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Abstract  27 

Slaughterhouse blood is a by-product of animal slaughter that can be a good source of 28 

animal protein. This research purposed to examine the functional qualities of the blood plasma 29 

from Hanwoo cattle, black goat, and their hydrolysates. Part of the plasma was hydrolyzed with 30 

proteolytic enzymes (Bacillus protease, papain, thermolysin, elastase, and α-chymotrypsin) to 31 

yield bioactive peptides under optimum conditions. The levels of hydrolysates were evaluated by 32 

15% SDS-PAGE gel electrophoresis. The antioxidant, metal-chelating, and angiotensin I-33 

converting enzyme (ACE) inhibitory properties of intact blood plasma and selected hydrolysates 34 

were investigated. Accordingly, two plasma hydrolysates by protease (pH 6.5/ 55oC/ 3 h) and 35 

thermolysin (pH 7.5/ 37oC/ 3-6 h) were selected for analysis of their functional properties. In the 36 

oil model system, only goat blood plasma had lower levels of thiobarbituric acid reactive 37 

substances (TBARS) than the control. The diphenyl picrylhydrazyl (DPPH) radical scavenging 38 

activity was higher in cattle and goat plasma than in proteolytic hydrolysates. Iron-chelating 39 

activities increased after proteolytic degradation except for protease-treated cattle blood. Copper-40 

chelating activity was excellent in all test samples except for the original bovine plasma. As for 41 

ACE inhibition, only non-hydrolyzed goat plasma and its hydrolysates by thermolysin showed 42 

ACE inhibitory activity (9.86±5.03% and 21.77±3.74%). In conclusion, goat plasma without 43 

hydrolyzation and its hydrolysates can be a good source of bioactive compounds with functional 44 

characteristics, whereas cattle plasma has a relatively low value. Further studies on the molecular 45 

structure of these compounds are needed with more suitable enzyme combinations. 46 
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Introduction 57 

Animal blood was regarded as a food source in ancient civilizations. The blood is made up of 58 

60% plasma and 40% blood cells, and its composition is similar among different species (Kuan et 59 

al., 2018). The term “liquid protein” is commonly used to describe blood because it is rich in high-60 

quality protein (Ockerman and Hansen, 1999). Blood proteins are derived from whole blood or 61 

plasma and have high nutritional and functional qualities (Ofori and Hsieh, 2012). Plasma is the 62 

liquid fraction of the blood that remains after the removal of blood cells, and it is commonly 63 

employed in food processing due to its neutral flavor and lack of dark color influence on meals 64 

(Hsieh and Ofori, 2011). Therefore, one of the most significant biological by-products of animal 65 

slaughter is blood (Silva et al., 2003). In addition, it has been estimated that approximately 66 

1,500,000 tons of porcine blood are generated annually in China alone, which is equal to the 67 

protein content of 2,500,000 tons of eggs or 2,000,000 tons of meat (Wang et al., 2007). If the 68 

animal blood is dumped as waste, valuable protein sources are lost.  69 

Blood proteins are utilized in food industries as additives to modify the functional and 70 

nutritional aspects of meals (Parés et al., 2011), especially as binders but also as fat substitutes, 71 

emulsifiers, and natural color enhancers (Ofori and Hsieh, 2012). Blood proteins provide 72 

considerable nutritional, economic, and environmental benefits when used as food additives in 73 

food processing (Ofori and Hsieh, 2014). When bovine blood was used in sausages, it exhibited 74 

not only a significant reduction in fat but also increased protein and iron levels (Mathi, 2016). In 75 

addition, four antibacterial peptides were identified in bovine hemoglobin (Nedjar-Arroume et al., 76 

2006). According to Rudolph, (1999), farm animals including cattle and goats, have several 77 

significant abilities to produce pharmaceutical products. The drug marketed as Aimspro is 78 

produced from goat blood and can offer relief to sclerosis patients by improving their vision 79 

