additional information to inform the editorial office	
ORCID (All authors must have ORCID)	Sang-Keun Jin (<u>https://orcid.org/0000-0002-8983-</u> 5607)
https://orcid.org	Dong Gyun Yim (https://orcid.org/0000-0003-0368-2847)
Conflicts of interest List any present or potential conflict s of interest for all authors.	The authors declare no potential conflict of interest.
(This field may be published.)	
Acknowledgements State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available. (This field may be published.)	This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (118039-03-1-HD020) and by the Regional Animal Industry Center at Gyeongnam National University of Science and Technology (GnTech)
Author contributions	Conceptualization: Jin SK. Yim DG
(This field may be published.)	Data curation: Jin SK Formal analysis: Jin SK Methodology: Jin SK Software: Jin SK Validation: Jin SK, Yim DG Investigation: Jin SK, Yim DG Writing - original draft: Jin SK, Yim DG Writing - review & editing: Jin SK, Yim DG
Ethics approval (IRB/IACUC)	This article does not require IRB/IACUC approval because there are no human
(I his field may be published.)	and animal participants.
6 CORRESPONDING AUTHOR CONT.	
For the <u>corresponding</u> author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Dong Gyun Yim
Email address – this is where your proofs	tousa0994@naver.com
Secondary Email address	
Postal address	Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
Office phone number	+82-2-880-4820
Fax number	+82-2-873-2271

8

Abstract

9 We studied effects of aging methods and temperature on the physical, chemical, and amino acid composition of pork belly from Berkshire and Landrace \times Yorkshire \times Duroc (LYD) 10 11 swine. Pork belly samples were assigned randomly to breed groups (Berkshire and LYD), aging temperature groups (0 °C and 9 °C), and aging method groups. One samples of vacuum-12 packaged hanging pork bellies were hung in a refrigerated cooler with 83±2.0 % humidity, 13 14 while the other samples were immersed in a 3.5 % salt solution in a vacuum package and 15 subsequently stored in the same cooler for 2 weeks. LYD pork had lower pH and purge loss and higher lightness values than those of Berkshire pork (p<0.05). Moreover, thiobarbituric 16 acid reactive substances and hardness values of LYD pork were lower than those of Berkshire 17 pork after aging (p<0.05). Berkshire pork had a higher level of flavorful amino acids than LYD 18 19 pork did during aging (p<0.05). Bellies aged at elevated temperatures for two weeks had higher volatile basic nitrogen. However, significantly higher percentages of flavorful and sweet taste 20 amino acids were observed in bellies aged at 9 °C compared to those aged at 0 °C for 2 weeks. 21 22 Moisture content was higher in immersed samples than hanging samples after two weeks of aging (p<0.05). Hanging pork bellies exhibited higher texture profiles than immersed pork 23 bellies at two weeks (p<0.05). We concluded that breeds, aging temperature, and methods 24 25 affected most quality attributes of pork belly.

Key words: aging methods, temperature, meat quality, Berkshire, Landrace × Yorkshire ×
 Duroc , pork belly

29 Introduction

Pork is one of the most preferred meats in south Korea and its consumption is limited to 30 specific cuts such as the belly and the neck. Pork belly has been a favorite cut among Korean 31 meat consumers for years because of its flavor and high fat content, and consequentially, is 32 more expensive than other cuts of meat (Korea Meat Trade Association, 2018). 33 34 Each breed of swine has unique characteristics. The Berkshire breed has higher levels of amino acids, tender meat, better water-holding capacity (WHC), darker meat color, and lower 35 cooking loss and drip loss compared with other breeds (Lee et al., 2012). Crossbreeding in 36 37 swine is focused on improving the total efficiency and enhancing meat quality (Edwards et al., 2003). In Korea, commercial pork is currently three-way crossbred as Landrace \times 38 Yorkshire \times Duroc (LYD), which have a faster growth rate, higher yield and litter size than 39 other crossbreeds (Lim et al., 2014). Previous studies found that LYD pigs had lower values 40 in texture, cooking loss, and drip loss but had increased WHC compared with other 41crossbreeds (Kim et al., 2006; Poldvere et al., 2015). Although LYD pigs are widely bred 42 commercially, differences in meat quality between Berkshire pigs and LYD pigs are 43 unknown. Furthermore, previous work on the comparison of meat quality between purebred 44 45and LYD crossbreds has mostly been done for pork loins (Choi et al., 2016). Thus, it is vital to compare the meat quality of belly parts from Berkshire and LYD pigs. 46 47Salting improves the texture and flavor and extends the shelf life of meat (Graiver et al., 48 2006). Brine is used to soak muscle meat (Jin et al., 2014), however no literature is available on impacts of wet aging using brine on the quality of pork bellies in vacuum packaging. 49 Aging improves meat quality by enhancing meat characteristics such as tenderness, 50 juiciness, and flavor (Sitz et al., 2006; Koutsidis et al., 2008). Unlike the beef industry, dry or 51 52 vacuum-aging techniques have not achieved the same popularity in pork industry. Aging regimes, such as methods, time, and temperature, that affect meat quality, have not been 53

reported in the pork industry because they increase production costs (Frenzel et al., 2014). 5455 Aging is generally categorized as either vacuum or dry aging. Vacuum aging is a commonly used technology for meat, the meat with a bloody and metallic flavor (Campbell et al., 2001) 56 is stored in a sealed barrier package in a refrigerated cooler (Smith et al., 2008). It also 57 inhibits weight loss caused by moisture evaporation, resulting in microorganism proliferation 58and improved juiciness and tenderness in pork (Juárez et al., 2011). Unlike dry aging, 59 60 controlled humidity and air velocity are not required for wet aging (Frenzel et al., 2014). Research on immersed wet-aging of pork is rarely done because it can result in excess water 61 loss and higher lipid rancidity compared to beef, owing to high concentrations of 62 63 polyunsaturated fatty acids. In addition, positive effects of aging on pork quality might be influenced by the fat content of the carcass, which is related to genotypes in pigs (Juárez et 64 al., 2011). The shelf-life of vacuum-packaged meat depends on temperature because 65 66 microbial growth is highly related to temperature (Zamora and Zaritzky, 1985). Although previous studies have compared effects of wet and dry aging on the quality of beef (Campbell 67 68 et al., 2001; Sitz et al., 2006; Stenström et al., 2014) and pork (Jin and Yim, 2020), no study has compared effects of hanging and immersed pork belly in a vacuum package on 69 physicochemical traits. Thus, we aimed to determine effects of two aforementioned aging 70 71 methods and temperature (0 °C and 9 °C) on physical traits, chemical composition, and amino 72 acid composition of pork belly from Berkshire and crossbred Landrace × Yorkshire × Duroc (LYD) pigs. 73

74

75 Materials and Methods

76 Sample preparation and aging conditions

Belly cuts from swine, an offspring of a Landrace/Yorkshire sow with a Duroc boar crossbred, were taken from six carcasses. Same cuts from purebred Berkshire pigs were evaluated

- 4 -

to compare meat quality traits with LYD pigs. The average live weight of the pigs was 109 79 80 kg. Bellies were obtained from a meat processing plant and moved to the experimental facility by cold transport (2±1 °C). Pork belly cuts between the fifth and the last ribs with consistent 81 thickness of lean and fat layers were obtained from 10 right pork sides at 8-h postmortem. 82 Thereafter, belly muscles were sliced into three pieces of 15 cm thickness, and bellies were 83 trimmed to remove excess fat and bone, after which were grouped into two aging treatments, 84 85 hanging and immersed pork belly in a vacuum package. Both vacuum-packaged samples were assigned to and stored at 0 °C and 9 °C at 83±2.0 % humidity for one of the following 86 periods: 0, 1, or 2 weeks. Hanging pork belly samples were hung vacuum-packaged in 87 88 presence of air in a refrigerated cooler, where temperatures and humidity were monitored and recorded using a temperature probe (175-H2; Testo, Lenzkirch, Germany). Immersed samples 89 were vacuum-packaged, immersed in a brine solution with 3.5 % sodium chloride and then 90 91 stored inside a refrigerated cooler. All samples were transferred for and aged for 0 (non-aged), 1 and 2 weeks for subsequent analysis. 92

93

94 Physicochemical analysis

The pH value was measured using a pH meter (MP 230, Mettler Toledo, Switzerland). 95 96 Approximately 5 g of raw meat was mixed with 45 mL of deionized water and then homogenized (IKA T25, ULTRATURAX, Staufen, Germany) for 50 s at 17,000 \times g. 97 Moisture content was determined by calculating the weight difference between pre-dried and 98 post-dried meat samples after drying at 104 °C for 12 h. WHC was estimated according to the 99 modified method suggested by Joo (2018). WHC (%) was calculated as follows: WHC (%) = 100 (Damp filter paper and plastic film weight) - (filter paper and plastic film weight) / meat sample 101 102 weight \times 100. Drip loss was estimated by calculating the difference between the final weight and initial weight of the drippings collected in a bag. Purge loss was calculated as the difference 103

in the final weight of sausages compared to their initial weight after two and four weeks of
storage in a vacuum bag. Water and fat loss was expressed as the ratio of the released water (or
fat) volume (mL) and raw batter weight (g).