(Anaeto et al., 2010). In addition, goat blood serum contains 5.16 to 7.58 g of proteins and the 80 

glucose level is between 40 to 72 mg per 100 mL, which is critical for central nervous system 81 

function (Barakat and El‐Guindi, 1967). Therefore, the utilization of blood as a liquid protein from 82 

the slaughterhouse, offers nutritional, health, economic, and environmental benefits. However, 83 

only approximately 30% of slaughterhouse blood is used for its functional properties in the meat 84 

industry (Gatnau et al., 2001). The discarding of unused blood poses a severe environmental risk. 85 

The annual blood waste in a country such as the United States alone was 1.6 million tons with its 86 

18% solid content and significant chemical oxygen demand (COD) (500,000mg O2/L) (Del Hoyo 87 



 

 

et al., 2007). Therefore, finding a technique to utilize blood not only solves environmental 88 

problems but also provides additional income to the meat industry (Ofori and Hsieh, 2014).  89 

Animal blood, this protein source can be converted into bioactive peptide hydrolysates, which 90 

have the potential to be employed in the nutraceutical and pharmaceutical sectors (Bah et al., 91 

2016a). Protein hydrolysis is a powerful tool for modifying the functional characteristics of 92 

proteins in food systems (Mune Mune, 2015). It involves the production of bioactive free amino 93 

acids or peptides from proteins that can be chemically or enzymatically produced (Tavano, 2013). 94 

The enzymatic process has positive effects on food processing, such as improving digestibility, 95 

modification of sensory quality, and health benefits including antioxidant capability or allergic 96 

ingredient decrease (Panyam and Kilara, 1996; Tavano, 2013). On one hand, enzyme hydrolysis 97 

produces shorter peptide chains than native proteins and thus it provides a viable alternative to 98 

solubilizing blood protein (Pérez-Gálvez et al., 2011). However, the hydrolysis conditions and 99 

proteases selection, such as enzyme-to-substrate ratio (E/S), pH, temperature, and hydrolysis 100 

duration, might affect the results of bioactive peptides (Bah et al., 2013; Liu et al., 2010). 101 

Protein fragments known as bioactive peptides generally include 2–20 amino acid residues per 102 

molecule (Bhat et al., 2015) and have positive effects on bodily processes or circumstances, 103 

namely, the digestive, cardiovascular, nervous, and immune systems (Kitts and Weiler, 2003). It 104 

also possesses antimicrobial, antihypertensive, antioxidative, antithrombotic, opioid, cholesterol-105 

lowering, mineral absorption or bioavailability enhancement, and immunomodulatory properties 106 

(Shimizu, 2004). Therefore, bioactive peptides produced from blood by-products may be used in 107 

the nutraceutical and pharmaceutical sectors, which would offer their financial, nutritional, and 108 

environmental advantages (Bah et al., 2013).  109 

The discarding of slaughterhouse blood as waste is not only an environmentally serious 110 

problem but also results in losing valuable protein sources. Therefore, it is necessary to discover 111 

the functional characteristics of blood proteins for optimal utilization in the nutraceutical and 112 

pharmaceutical industries. Although several researchers have documented the potential of blood 113 

plasma activities, there have not been many studies on cattle and goat blood plasma. Therefore, 114 

this study approached to examine the functional qualities of blood plasma and its hydrolysates 115 

produced from black goats and Hanwoo cattle. 116 

  117 



 

 

Materials and Methods 118 

Materials 119 

Slaughterhouse blood was collected from both Hanwoo cattle (Saesuncheon Livestock, 120 

Korea) and black goats (Gaon Livestock, Korea) by using the anticoagulant, 121 

ethylenediaminetetraacetate (EDTA), is used to collect it, and its most effective concentration of 122 

1.2 mg/mL of blood. The following enzymes are acquired from Sigma-Aldrich (St. Louis, MO): 123 

protease from Bacillus licheniformis (Alcalase® 2.4L; ≥ 2.4 U/g solutions; P4860), papain from 124 

papaya latex (≥ 10 U/mg protein; P4762), elastase from porcine pancreas (≥ 4.0 U/mg protein, 125 

E1250), thermolysin from Geobacillus stearothermophilus (30-350 units/mg, T7902) and α-126 

chymotrypsin from bovine pancreas (≥ 40 U/mg protein; C4129). Other chemicals were purchased 127 

from Sigma-Aldrich (St. Louis, MO, USA) as well as DAEJUNG CHEMICALS (186, 128 

SEOHAEAN-RO, SIHEUNG-SI, GYEONGGI-DO, KOREA (1235-8, JEONGWANG-DONG)). 129 

Enzymatic hydrolysis of Blood plasma 130 

The blood plasma was separated from the cells by centrifuging the collected blood at 3,000 131 

× g for 20 min at 4 oC. Then, the separated plasma was dialyzed to remove the EDTA, which was 132 

added during blood collection and lyophilized using a freeze dryer (Lyoph-Pride, LP03; Ilshin 133 

BioBase Co., Ltd., Korea). Lyophilized blood plasma was re-dissolved at a 20 mg/mL 134 

concentration for hydrolysis.  Following that, pH was adjusted to optimal conditions for each 135 

enzyme (protease from Bacillus licheniformis [Bacillus protease] pH 6.5, α-chymotrypsin pH 7.6, 136 

papain pH 6.5, elastase pH 7.8, thermolysin pH 7.5) at room temperature. The samples were kept 137 

at their optimal temperatures for 24 h incubation (Bacillus protease at 55℃, papain at 37℃, α-138 

chymotrypsin at 37℃, thermolysin at 37℃, and elastase at 25℃) with an enzyme to substrate ratio 139 

of 1:100. Incubation was stopped at 0, 3, 6, 9, 12, and 24 h by heat inactivation in a water bath at 140 

100℃ for 15 min. Fifteen percent (15 %) of SDS-PAGE gel electrophoresis was used to assess the 141 

degree of hydrolysis. The most suitable hydrolysis conditions were obtained by observing the 142 

SDS-PAGE images. All treatments were performed in triplicate.  143 

Functional property analysis 144 

Functional characteristics were assessed in vitro using selected hydrolysis methods. 145 

Accordingly, the antioxidant capacity (TBARS and DPPH assays), metal chelation ability (Fe-146 

chelation and Cu-chelation), and ACE inhibitory activity were measured. Without applying any 147 



 

 

additional treatments, analyses were carried out on hydrolysates made from solutions containing 148 

20 mg/mL of blood plasma protein. 149 

Antioxidant activity  150 

Thiobarbituric acid reactive substances (TBARS)  151 

Antioxidant activity was evaluated using the approach reported by Abeyrathne et al. (2014b) 152 

with a few adjustments. A polytron homogenizer (D-500, Scilogex, Rocky Hill, NJ, USA) was 153 

used to homogenize 1 g of pure refined soyabean oil (Sajo, Korea), tween-20 (100 µL), and 154 

distilled water (100 mL) at the highest speed for 2 min to make an oil-in-water emulsion. After 155 

mixing 8 mL oil-in-water emulsion, 0.5 mL of distilled water, 0.5 mL of 200 ppm FeSO4, and 1 156 

mL of blood plasma hydrolysates, the mixture was incubated at 37℃ for 16 h. Then, 50 µL of 10% 157 

butylated hydroxyanisole (BHA) in 90 % ethanol and 2 mL of TBA/TCA (20 mM 2-thiobarbituric 158 

acid/15% trichloroacetic acid) solution were added to 1 mL of the incubated sample in the 15 mL 159 

centrifuge tube. This solution was vortexed and incubated in a water bath at 90°C for 15 min before 160 

being centrifuged at 3,000 × g for 15 min. A UV-visible spectrophotometer (Selecta s.a., Spain) 161 

was used to measure the mixture’s absorbance at 532 nm in comparison to a blank made with 1 162 

mL distilled water and 2 mL TBA/TCA solution. The malondialdehyde level was calculated using 163 