107 Lipid oxidation was measured according to the method described by Yang et al. (2009). thiobarbituric acid reactive substances (TBARS) was determined as milligrams of 108 malondialdehyde per kilogram of meat. Volatile basic nitrogen (VBN) was obtained as 109 110 described by Conway (1950). For the microbial count analysis, 10 g of each sample was aseptically obtained and homogenized with 90 mL of sterile 0.85% sodium chloride solution for 111 three min using a stomacher (lab blender 400, Seward, London, UK). Microorganisms were 112 113 analyzed for total plate counts according to standard procedures (APHA, 1992). Samples for total plate count and coliform analysis were incubated at 37 °C for 72 h and 24 h, respectively. 114 Microbiological data were shown as the log of colony forming unit (CFU)/g. The color was 115 116 measured using a colorimeter (Minolta CR-400, Minolta Co., Tokyo, Japan) and a white plate was used for standardization (Y=93.5, X=0.3132, y=0.3198) before calculation. The color 117118 parameters are shown as L* (lightness), a* (redness), and b* (yellowness). The chroma (C^*) and hue angle were calculated as $(a^{*2} + b^{*2})^{1/2}$ and $\tan^{-1}(b^{*/a^{*}})$, respectively (Fernández-López 119 et al., 2000). Sliced samples, 25 mm in diameter, were analyzed using a texture analyzer (TA-120 121 XT2i, Stable Micro System, Surrey, UK), and their hardness, cohesiveness, springiness, gumminess, chewiness, and adhesiveness were measured. The free amino acid content was 122 123 determined using a modified high-performance liquid chromatography technique, as described 124 by Bidlingmeyer et al. (1984).

125

126 Statistical analysis

127 Calculations based on the general linear model were analyzed using an analysis of variance
128 using the SAS 8.3 software program (SAS Institute Inc., USA) with three replications, and

- 6 -

results were reported as mean values with standard error of the means. A *t*-test was used to compare results between the two groups. Significance was determined using Duncan's multiple range test. Differences were considered significant at p<0.05.

132

133 **Results and Discussion**

Effects of the two aging methods and temperature on physicochemical properties of pork 134bellies from Berkshire and crossbred (LYD) pigs are depicted in Table 1. Regardless of 135 136 treatment, the pH decreased with aging. Our results agree with those of Hwang et al. (2018), who report similar findings in wet-aged pork. pH values of pork belly were higher for 137 Berkshire pigs than for LYD pigs at 0 and 1 week (p<0.05), which was in line with a previous 138 report (Subramaniyan et al., 2016). The variation in pH could be due to effects of 139 crossbreeding (Choi et al., 2016). Aging pork bellies at 9 °C resulted in lower pH values than 140 aging at 0 °C in samples at 2 weeks. Hanging pork had higher pH values than immersed 141samples in brine at 1 week (p < 0.05), and our results were consistent with those of Lee et al. 142 (2010). The increase in basic free amino acids caused by microorganisms may be the primary 143 reason for the rising pH in hanging pork (Lee et al., 2016). 144

Hanging samples had lower moisture content than immersed samples in brine at one and 145 two weeks (p < 0.05). The reduced moisture content of meat during hanging aging could be 146due to higher evaporation loss (Kim et al., 2019). Juárez et al. (2011) also noted that hanging 147148 pork muscle decreased the moisture content. The WHC of all samples increased in the 1st week and decreased in the 2^{nd} week (p<0.05). The WHC of pork bellies was not significantly 149 150 affected by the aging method until 14 days of aging in our study. Regardless of the treatment sample, drip loss decreased with aging. Purge loss was higher in Berkshire pigs than in LYD 151 152 pigs at one and two weeks (p<0.05). Hanging samples showed lower purge loss than

- 7 -

153	immersed samples at one week (p<0.05). Water and fat loss in all samples decreased until one
154	week of aging and then increased for two weeks (p<0.05). Aging pork bellies at 9 $^{\circ}$ C resulted
155	in higher water and fat loss than aging at 0 $^{\circ}$ C did in samples at 2 weeks (p<0.05).
156	Effects of the two aging methods and temperature on TBARS, VBN, and microbiological
157	properties of pork bellies from Berkshire and crossbred (LYD) pigs are presented in Table 2.
158	The TBARS values for all samples increased until one week of aging and then decreased for
159	two weeks (p<0.05). TBARS values of pork belly were higher for Berkshire pigs than for
160	LYD pigs, regardless of aging time (p<0.05). This could be due to the high fat content in
161	Berkshire breeds compared to other breeds (Lee et al., 2012). Previous study showed that fat
162	contents of dry-cured ham were higher in Berkshire than in LYD (Yim et al., 2019). Analyses
163	of fatty acid levels in pork belly muscles from Berkshire meat had higher unsaturated fatty
164	acid contents compared to those from LYD during storage (data not shown), potentially
165	leading to effects on lipid oxidation. There was no overall difference in TBARS values
166	according to the storage temperature (0, 9°C), but there was a slight difference only in the first
167	week. Differences in lipid oxidation between hanging and immersed pork belly were not
168	confirmed in our study. The VBN of the belly parts increased as the aging time increased
169	(p<0.05). Elevating aging temperature from 0 $^{\circ}$ C to 9 $^{\circ}$ C increased the VBN content in the
170	samples (p<0.05). Aging at 9 $^{\circ}$ C resulted in higher total plate counts than aging at 0 $^{\circ}$ C did in
171	samples at one week (p<0.05). Coliform counts of the belly increased as the aging time
172	increased (p<0.05) and were lower in Berkshire pigs than in LYD pigs at 2 weeks (p<0.05).
173	Counts of total aerobic bacteria and coliforms were similar for hanging and immersed pork
174	belly samples. A similar result was reported in a previous study where hanging pork did not
175	influence total aerobic bacteria (Lee et al., 2016).

Table 3 describes meat color measurements of pork belly from Berkshire and crossbred 176177(LYD) pigs as a consequence of the two aging methods and temperature. With respect to meat color, pork belly samples had increased L*, b*, and h values during aging and decreased in a* 178and c values (p < 0.05). This was similar to a previous study, which indicated that pork muscle 179 demonstrated increased L* and b* values, and decreased a* values with increasing aging time 180 (Hwang et al., 2018). The lower a* values could be explained by the oxidation of myoglobin, 181 182 which was clearly reflected in the increasing levels of metmyoglobin during aging. The redness decreased, which was in line with previous studies (Hansen et al., 2004). Juárez et al. 183 (2011) also reported an increase in lightness with aging. L* values were significantly lower in 184 185 Berkshire pork bellies than in LYD pork bellies at 0 and 1 week of aging. A similar result was seen in the Berkshire breed with lower L* values than the LYD breed (Yim et al., 2019). This 186 may be attributed to the discrepancy in muscle composition between the two breeds (Seong et 187 188 al., 2014). Higher pH values in Berkshire pigs may decrease the L* values of muscle (Choi et al., 2016), which this finding coincides with the one from our study. CIL a* values in LYD 189 190 pork bellies were significantly lower than those in Berkshire pork bellies, which was 191 consistent with the literature (Subramaniyan et al., 2016) where LYD pork had a lower color a* compared with Berkshire pork. Aging pork bellies at 9 °C resulted in higher L* values than 192 193 aging at 0 °C in samples at two weeks (p<0.05). Hanging samples had lower L* values than immersed samples in brine at one week (p<0.05). The higher L* values for immersed bellies 194 may be due to the higher water content of immersed samples. Aging at 9 °C resulted in higher 195 196 a* values than aging at 0 °C in samples at one week (p<0.05). Hanging samples showed higher a* values than immersed samples at one week (p<0.05). Aging at 9 °C resulted in 197 198 higher W values than aging at 0 °C in samples at 2 weeks (p<0.05). Our results indicated that 199 aging methods did not negatively affect color.