a standard curve and represented as milligrams of malondialdehyde per liter (MDA mg/L) of the 164 

emulsion. 165 

DPPH  radical scavenging activity  166 

The antioxidant capacity of blood plasma hydrolysates was evaluated using the DPPH 167 

scavenging test, which was slightly modified from the technique reported by Blois (1958). Briefly, 168 

distilled water (18 mL) was added to the 2 mL of test samples and homogenized. The mixed 169 

solutions were centrifuged at 3,000 × g for 10 min. After mixing 0.4 mL of supernatant with 2 mL 170 

of DPPH (0.2 mM in methanol) and distilled water (1.6 mL), the mixture was stored in dark for 1 171 

h. The mixture’s absorbance was examined at 517 nm.  172 

𝐷𝑃𝑃𝐻 − 𝑟𝑎𝑑𝑖𝑐𝑎𝑙 𝑠𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) = (
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
) × 100 173 

Metal chelating activity 174 

Fe2+ chelating activity 175 

The ferrozine method of Carter (1971) was used to determine the Fe-chelating activity of 176 

the test samples. In a 15 mL centrifuge tube, the blood plasma hydrolysates (100 µL) were mixed 177 



 

 

with 1 mL of 10 ppm Fe2+ (Fe2SO4) and 0.9 mL of distilled water and incubated at room 178 

temperature for 5 min. The mixture was added to 11.3% trichloroacetic acid (900 µL) before being 179 

centrifuged at 2,500 × g for 10 min. The supernatant (1 mL), ferroin color indicator (200 µL), 180 

distilled water (1 mL), and 10% ammonium acetate (800 µL) were vortex-mixed in the test tube. 181 

After being incubated for 5 min at room temperature, the mixture's absorbance was measured at 182 

562 nm. The following question was used to calculate the iron-chelating activity. 183 

𝐹𝑒 𝑐ℎ𝑒𝑙𝑎𝑡𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 1 − (
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑎𝑛𝑘
) × 100 184 

Cu2+ chelating activity 185 

The Cu chelation ability of blood plasma hydrolysates was evaluated according to Kong 186 

and Xiong (2006) with a few adjustments. The blood plasma hydrolysates (1 mL) were mixed with 187 

1 mL of 0.2 mM CuSO4 in a centrifuge tube before being incubated at a standard temperature for 188 

5 min. The mixture was then treated with 1 mL of 11.3% trichloroacetic acid (TCA) solution before 189 

centrifugation at 2,500 × g for 10 min. Then, the supernatant (2 mL) was mixed with 1 mL of 10% 190 

pyridine and 20 µL of 0.1% pyrocatechol violet (Sigma-Aldrich) in a test tube before being 191 

incubated at room temperature for 5 min. The supernatant absorbance of the test samples was 192 

examined at 632 nm after centrifuging them at 2,500 × g for 10 min. 193 

𝐶𝑢 𝑐ℎ𝑒𝑙𝑎𝑡𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (%) = 1 − (
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑙𝑎𝑛𝑘
) × 100 194 

 195 

Angiotensin I-converting enzyme inhibitory activity 196 

The angiotensin I-converting enzyme (ACE) inhibitory activity of blood plasma was 197 

determined by the technique of Miguel et al. (2007) and Yu et al. (2012) with a few adjustments. 198 

A 100 µL aliquot of the test hydrolysates was combined with 100 µL of 0.1 M borate buffer (pH 199 

8.3) mixing 5 mM Hippuryl-Histidil-Leucine, 20 µL of ACE (0.1 U), and 0.3 M sodium chloride 200 

before incubation at 37oC for 30 min. The reaction was halted after incubation by adding 150 µL 201 

of 1 M hydrochloric acid. The produced hippuric acid was extracted using 1000 µL of ethyl acetate 202 

before being centrifuged for 10 min at 1,500 × g. An organic solvent was used to evaporate the 203 

organic phase (750 µL), which was then transferred to a test tube. The dried material was vortex-204 



 

 

mixed with 800 µL of distilled water and the absorbance was examined at 228 nm in comparison 205 

to a blank produced with distilled water (100 µL) in place of the sample.  206 

𝐴𝐶𝐸 − 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = (
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘 − 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘
) × 100 207 

Statistical analysis 208 

All the test samples were replicated three times, and the results were examined with the 209 

SAS program's general linear model (version 9.4). The bioactivities of the hydrolysates were 210 

analyzed by using One-way ANOVA. Data are presented as the means with standard deviations. 211 

 212 

Results and Discussion 213 

Hydrolysis of blood plasma    214 

 The activity of proteolytic enzymes degrades proteins into target-specific peptide cleavage 215 

bonds at appropriate temperatures and pH (Tapal and Tiku, 2019). In this investigation, Hanwoo 216 

cattle and black goat plasma were hydrolyzed using five different types of enzymes at optimum 217 

temperature and pH for 0, 3, 6, 9, 12, and 24 h: papain from papaya latex, protease from Bacillus 218 

licheniformis (Bacillus protease), α-chymotrypsin from bovine pancreas, elastase from porcine 219 

pancreas, and thermolysin from Geobacillus stearothermophilus. However, papain, α -220 

chymotrypsin, and Elastase did not hydrolyze plasma proteins efficiently at their optimum pH and 221 

temperature conditions, even up to 24 h (data not shown).  222 

The fifteen percent (15%) Tris-glycine SDS-PAGE patterns of hydrolyzed Hanwoo cattle 223 

and black goat blood plasma are shown in Figs. 1 and 2.  According to visual investigations, the 224 

Bacillus protease almost completely hydrolyzed the plasma proteins into peptides with lower 225 

molecular weights less than 75 kDa after 3 h of incubation (presented with the box in Fig. 1). 226 

Abeyrathne et al. (2014a) pointed out the 15% SDS-PAGE gel did not retain peptides with 227 

extremely low molecular weight. 228 

In a previous study, bovine blood plasma hydrolyzed with fungal protease produced more 229 

bioactive peptides after 4 h of incubation, almost threefold more than the plant protease 230 

hydrolysate after 24 h (Bah et al., 2016a). Hyun and Shin (2000) also observed that hydrolyzing 231 

bovine plasma protein with alcalase exhibited the highest peptide yield, and pepsin could also 232 

hydrolyze moderately, but neutrase and papain hydrolysis could not hydrolyze the proteins 233 



 

 

efficiently. Therefore, the specific application properties of the hydrolysate product must be 234 

considered when choosing enzymes and hydrolysis conditions (Lahl, 1994).  235 

 Figure 2 shows the hydrolysate products obtained after hydrolysis using thermolysin. After 236 

3 h of incubation, cattle plasma protein was hydrolyzed, but it was not termed as a complete 237 

hydrolysate since a smear appeared at approximately 50 kDa. Goat blood plasma was hydrolyzed 238 

after 6 h of incubation. Its hydrolysates displayed increased precipitation and turbidity, as well as 239 

the formation of a smear between the 25-10 kDa band. 240 

 Wei and Chiang (2009) affirmed that porcine red blood corpuscles in a membrane reactor 241 

may generate smaller bioactive peptides for health-promoting products using a variety of proteases 242 

including thermolysin. However, excessive protein hydrolysis must be avoided under conditions 243 

that can cause unfavorable effects including the production of bitter-flavored peptides (Jung et al., 244 

2005).  245 

According to the enzyme treatments, the hydrolysates from Hanwoo cattle and black goat 246 

plasma (cattle plasma hydrolysate by Bacillus protease 3 h 55oC [CP], goat plasma hydrolysate by 247 

Bacillus protease 3 h 55oC [GP], cattle plasma hydrolysate by Thermolysin 3 h 37oC [CT], and 248 

goat plasma hydrolysate by Thermolysin 6 h 37oC [GT]) were chosen and utilized as excellent for 249 

the analysis of functional qualities. 250 

 Antioxidant activity of the hydrolysates 251 

 Antioxidants are substances that can delay or inhibit the oxidation process. It is 252 

particularly to prevent the harmful effects of free radicals in the human body, as well as the 253 

deterioration of fats in meals (Molyneux, 2004). Recently, antioxidants have received increased 254 

attention due to their relation to cancer prophylaxis, longevity, and therapy (Kalcher et al., 2009). 255 