Table 4 describes texture profiles of pork belly from Berkshire and crossbred (LYD) pigs 200 201 as a consequence of the two aging methods and temperature. Hardness values in Berkshire 202 pork bellies were significantly higher than those in LYD pork bellies at one and two weeks of 203 age. Aging temperature did not adversely affect the texture profile, and elevated aging 204 temperatures could shorten aging periods. Hanging samples showed higher hardness values 205 than immersed samples at two weeks (p<0.05). Cohesiveness values in Berkshire pork bellies 206 were significantly higher than those in LYD pork bellies at 0 week. Effects of the two aging methods until one week of aging (p>0.05) did not significantly differ. However, hanging 207 samples showed higher hardness, cohesiveness, gumminess, and adhesiveness values than 208 209 immersed samples at 2 weeks (p < 0.05). Amino acid composition in the belly parts of Berkshire and crossbred (LYD) pigs as a 210 211 result of the two aging methods and temperature are presented in Table 5. 212 With the exception of a few amino acids, differences in amino acid composition between 213 Berkshire and crossbred (LYD) pigs were significant in the belly cuts. The free amino acid

Berkshire and crossbred (LYD) pigs were significant in the belly cuts. The free amino acid carnosine had the highest concentration in the pork belly, with taurine, glutamic acid, alanine, leucine, and carnosine were the most abundant free amino acids in pork belly. LYD pigs had higher percentages of essential amino acids, sweet tasting amino acids, aromatic amino acids, and bitter amino acids in bellies compared to Berkshire samples at 0 week (p<0.05). Berkshire pigs had a higher percentage of flavorful amino acids than LYD samples during aging (p<0.05). Although aging at 9 °C resulted in a higher percentage of flavorful amino acids and

sweet tasting amino acids than aging at 0 $^{\circ}$ C in samples at one and two weeks (p<0.05), the

221 mechanism responsible for this phenomenon was investigated further. Expectedly, the free

- amino acid content of pork bellies was not significantly affected by the aging method;
- however, those of belly muscles increased as the aging period increased (p<0.05). Moya et al.
- (2001) also reported that samples of pork loin contained higher amounts of free amino acids

after aging. Free amino acids are potent flavor precursors that may contribute characteristic
taste through the Maillard reaction in meat (Koutsidis et al., 2008). Although several amino
acids contribute to an unpleasant taste, free amino acids are vital contributors to the pleasant
flavor of cooked meat (Koutsidis et al., 2008). Our study concluded that the free amino acid
content of pork bellies was affected by pig genotypes, and aging temperature. However, it
should be further examined how aging temperature affect the free amino acid.

231 Conclusions

Quality traits of pork belly were influenced by breed, temperature, and aging method. In 232 233 particular, pig breed affected meat quality and amino acid composition. It is plausible that 234 bellies from LYD pork present relatively desirable meat quality parameters with regard to lower pH, lipid oxidation, hardness, drip and purge loss, as well as higher lightness values. 235 Our study showed that application of elevated aging temperatures could shorten aging time, 236 237 while not negatively affecting meat quality, except for a higher VBN content in the bellies aged at 9 °C. The aging method did not adversely influence the meat quality of pork bellies. 238 In conclusion, both methods may be utilized for aging. Further studies are needed to establish 239 240 optimal aging conditions for pork bellies to ensure high quality, feasibility, and consumer benefits. 241

243

244

References

245	APHA. 1992. Compendium of methods for the microbiological examination of foods.
246	American Public Health Association, Washington, DC, USA.

- Bidlingmeyer B, Cohen SA, Tarvin TL. 1984. Rapid analysis of amino acids using pre-column
 derivatisation. J Chromatogra 336, 93-104.
- Campbell RE, Hunt MC, Levis P, Chambers E. 2001. Dry-aging effects on palatability of beef
 longissimus muscle. J Food Sci 66:196-199.
- Conway EJ. 1950. Micro diffusion Analysis and Volumetric Error, 3rd ed. Crosby Lockwood
 and Son Ltd, London.
- 253 Choi YS, Lee JK, Jung JT, Jung YC, Jung JH, Jung MO, Choi YI, Jin SG, Choi JS. 2016.
- 254 Comparison of meat quality and fatty acid composition of longissimus muscles from 255 purebred pigs and three-way crossbred LYD pigs. Korean J Food Sci An 36: 689-696.
- Edwards DB, Bates RO, Osburn WN. 2003. Evaluation of duroc- vs. pietrain-sired pigs for carcass and meat quality measures. J Anim Sci 81(8):1895-1899.
- Fernández-López J, José Angel PA, Aranda-Catalá V. 2000. Effect of mincing degree on colour
 properties in pork meat. Color Res Appl 25(5): 376-380.
- 260 Frenzel LL, Harp RM, Lambert BD, Sawyer JT, Frenzel MA. 2014. Effects of wet aging and
- 261 temperature on Warner-Bratzler shear force, sensory characteristics, and microbial shelflife
- of pork loin chops. Tex J Agri Nat Resour 27:24-35.
- 263 Graiver N, Pinotti A, Califano A, Zaritzky N. 2006. Diffusion of sodium chloride in pork tissue.
- 264 J Food Eng 77(4): 910-918.

265	Hansen E, Juncher D, Henckel P, Karlsson A, Bertelsen G, Skibsted LH. 2004. Oxidative
266	stability of chilled pork chops following long term freeze storage. Meat Sci 68:479-484.
267	Hwang YH, Sabikun N, Ismail I, Joo ST. 2018. Comparison of Meat Quality Characteristics of
268	Wet and Dry-aging Pork Belly and Shoulder Blade. Korean J Food Sci An 38:823-828.
269	Jin G, He L, Wang Q, Liu C, Jin Y, Huang F, Ma M. 2014. Pulsed pressure assisted brining of
270	porcine meat. Innovative Food Sci Emerging Technol 22:76-80.
271	Jin SK, Yim DG. 2020. Comparison of Effects of Two Aging Methods on the Physicochemical
272	Traits of Pork Loin. Food Sci Anim Resour 40(5):844-851
273	Joo ST. 2018. Determination of water-holding capacity of porcine musculature based on
274	released water method using optimal load. Korean J Food Sci An 38:823-828.
275	Juárez M, Caine WR, Dugan MER, Hidiroglou N, Larsen IL, Uttaro B, Aalhus JL. 2011. Effects
276	of dry-ageing on pork quality characteristics in different genotypes. Meat Sci 88:117-121.
277	KMTA (Korea Meat Trade Association) 2018. Meat consumption per person in Korea.
278	Available from http://www.kmta.or.kr/html/sub6-1.html?scode=6
279	Kim M, Choe J, Lee HJ, Yoon Y, Yoon S, Jo C. 2019. Effects of aging and aging method on
280	physicochemical and sensory traits of different beef cuts. Food Sci. Anim. Resour. 39:54-
281	64.
282	Koutsidis G, Elmore JS, Oruna-Concha MJ, Campo MM, Wood JD, Mottram DS. 2008. Water-
283	soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Sci.
284	79:270-277.
285	Kim JH, Park BY, Yoo YM, Cho SH, Hwang IH, Seong PN, Hah KH, Lee JM. 2006.
286	Characteristics of carcass and meat quality for landrace, Yorkshire, duroc and their
287	crossbreeds. J Anim Sci Technol 48:101-106.

Lim DG, Jo C, Seo KS, Nam KC. 2014. Comparison of meat quality of loins and butts in
 different two-way crossbred pigs. Livest Sci 161:210-217.

Lee SH, Choe JH, Choi YM, Jung KC, Rhee MS, Hong KC. 2012. The influence of pork quality

- traits and muscle fiber characteristics on the eating quality of pork from various breeds.
 Meat Sci 90:284-91.
- Lee CW, Lee JL, Kim MK, Jo C, Lee KH, You I, Jung S. 2016. Quality Improvement of Pork
 Loin by Dry Aging. Korean J Food Sci An 36: 369-376.
- Moore KL, Mullan BP, D'Souza DN. 2012. The interaction between ractopamine
 supplementation, porcine somatotropin and moisture infusion on pork quality. Meat Sci 92
 125-131.
- Moya VJ, Flores M, Aristoy MC, Toldrá F. 2001. Pork meat quality affects peptide and amino
 acid profiles during the ageing process. Meat Sci 58: 197-206.
- 300 Poldvere A, Tanavots A, Saar R, Torga T, Kaart T, Soidla R, Mahla T, Andreson H, Lepasalu
- L. 2015. Effect of imported Duroc boars on meat quality of finishing pigs in Estonia.
 Agronomy Res 13: 1040-1052.
- 303 Sitz BM, Calkins CR, Feuz DM, Umberger WJ, Eskridge KM. 2006. Consumer sensory
 304 acceptance and value of wet-aged and dry-aged beef steaks. J Anim Sci 84:1221-1226.
- 305 Seong PN, Park KM, Kang SM, Kang GH, Cho SH, Park BY. 2014. Effect of particular breed
- 306 on the chemical composition, texture, color, and sensorial characteristics of dry-cured ham.
 307 Asian-Australas J Anim Sci 27:1164-1173.
- 308 Smith RD, Nicholson KL, Nicholson JDW, Harris KB, Miller RK, Griffin DB, Savell JW. 2008.
- 309 Dry versus wet aging of beef: Retail cutting yields and consumer palatability evaluations
- of steaks from US choice and US select short loins. Meat Sci 79:631-639.

- Stenström H, Li X, Hunt MC, Lundström K. 2014. Consumer preference and effect of correct
 or misleading information after ageing beef longissimus muscle using vacuum, dry ageing,
- or a dry ageing bag. Meat Sci 96:661-666.
- Subramaniyan SA, Kang DR, Belal SH, Cho ESR. Jung JH, Jung YC, Choi YI, Shim KS. 2016.
- 315 Korean J Food Sci An 31:641-649.
- Yang Z, Liu C, Xiang L, Zheng Y. 2009. Phenolic alkaloids as a new class of antioxidants in
 portulaca oleracea. Phytother Res 23:1032-1035.
- 318 Yim DG, Jung JH, Ali MM, Nam KC. 2019. Comparison of physicochemical traits of dry-cured
- 319 ham from purebred Berkshire and crossbred Landrace × Yorkshire × Duroc (LYD) pigs. J
- 320 Anim Sci Technol. 61:35-40.
- 321 Zamora MC, Zaritzky NE. 1985. Modeling of microbial growth in refrigerated packaged beef.
- 322 J Food Sci 50:1003-1006.
- 323

Table 1.

325 Effects of two aging methods and temperature on physico-chemical traits of pork bellies from Berkshire

326 and crossbred (LYD) pigs during aging

	Breed			Temper	ature(°C)	Aging method		
	Weeks	Berkshire	LYD	0	9	Hanging	Immersed in brine	
	0	6.51 ± 0.10^{Aa}	6.29 ± 0.02^{Ba}	6.40 ± 0.14^{a}	6.40 ± 0.14^{a}	6.40 ± 0.14^{a}	6.40 ± 0.14^{a}	
рН	1	6.36 ± 0.22^{Ab}	$6.17 {\pm} 0.08^{\mathrm{Bb}}$	6.33±0.24ª	6.20±0.07 ^b	$6.36 {\pm} 0.21^{Aa}$	$6.18 {\pm} 0.09^{\mathrm{Bb}}$	
	2	5.95±0.16°	5.96±0.15°	6.09 ± 0.10^{Ab}	5.82 ± 0.03^{Bc}	$5.98 {\pm} 0.18^{b}$	5.93±0.12°	
	0	49.06 ± 1.05^{a}	$49.67 {\pm} 0.49^{a}$	49.36±0.88ª	$49.36 {\pm} 0.88^{a}$	49.36±0.88ª	49.36±0.88 ^b	
Moisture (%)	1	48.65 ± 1.98^{a}	47.37±6.62 ^{ab}	47.74±3.35 ^a	48.74 ± 5.53^{a}	44.29±3.61 ^{Bb}	51.43 ± 2.48^{Aa}	
	2	45.05±3.63 ^b	44.45 ± 1.42^{b}	44.78±2.39 ^b	44.72±3.11 ^b	43.32 ± 2.01^{Bb}	46.18 ± 2.64^{Ac}	
WHC (%)	0	$60.66{\pm}0.84^{Bb}$	62.49 ± 2.04^{Aa}	61.57±1.83 ^{ab}	61.57±1.83 ^b	61.57±1.83 ^{ab}	61.57±1.83 ^b	
	1	72.25 ± 2.21^{Aa}	66.58 ± 7.19^{Ba}	65.40±8.39 ^{Ba}	72.04±2.47 ^{Aa}	66.28±8.54ª	71.76 ± 3.36^{a}	
	2	55.08±6.53°	46.60±13.82 ^b	57.11±8.74 ^{Ab}	44.57 ± 10.52^{Bc}	55.22 ± 12.62^{b}	46.45±8.46°	
Drip loss	0	$3.06 {\pm} 0.50^{Aa}$	$2.06 {\pm} 0.20^{Ba}$	2.56 ± 0.65^{a}	2.56 ± 0.65^{a}	2.56 ± 0.65^{a}	2.56 ± 0.65^{a}	
(%)	1	0.63 ± 0.14^{b}	0.56 ± 0.12^{b}	0.59±0.11 ^b	0.63±0.15 ^b	0.64 ± 0.14^{b}	$0.57 {\pm} 0.12^{b}$	
	2	$0.38 {\pm} 0.14^{b}$	0.41±0.14 ^c	0.40 ± 0.17^{b}	0.39±0.12 ^b	$0.36 {\pm} 0.14^{b}$	0.43 ± 0.13^{b}	
	0	$0.00 {\pm} 0.00^{\circ}$	$0.00 {\pm} 0.00^{\circ}$	$0.00 \pm 0.00^{\circ}$	$0.00 \pm 0.00^{\circ}$	$0.00 \pm 0.00^{\text{b}}$	$0.00 {\pm} 0.00^{\circ}$	
Purge loss(%)	1	10.19 ± 3.32^{Aa}	6.43±1.69 ^{Ba}	7.24 ± 1.66^{a}	9.82±4.11ª	6.42 ± 2.01^{Ba}	10.25 ± 3.60^{Aa}	
	2	7.78±2.15 ^{Ab}	4.41 ± 2.68^{Bb}	5.17±3.61 ^b	7.02±1.82 ^b	7.19 ± 3.75^{a}	5.00 ± 1.22^{b}	
W/ 16/	0	19.29 ± 0.11^{Aa}	18.62 ± 0.83^{Bb}	18.96±0.69ª	18.96±0.69 ^b	18.96±0.69ª	18.96±0.69 ^b	
loss (%)	1	13.33±0.86 ^{Bb}	15.85±3.11 ^{Ab}	16.08±3.23 ^b	13.85±1.67°	14.94±3.57 ^b	14.52±2.06°	
1055 (70)	2	20.03±4.19ª	23.79 ± 5.87^{a}	19.01 ± 4.07^{Ba}	$24.80{\pm}4.98^{Aa}$	$19.35 {\pm} 5.83^{\text{Ba}}$	24.47 ± 3.39^{Aa}	

327

 $7 \quad \overline{}^{\text{A-B}}$ Means with different superscripts in the same row and section significantly differ at p < 0.05.

328 ^{a-c} Means with different superscripts in the same column significantly differ at p < 0.05.

Table 2.