TBARS is a common technique for assessing lipid oxidation. MDA is produced by 256 

polyunsaturated fatty acid peroxidation and forms an adduct with 2-TBA molecules, resulting in a 257 

pink color (Dasgupta and Klein, 2014). The lipid oxidation of Hanwoo cattle and black goat plasma 258 

hydrolyzed with Bacillus protease and thermolysin, as determined by TBARS values are presented 259 

in Fig. 3. Overall results presented that only intact goat blood plasma (G) had a lower TBARS 260 

value than the control (oil emulsion), indicating antioxidant activity. The intact cattle plasma and 261 

other hydrolysates exhibited weak antioxidant properties. Protein hydrolysates' antioxidant activity 262 

is determined by their amino acid composition, which changes with enzyme activity, hydrolysis 263 

process, and enzyme-substrate ratio (Shahidi and Zhong, 2008).  Liu et al. (2010) indicated that 264 



 

 

the inhibition of TBARS formation was more pronounced with an increase in the hydrolysis degree. 265 

When porcine plasma protein was digested with alcalase at 55oC for varied incubation times, the 266 

maximum antioxidant activity was found after 4 h of incubation (Chang et al., 2007). According 267 

to the TBARS value, the ability of intact goat plasma is capable to control and completely protect 268 

lipid oxidation against reactive oxygen species. Albumin, a prominent protein in the blood plasma, 269 

is thought to be high in goat plasma, which is known to be a major circulating extracellular 270 

antioxidant (Halliwell, 1988; Roche et al., 2008) and could contribute to the antioxidant activity 271 

identified. However, cattle plasma and the other hydrolysates required optimal hydrolysis 272 

conditions for antioxidant activity because there could have been a large number of poorly soluble, 273 

undigested proteins. When assessing a hydrolysate’s in vitro functional characteristics, solubility 274 

is a crucial consideration (Kim and Yoon, 2020).  275 

The antioxidant capacity of blood plasma from black goat and Hanwoo cattle was 276 

determined based on its DPPH radical-scavenging activity (Fig.4). When DPPH radicals encounter 277 

a substance that donates a proton, such as an antioxidant, the radical is scavenged by changing its 278 

color from purple to yellow, and its absorbance value is decreased (Zhang et al., 2008). The present 279 

studying indicated that the DPPH radical scavenging activity of non-hydrolyzed cattle and goat 280 

plasma had free radical scavenging activity (20.25 ± 3.12% and 17.64 ± 2.55%) respectively. In 281 

addition, this study found that both Hanwoo cattle and black goat plasma hydrolysates showed 282 

very limited radical-scavenging activity.  Bah et al. (2016b) also reported that the strong DPPH 283 

radical scavenging activity (21.3 ± 1.5%) was obtained from the intact cattle blood plasma protein.  284 

Frei et al. (1988) also assessed that the blood proteins can offer 10-50% of the peroxyl radical 285 

scavenging activity of plasma. In addition, Seo et al. (2015) mentioned that although bovine 286 

plasma was hydrolyzed with alcalase in different hydrolysis processes, the maximum DPPH 287 

radical scavenging activity was obtained only at 51.66°C in 7 h (hydrolysis condition). The cattle 288 

plasma treated with fungal protease had higher values of soluble peptides that contributed to 289 

antioxidant activity (Bah et al., 2016a). Therefore, both non-hydrolyzed Hanwoo cattle and black 290 

goat plasma proteins possess free radical scavengers. This may be due to enzymatic antioxidant 291 

systems in the blood plasma, which can be attributed to scavenging activities such as superoxide 292 

dismutase (SOD), catalase (CAT), and glutathione peroxidase (Wang et al., 2018), which 293 

constitute the main system for preventing oxidative cell damage.  However, the hydrolysates 294 