331 Effects of two aging methods and temperature on TBARS, VBN, microbiological traits of pork bellies

332 from Berkshire and crossbred (LYD) pigs during aging

		Breed		Tempera	ature (°C)	Aging method		
Items	Weeks	Barkshira		0	0	Hanging	Immersed in	
		Derksnite	LID	0	,	Hanging	brine	
	0	0.22 ± 0.00^{Ac}	0.14 ± 0.00^{Bc}	$0.18 \pm 0.04^{\circ}$	0.18±0.04°	0.18±0.04°	0.18±0.04°	
TBARS (mg	1	$0.36 {\pm} 0.11^{Aa}$	$0.29 {\pm} 0.02^{\mathrm{Ba}}$	$0.37 {\pm} 0.10^{Aa}$	$0.28{\pm}0.03^{\text{Ba}}$	$0.33 {\pm} 0.10^{a}$	$0.32 {\pm} 0.07^{a}$	
MA/kg)	2	$0.27\pm0.03^{\mathrm{Ab}}$	0.24 ± 0.02^{Bb}	$0.26 {\pm} 0.04^{\text{b}}$	0.25 ± 0.02^{b}	0.25±0.02 ^b	0.26 ± 0.04^{b}	
VBN (mg%)	0	6.11±0.07°	6.11±0.07 ^c	6.11±0.07°	6.11±0.07°	6.11±0.07°	6.11±0.07°	
	1	6.97 ± 0.73^{b}	$7.00 {\pm} 0.56^{b}$	$6.32{\pm}0.28^{\text{Bb}}$	$7.57 {\pm} 0.16^{Ab}$	6.88±0.73 ^b	6.99 ± 0.66^{b}	
	2	8.72±1.24ª	8.97±1.58ª	$7.50{\pm}0.14^{Ba}$	$10.19 {\pm} 0.34^{Aa}$	8.82±1.37ª	8.87 ± 1.48^{a}	
	0	3.79 ± 0.01^{A}	$3.53{\pm}0.07^{Bb}$	3.66±0.15	3.66±0.15 ^b	3.66 ± 0.15^{b}	$3.66 {\pm} 0.15^{b}$	
TPC (log10	1	3.82 ± 0.48	4.27±0.37ª	3.77 ± 0.44^{B}	$4.27 {\pm} 0.27^{Aa}$	4.26±0.47ª	3.82 ± 0.40^{ab}	
	2	$3.59{\pm}0.32^{\text{B}}$	4.05 ± 0.11^{Aa}	3.89±0.13	3.75 ± 0.45^{b}	3.68±0.39 ^b	$3.96 {\pm} 0.21^{a}$	
	0	$0.00\pm0.00^{\mathrm{b}}$	$0.00\pm0.00^{\circ}$	0.00 ± 0.00^{b}	$0.00 {\pm} 0.00^{\text{b}}$	$0.00 {\pm} 0.00^{\text{b}}$	0.00 ± 0.00^{b}	
(log10 CFII)	1	3.27 ± 1.07^{a}	2.79±0.34 ^b	2.95 ± 0.35^{a}	3.25 ± 1.17^{a}	3.34 ± 0.56^{a}	$2.90{\pm}1.04^{a}$	
(log10 CFU)	2	$3.15 {\pm} 0.46^{Ba}$	$3.59{\pm}0.07^{Aa}$	$3.17 {\pm} 0.49^{a}$	$3.57 {\pm} 0.51^{a}$	$3.32{\pm}0.45^{a}$	$3.42{\pm}0.34^{a}$	

A-B Means with different superscripts in the same row and section significantly differ at p < 0.05.

334 ^{a-c} Means with different superscripts in the same column significantly differ at p < 0.05.

335

Table 3.

Effects of two aging methods and temperature on meat color of pork bellies from Berkshire andcrossbred (LYD) pigs during aging

		Breed		Tempera	ature(°C)	Aging method		
Items	Weeks	Berkshire	LVD	0	0	Hanging	Immersed in	
		Derksnite	LID	0)	manging	brine	
	0	47.23±0.85 ^{Bb}	51.05 ± 1.41^{Ab}	49.14±2.31 ^b	49.14±2.31 ^b	49.14±2.31 ^b	49.14±2.31°	
L*	1	47.40 ± 5.46^{Bb}	52.49 ± 4.78^{Ab}	51.64 ± 4.44^{b}	47.87 ± 6.37^{b}	46.50 ± 3.03^{Bb}	52.72 ± 5.96^{Ab}	
	2	65.19±4.40ª	63.80±3.44ª	61.65 ± 1.70^{Ba}	67.34±3.42 ^{Aa}	65.16 ± 4.73^{a}	63.83±2.99ª	
	0	$18.59 {\pm} 0.45^{Aa}$	$12.66 {\pm} 0.44^{Ba}$	15.62 ± 3.13^{a}	15.62 ± 3.13^{a}	15.62 ± 3.13^{a}	15.62 ± 3.13^{a}	
a*	1	13.45±3.19 ^b	12.21±3.31ª	11.46±2.79 ^{Bb}	14.28±3.05 ^{Aa}	15.00±2.43 ^{Aa}	11.16±2.38 ^{Bb}	
	2	8.35±2.01°	8.74±1.63 ^b	9.16±1.64°	7.94±1.81 ^b	8.30±1.22 ^b	8.80±2.27 ^b	
	0	$3.34{\pm}0.51^{Ab}$	$2.22{\pm}0.72^{\text{Bb}}$	$2.78 {\pm} 0.86^{b}$	2.78 ± 0.86^{b}	$2.78 {\pm} 0.86^{b}$	2.78±0.86 ^b	
b*	1	2.08 ± 0.99^{Bc}	4.75 ± 3.13^{Aa}	3.77±3.51 ^{ab}	2.77±1.01 ^b	2.71±1.24 ^b	3.44 ± 3.17^{ab}	
	2	4.78±1.21ª	5.09±0.95ª	4.72±0.85ª	5.14±1.27ª	5.26 ± 1.07^{a}	4.60±1.02ª	
	0	37.21±1.14 ^{Bb}	$44.40 {\pm} 0.84^{Aa}$	40.81±3.89 ^b	40.81±3.89 ^b	40.81±3.89 ^b	40.81±3.89 ^b	
W	1	41.16±7.30 ^b	38.24±9.22 ^b	40.32±9.34 ^b	39.55±7.18 ^b	38.38±4.81 ^b	42.39±10.09 ^b	
	2	50.87 ± 3.71^{a}	48.53±3.51ª	47.48 ± 3.09^{Ba}	51.92±2.96 ^{Aa}	49.37±3.60ª	50.02 ± 3.98^{a}	
	0	$18.89 {\pm} 0.52^{Aa}$	$12.87 {\pm} 0.50^{\mathrm{Ba}}$	15.88±3.19ª	15.88 ± 3.19^{a}	15.88 ± 3.19^{a}	15.88 ± 3.19^{a}	
с	1	13.63±3.28 ^b	13.57±2.64ª	12.59±2.42 ^b	14.57±3.09ª	15.27 ± 2.58^{Aa}	12.08±2.33 ^{Bb}	
	2	9.72±1.83°	10.17±1.52 ^b	10.35±1.53°	9.54±1.75 ^b	9.90 ± 0.96^{b}	9.99±2.20 ^b	
	0	10.15±1.30 ^b	9.86±3.07°	10.00 ± 2.36^{b}	10.00 ± 2.36^{b}	10.00 ± 2.36^{b}	10.00±2.36°	
h	1	8.55 ± 2.70^{Bb}	21.98±16.39 ^{Ab}	18.18±17.64 ^b	11.07±3.68 ^b	9.81±3.43 ^b	16.87±14.95 ^b	
	2	30.34±8.51ª	30.58±6.13ª	27.66 ± 5.78^{a}	33.26±7.71ª	32.59 ± 7.58^{a}	28.33±6.53ª	

340 ^{A-B} Means with different superscripts in the same row and section significantly differ at p < 0.05.

341 ^{a-c} Means with different superscripts in the same column significantly differ at p < 0.05.

342

Table 4.

345 Effects of two aging methods and temperature on texture profile of pork bellies from Berkshire and

346 crossbred (LYD) pigs during aging

		Breed		Tempera	ature(°C)	Aging method		
Items	Weeks	Berkshire	LYD	0	9	Hanging	Immersed in brine	
	0	$0.44 {\pm} 0.02^{\mathrm{Bb}}$	$0.49 {\pm} 0.02^{Aa}$	$0.46 {\pm} 0.03^{a}$	$0.46 {\pm} 0.03$	$0.46 {\pm} 0.03$	$0.46 {\pm} 0.03^{a}$	
Hardness	1	$0.52{\pm}0.04^{Aa}$	$0.41 {\pm} 0.07^{\mathrm{Bb}}$	$0.48 {\pm} 0.07^{\mathrm{a}}$	$0.47 {\pm} 0.08$	$0.45 {\pm} 0.08$	$0.49 {\pm} 0.07^{a}$	
(kg)	2	0.47 ± 0.09^{Aab}	$0.40\pm0.03^{\mathrm{Bb}}$	0.41±0.05 ^b	0.46±0.09	$0.47 \pm 0.09^{\text{A}}$	$0.40\pm0.03^{\mathrm{Bb}}$	
	0	0.44 ± 0.02^{Bb}	$0.46 {\pm} 0.03^{Aa}$	$0.45 {\pm} 0.02^{ab}$	0.45 ± 0.02	0.45 ± 0.02	$0.45 {\pm} 0.02^{a}$	
Surface	1	$0.51 {\pm} 0.05^{Aa}$	$0.41 {\pm} 0.07^{\text{Bb}}$	$0.48 {\pm} 0.07^{a}$	$0.45 {\pm} 0.08$	$0.45 {\pm} 0.08$	$0.47 {\pm} 0.07^{a}$	
hardness(kg)	2	$0.47 {\pm} 0.09^{Aab}$	$0.40 {\pm} 0.03^{\mathrm{Bb}}$	0.41±0.05 ^b	0.46±0.09	$0.47 {\pm} 0.09^{\text{A}}$	$0.40 {\pm} 0.03^{\mathrm{Bb}}$	
	0	$0.56 {\pm} 0.01^{Aa}$	$0.52 {\pm} 0.00^{B}$	$0.54 {\pm} 0.02$	$0.54 {\pm} 0.02^{a}$	$0.54 {\pm} 0.02$	$0.54{\pm}0.02^{a}$	
Cohesiveness(%)	1	$0.55{\pm}0.03^{a}$	0.61 ± 0.24	0.66 ± 0.24	$0.52 {\pm} 0.04^{ab}$	0.66 ± 0.24	$0.52{\pm}0.05^{ab}$	
	2	$0.52 {\pm} 0.03^{b}$	0.52±0.06	$0.54 {\pm} 0.05$	0.50 ± 0.04^{b}	0.54 ± 0.05^{A}	$0.49\pm0.03^{\mathrm{Bb}}$	
	0	1.00 ± 0.00	1.02 ± 0.03^{b}	1.01 ± 0.02^{b}	1.01 ± 0.02	1.01 ± 0.02^{b}	1.01 ± 0.02	
Springiness	1	1.01 ± 0.02	1.19 ± 0.41^{a}	$1.26 {\pm} 0.47^{a}$	1.01 ± 0.02	$1.27 {\pm} 0.47^{a}$	$1.00 {\pm} 0.01$	
(mm)	2	1.01±0.02	$1.04 {\pm} 0.06^{ab}$	1.03 ± 0.06^{ab}	1.01±0.02	1.04 ± 0.06^{b}	1.01±0.02	
	0	$0.24 {\pm} 0.01^{\text{Bb}}$	0.25 ± 0.01^{A}	0.25 ± 0.01^{b}	0.25 ± 0.01	0.25 ± 0.01	$0.25 {\pm} 0.01^{a}$	
Gumminess	1	$0.28 {\pm} 0.03^{a}$	0.26±0.13	0.31 ± 0.11^{a}	$0.24 {\pm} 0.05$	0.30 ± 0.12	$0.26{\pm}0.05^{a}$	
(kg)	2	$0.25 \pm 0.05^{\mathrm{Ab}}$	0.21 ± 0.03^{B}	0.22 ± 0.04^{b}	0.23±0.06	0.26 ± 0.05^{A}	$0.20\pm0.02^{\mathrm{Bb}}$	
	0	0.25 ± 0.01^{b}	0.26 ± 0.01	0.25 ± 0.01^{b}	0.25 ± 0.01	0.25 ± 0.01^{b}	0.25 ± 0.01^{a}	
Chewiness	1	$0.28 {\pm} 0.02^{a}$	0.35 ± 0.34	0.44 ± 0.33^{a}	$0.25 {\pm} 0.05$	$0.42 {\pm} 0.34^{a}$	$0.26{\pm}0.05^{a}$	
(kg,mm)	2	0.25±0.05 ^b	0.22±0.05	0.23±0.05 ^b	0.23±0.06	0.27±0.05 ^b	0.20 ± 0.02^{b}	
	0	$0.06 {\pm} 0.01^{\mathrm{Bb}}$	0.09 ± 0.02^{Aa}	$0.08 {\pm} 0.02$	0.08 ± 0.02	0.08 ± 0.02	$0.08 {\pm} 0.02^{ m ab}$	
A dhasiyanass (baf)	1	$0.09 {\pm} 0.02^{ m Aa}$	0.07 ± 0.02^{Bb}	$0.08 {\pm} 0.01$	0.08 ± 0.03	0.08 ± 0.03	$0.08 {\pm} 0.01^{a}$	
Adhesiveness(kgf)	2	0.08±0.01 ^b	0.07±0.01 ^b	0.07±0.01	0.07±0.01	$0.08 \pm 0.01^{\text{A}}$	$0.07 {\pm} 0.01^{\mathrm{Bb}}$	

347 A-B Means with different superscripts in the same row and section significantly differ at p < 0.05.

348 ^{a-c} Means with different superscripts in the same column significantly differ at p < 0.05.

349

350

Table 5. Effects of two aging methods and temperature on amino acid composition of pork bellies from
 Berkshire and crossbred (LYD) pigs during aging

Enconstruction and d	W1	Bre	eed	Tempera	ature(°C)	Aging method	
Free amino acid	weeks	Berkshire	LYD	0	9	Hanging	Immersed in brine
	0	5.24 ± 0.00^{Ba}	7.86±0.00 ^{Aa}	6.55±1.51	6.55±1.51 ^a	6.55±1.51 ^a	6.55±1.51
Taurine	1	$4.40{\pm}0.89^{\text{Bab}}$	$5.94{\pm}1.15^{Ab}$	5.62 ± 1.51	$4.73{\pm}0.95^{ab}$	$5.00{\pm}0.75^{ab}$	5.34±1.74
	2	$3.85{\pm}0.82^{Bb}$	5.32±0.20 ^{Ab}	4.83±0.94	4.34±1.06 ^b	4.44 ± 1.14^{b}	4.74±0.89
	0	$1.36{\pm}0.00^{Aa}$	$1.25 {\pm} 0.00^{Ba}$	$1.31{\pm}0.06^{a}$	$1.31{\pm}0.06^{a}$	$1.31{\pm}0.06^{a}$	1.31±0.06ª
Aspartic acid	1	0.63 ± 0.23^{b}	0.72 ± 0.28^{b}	0.86 ± 0.19^{Ab}	$0.49 {\pm} 0.09^{\text{Bb}}$	$0.64{\pm}0.26^{b}$	0.71 ± 0.25^{b}
-	2	0.36±0.16°	$0.38 {\pm} 0.31^{b}$	$0.49 \pm 0.20^{\circ}$	$0.24 \pm 0.20^{\circ}$	$0.36 \pm 0.08^{\circ}$	0.37 ± 0.34^{b}
	0	$0.81 {\pm} 0.00^{Bc}$	0.99 ± 0.00^{Ac}	$0.90 \pm 0.10^{\circ}$	$0.90 \pm 0.10^{\circ}$	$0.90{\pm}0.10^{\circ}$	$0.90 \pm 0.10^{\circ}$
Threonine	1	1.36 ± 0.20^{b}	1.48 ± 0.23^{b}	1.25 ± 0.09^{Bb}	1.59 ± 0.14^{Ab}	1.42 ± 0.26^{b}	1.42 ± 0.19^{b}
	2	2.01 ± 0.44^{a}	$2.03{\pm}0.34^{a}$	$1.71{\pm}0.12^{Ba}$	$2.33{\pm}0.20^{Aa}$	2.13±0.43ª	1.92±0.31ª
	0	0.76 ± 0.00^{Bc}	$0.84{\pm}0.00^{\rm Ac}$	$0.80{\pm}0.05^{\circ}$	$0.80 \pm 0.05^{\circ}$	$0.80{\pm}0.05^{\circ}$	$0.80 \pm 0.05^{\circ}$
Serine	1	1.54 ± 0.11^{b}	1.66±0.23 ^b	1.49 ± 0.09^{b}	1.71 ± 0.18^{b}	1.55 ± 0.17^{b}	1.65 ± 0.20^{b}
	2	1.97 ± 0.17^{a}	$2.02{\pm}0.14^{a}$	1.92±0.11ª	$2.07{\pm}0.15^{a}$	2.01 ± 0.13^{a}	1.98 ± 0.18^{a}
	0	0.28 ± 0.00^{b}	$0.28 \pm 0.00^{\circ}$	$0.28\pm0.00^{\circ}$	0.28 ± 0.00^{b}	0.28 ± 0.00^{b}	$0.28 \pm 0.00^{\circ}$
Asparagine	1	0.62 ± 0.09^{a}	0.66 ± 0.09^{b}	0.57 ± 0.06^{Bb}	0.71 ± 0.04^{Aa}	0.62±0.09 ^a	0.66 ± 0.09^{b}
	2	0.69 ± 0.12^{a}	$0.84{\pm}0.13^{a}$	$0.73 {\pm} 0.02^{a}$	0.80±0.21ª	0.72 ± 0.16^{a}	0.82 ± 0.12^{a}
	0	1.43 ± 0.00^{Ac}	1.39 ± 0.00^{Bb}	1.41 ± 0.02^{b}	$1.41 \pm 0.02^{\circ}$	1.41 ± 0.02^{b}	1.41±0.02°
Glutamic acid	1	2.85 ± 0.09^{b}	2.44 ± 0.44^{b}	2.47 ± 0.47^{a}	2.82 ± 0.11^{b}	2.70 ± 0.39^{ab}	2.58 ± 0.39^{b}
	2	4.22 ± 1.15^{a}	$3.79{\pm}1.39^{a}$	3.01±0.59 ^{Ba}	5.01 ± 0.63^{Aa}	$4.20{\pm}1.64^{a}$	$3.82{\pm}0.78^{a}$
	0	2.06 ± 0.00^{A}	1.75 ± 0.00^{Bb}	1.91±0.18	1.91±0.18 ^b	1.91±0.18 ^b	1.91 ± 0.18^{b}
Glycine	1	2.30 ± 0.32	$2.17{\pm}0.26^{a}$	2.04 ± 0.25^{B}	2.44 ± 0.12^{Aa}	2.37±0.23 ^a	2.11 ± 0.29^{ab}
	2	2.41±0.32	$2.33{\pm}0.12^{a}$	2.20 ± 0.16^{B}	$2.54{\pm}0.14^{Aa}$	2.30 ± 0.25^{a}	2.44 ± 0.22^{a}
	0	4.29 ± 0.00^{Bb}	5.32 ± 0.00^{Ab}	4.81±0.59	4.81±0.59 ^b	4.81 ± 0.59^{b}	4.81 ± 0.59^{b}
Alanine	1	5.31 ± 0.42^{Ba}	6.39±0.45 ^{Aa}	5.55 ± 0.62	6.15 ± 0.74^{a}	5.98 ± 0.60^{a}	5.72 ± 0.88^{ab}
	2	5.67 ± 0.51^{Ba}	6.67±0.36 ^{Aa}	5.82 ± 0.68	6.52 ± 0.53^{a}	$6.20{\pm}0.86^{a}$	$6.14{\pm}0.56^{a}$
	0	0.25 ± 0.00^{Bc}	0.44 ± 0.00^{Ab}	0.35±0.11 ^b	0.35 ± 0.11^{b}	$0.35 \pm 0.11^{\circ}$	0.35 ± 0.11^{b}
Citrulline	1	0.54 ± 0.26^{b}	0.47 ± 0.19^{b}	0.52 ± 0.21^{b}	0.50 ± 0.25^{b}	0.63 ± 0.18^{b}	0.39 ± 0.19^{b}
	2	$0.88{\pm}0.08^{a}$	0.85 ± 0.05^{a}	0.83 ± 0.07^{a}	0.90 ± 0.03^{a}	$0.90{\pm}0.06^{a}$	0.83 ± 0.06^{a}
	0	0.96 ± 0.00^{Bc}	0.97 ± 0.00^{Ac}	0.97±0.01°	0.97±0.01°	$0.97 \pm 0.01^{\circ}$	0.97±0.01°
Valine	1	1.69±0.13 ^b	1.72±0.26 ^b	1.57±0.13 ^{вь}	1.85 ± 0.12^{Ab}	1.71±0.27 ^b	1.70 ± 0.11^{b}
	2	2.50 ± 0.54^{a}	2.42 ± 0.48^{a}	2.07 ± 0.18^{Ba}	2.84 ± 0.31^{Aa}	2.58 ± 0.62^{a}	2.33 ± 0.32^{a}
	0	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}	0.00 ± 0.00^{b}
Cystine	1	0.14±0.22 ^b	0.16 ± 0.20^{ab}	0.27 ± 0.22^{ab}	0.04±0.07 ^b	0.13±0.22 ^b	0.17 ± 0.20^{ab}
	2	0.47 ± 0.21^{a}	0.39±0.28ª	0.42±0.31ª	0.44 ± 0.18^{a}	0.50 ± 0.16^{a}	0.36 ± 0.29^{a}
	0	$0.40 \pm 0.00^{\circ}$	0.40 ± 0.00^{b}	0.40 ± 0.00^{b}	$0.40 \pm 0.00^{\circ}$	0.40 ± 0.00^{b}	0.40 ± 0.00^{b}
Methionine	1	0.96±0.08°	1.04 ± 0.19^{a}	1.03 ± 0.19^{a}	0.96±0.08°	0.93±0.07 ^b	1.07 ± 0.17^{a}
	2	1.62 ± 0.48^{a}	1.26±0.43 ^a	1.20±0.34ª	1.68 ± 0.50^{a}	1.65 ± 0.60^{a}	1.23±0.19 ^a
	0	$0.60 \pm 0.00^{\text{Ac}}$	0.56±0.00 ^{BC}	0.58±0.02 ^c	$0.58 \pm 0.02^{\circ}$	0.58±0.02 ^c	$0.58 \pm 0.02^{\circ}$
Isoleucine	1	1.26 ± 0.09^{6}	$1.17 \pm 0.13^{\circ}$	$1.15 \pm 0.13^{\circ}$	$1.28 \pm 0.05^{\circ}$	1.18 ± 0.17^{6}	1.24 ± 0.04^{6}
	2	2.00 ± 0.39^{a}	1.69 ± 0.45^{a}	1.59 ± 0.30^{a}	2.10 ± 0.40^{a}	2.01±0.58 ^a	1.69 ± 0.13^{a}
. .	0	1.16 ± 0.00^{AC}	$1.11\pm0.00^{\text{BC}}$	$1.14\pm0.03^{\circ}$	$1.14\pm0.03^{\circ}$	$1.14\pm0.03^{\circ}$	$1.14\pm0.03^{\circ}$
Leucine	1	$2.35\pm0.17^{\circ}$	2.15±0.27°	$2.09\pm0.23^{\circ}$	$2.41\pm0.12^{\circ}$	$2.25\pm0.32^{\circ}$	2.25±0.17°
	2	$3.4/\pm0.69^{a}$	$3.14\pm0.75^{\circ}$	$2.80\pm0.37^{\text{ba}}$	$3.82\pm0.54^{\text{Ma}}$	3.50±0.97°	3.12 ± 0.29^{a}
T	0	0.79 ± 0.00^{-1}	0.85 ± 0.00^{-1}	$0.81\pm0.02^{\circ}$	$0.81\pm0.02^{\circ}$	0.81 ± 0.02	0.81 ± 0.02
Tyrosine	1	0.89 ± 0.08	0.82 ± 0.41	1.51 ± 0.22	0.40 ± 0.20	0.76 ± 0.54	0.90 ± 0.57
	2	1.08 ± 0.70 1.14 ± 0.00^{Bc}	1.18±0.00 ^{Ab}	1.45 ± 0.57 $1.16\pm0.02^{\circ}$	1.36 ± 0.33	1.23 ± 0.33 1.16±0.02°	0.76±0.36
Dhanvilalanina	1	1.14 ± 0.00 1.78±0.00 ^b	1.16±0.00	1.10 ± 0.02 1.64±0.20 ^b	1.10±0.02	1.10 ± 0.02 1.76±0.12 ^b	1.10 ± 0.02 1.68±0.21 ^b
Flienylaiaillie	2	1.78 ± 0.09 2.42 ± 0.44^{a}	1.00 ± 0.22	1.04 ± 0.20 2 10±0 28 ^{Ba}	1.80 ± 0.09 2.74±0.20 ^{Aa}	1.70 ± 0.13	1.00 ± 0.21
	0	2.42 ± 0.44	2.42 ± 0.49 1 18±0 00 ^A	$1.14\pm0.05^{\circ}$	1.14 ± 0.05^{ab}	2.47 ± 0.01 1 14 ±0.05	1 14+0.05
Lycine	1	1.09 ± 0.00 1.35+0.64	1.13 ± 0.00 1.73+0.50	1.14 ± 0.03 1.78 ± 0.12^{b}	1.14 ± 0.05 1 30+0 77 ^a	1.14 ± 0.05 1.34 ± 0.67	1.14 ± 0.03 1.75+0.44
Lysine	2	1.35 ± 0.04	1.75 ± 0.50 1.51 ± 0.97	2.26 ± 0.13^{Aa}	0.50±0.30 ^{Bb}	1.34 ± 0.07 1 30±1 13	1.75±0.44
	0	0.21 ± 0.00^{Bc}	0.26 ± 0.00^{Ab}	0.24 ± 0.13	0.30 ± 0.30	1.30 ± 1.13 0.24+0.03°	1.40 ± 0.94 0.24+0.03°
Histidine	1	0.53+0.07 ^b	0.55 ± 0.00	0.27 ± 0.03 0.47+0.02 ^{Bb}	0.24 ± 0.03 0.61+0.04 ^{Ab}	0.24 ± 0.03 0.55+0.10 ^b	0.53+0.07 ^b
manufic	2	0.33 ± 0.07 0.71+0.15 ^a	0.69 ± 0.10^{a}	0.47 ± 0.02 0.59+0.03 ^a	0.81 ± 0.04	0.74 ± 0.15^{a}	0.66 ± 0.11^{a}
	0	71.02 ± 0.00^{Aa}	67.63 ± 0.02	69 32+1 96 ^a	69 32+1 96 ^a	69.32 ± 1.96^{a}	69 32+1 96 ^a
Carnosine	1	64.32+2.02 ^b	61.27+2.28 ^b	63.28+2 50 ^b	$62.31+2.93^{b}$	62.70+1.97 ^b	62.89+3.40 ^b
Curitosine	2	$55 48+2 49^{\circ}$	$52.17+4.48^{\circ}$	55.39+0.89°	52.26+5 13°	52.33+4 87°	55.32+1.99°
	0	$0.80+0.00^{B}$	$0.88+0.00^{\text{A}}$	$0.84+0.05^{\circ}$	0.84+0.05	0.84+0.05	$0.84+0.05^{b}$
Arginine	1	1.45+0.27	1.54+0.43	$1.54+0.12^{b}$	1.45+0.49	1.27+0.29	1.72+0.22 ^a
	2	1.35+0.77	1.34+0.75	$1.90+0.07^{Aa}$	$0.80+0.58^{B}$	1.37+0.72	$1.32+0.79^{ab}$
	0	7.16 ± 0.00^{Bc}	7.53 ± 0.00^{Ac}	7.35±0.21°	7.35±0.21°	$7.35\pm0.21^{\circ}$	7.35±0.21°
EAA	1	12.72 ± 0.49^{b}	13 03+1 31 ^b	12.51+0.65 ^b	13.24+1.11 ^b	$12.40+0.47^{b}$	13 35+1 09 ^b

2	17.33 ± 2.54^{a}	16.49 ± 1.53^{a}	16.21±1.41ª	17.60 ± 2.44^{a}	17.73 ± 2.58^{a}	16.08±0.91ª
0	1.43 ± 0.00^{Ac}	1.39 ± 0.00^{Bb}	1.41 ± 0.02^{b}	$1.41 \pm 0.02^{\circ}$	1.41 ± 0.02^{b}	1.41±0.02°
1	$2.85 {\pm} 0.09^{\rm Ab}$	$2.44{\pm}0.04^{\text{Bb}}$	$2.47{\pm}0.17^{Ba}$	$2.82{\pm}0.11^{\text{Ab}}$	$2.70{\pm}0.39^{ab}$	2.58±0.39 ^b
2	$4.22{\pm}0.15^{Aa}$	3.79 ± 0.39^{Ba}	$3.01{\pm}0.59^{Ba}$	$5.01{\pm}0.63^{Aa}$	$4.20{\pm}1.64^{a}$	$3.82{\pm}0.78^{a}$
0	7.92 ± 0.00^{Bc}	$8.89 {\pm} 0.00^{\rm Ac}$	8.41±0.56°	8.41±0.56°	8.41 ± 0.56^{b}	8.41 ± 0.56^{b}
1	10.51±0.79 ^b	11.70 ± 1.14^{b}	$10.33 {\pm} 0.58^{Bb}$	$11.88{\pm}0.96^{\text{Ab}}$	$11.32{\pm}1.05^{a}$	$10.90{\pm}1.29^{a}$
2	$12.07{\pm}1.25^{a}$	$13.05 {\pm} 0.88^{a}$	$11.65{\pm}0.75^{Ba}$	$13.46 {\pm} 0.50^{Aa}$	$12.64{\pm}1.38^{a}$	$12.47{\pm}1.03^{a}$
0	$0.40 \pm 0.00^{\circ}$	$0.40{\pm}0.00^{b}$	$0.40 {\pm} 0.00^{b}$	$0.40{\pm}0.00^{\circ}$	$0.40 \pm 0.00^{\circ}$	$0.40{\pm}0.00^{b}$
1	1.10 ± 0.25^{b}	$1.20{\pm}0.38^{a}$	$1.30{\pm}0.37^{a}$	$1.00{\pm}0.15^{b}$	1.06 ± 0.25^{b}	$1.24{\pm}0.36^{a}$
2	$2.09{\pm}0.50^{a}$	1.65 ± 0.66^{a}	1.62±0.61ª	$2.12{\pm}0.53^{a}$	2.16±0.61ª	1.58 ± 0.47^{a}
0	$1.93 {\pm} 0.00^{Bb}$	2.01 ± 0.00^{Ac}	1.97 ± 0.05^{b}	$1.97 {\pm} 0.05^{b}$	1.97 ± 0.05^{b}	1.97 ± 0.05^{b}
1	2.67 ± 0.71^{ab}	2.49 ± 0.23^{b}	$2.95{\pm}0.40^{\text{Aa}}$	$2.20{\pm}0.20^{\rm Bb}$	2.52 ± 0.43^{b}	2.63 ± 0.62^{ab}
2	$3.50{\pm}0.75^{\mathrm{a}}$	3.37±0.42ª	$3.55 {\pm} 0.55^{a}$	$3.32{\pm}0.64^{a}$	3.72±0.51ª	3.15±0.51ª
0	4.90 ± 0.00^{Bc}	5.08 ± 0.00^{Ac}	4.99±0.10°	4.99±0.10°	4.99±0.10°	4.99±0.10°
1	$8.55 {\pm} 0.71^{b}$	$8.49 {\pm} 0.62^{b}$	8.70 ± 0.65^{b}	$8.35{\pm}0.62^{b}$	8.16 ± 0.28^{b}	$8.89 {\pm} 0.68^{b}$
2	11.67±2.31ª	10.76 ± 0.98^{a}	10.89 ± 1.25^{a}	$11.54{\pm}2.24^{a}$	$12.07{\pm}2.06^{a}$	$10.37{\pm}0.83^{a}$
	2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

 $\frac{2}{11.07\pm2.01}$ 11.07±2.01 10.05±0.95 10.89±1.25 11.04±2.24 12.07±2.06 10.57±0.85 $\frac{1}{10.07\pm0.06}$ 10.57±0.85 $\frac{1}{10.0$