 

 

produced from the current proteases and hydrolysis conditions were not effective in DPPH 295 

scavenging activity. 296 

Metal chelating activity of the hydrolysate 297 

Fe2+ chelating activity 298 

Transition metal ions, especially Fe and Cu can catalyze the generation of reactive oxygen 299 

species primarily superoxide anions (O2
−) and hydroxyl radicals (oOH) (Repetto et al., 2012); thus, 300 

the chelation of metal ions contributes to antioxidation and subsequently prevents food rancidity 301 

(Zhang et al., 2010). The iron-chelating activities of Hanwoo cattle and black goat plasma are 302 

shown in Fig. 5. The iron chelating activities increased after proteolytic degradation except for 303 

Bacillus protease-treated cattle blood plasma. The black goat plasma hydrolysates treated with 304 

Bacillus protease (GP) had the strongest iron-chelating effect (11.26 ± 2.05). In previous studies, 305 

when bovine blood plasma was hydrolyzed with alcalase in different hydrolysis processes, the 306 

maximum iron-chelating point was obtained after 6 h of incubation at a temperature of 55.34°C 307 

(Seo et al., 2015). The capacity of the protein hydrolysates to chelate metals depends on the amino 308 

acid residues that are acidic (Glu and Asp) and basic (Arg and Lys) (Rajapakse et al., 2005). 309 

Furthermore, it i's likely that the size and sequence of amino acids in peptides affect the ability of 310 

protein hydrolysates to function as antioxidants (Chen et al., 1998). However, hydrolysis 311 

conditions and enzyme activity can change amino acid composition, implying that the chelating 312 

activities of various hydrolysates may differ. In the present study, the intact cattle blood plasma 313 

(C) and its hydrolysates produced from Bacillus protease (CP) could not detect the iron chelating 314 

activity even after hydrolysis. This is possibly due to enzyme activity destroying the metal-binding 315 

sites.  316 

Cu2+ chelating activity 317 

In hydroperoxide breakdown processes, Cu is a more potent catalyst than Fe (Halliwell and 318 

Gutteridge, 1990). The copper chelating activities of all tested samples were excellent, except for 319 

the non-hydrolyzed cattle plasma (Fig.6). Among six treatments, G and GT had the strongest 320 

copper chelating power (95.83 ± 0.51% and 96.76 ± 0.51%) respectively. Dong et al. (2008) 321 

indicated that the chelation ability of hydrolysates increased with longer hydrolysis time, which 322 

agreed with the result of GT (longer hydrolysis time). The copper chelating activity of alcalase 323 

hydrolyzed porcine blood plasma protein increases significantly with an increasing degree of 324 



 

 

hydrolysis (Liu et al., 2010). In this investigation, both hydrolysates strongly suppressed lipid 325 

oxidation by copper chelating activity at a concentration of 20 mg/mL. It is thought that peptide 326 

cleavage in this investigation led to enhanced copper ion binding, thus removing prooxidative free 327 

metal ions from the hydroxyl radical system. Therefore, intact goat plasma and all hydrolysates 328 

from the current study can be used as copper-chelating agents. 329 

Regarding metal chelating activities, non-hydrolyzed goat blood plasma protein had 330 

stronger chelating power than non-hydrolyzed Hanwoo cattle blood plasma. This is assumed to be 331 

due to the specific biological functions of black goat plasma proteins. Most biological systems 332 

contain proteins, which have the biological function of binding, storing, or transporting 333 

catalytically inactive metals (eg. Transferrin: Iron activity is controlled by binding iron in its less 334 

active ferric form and sterically preventing metal-peroxide interactions) (Elias et al., 2008). 335 

ACE-Inhibitory activity 336 

Angiotensin I-converting enzyme (ACE) converts angiotensin I into the angiotensin II 337 

active form in the blood and deactivates bradykinin to extend the blood vessels (Li et al., 2004), 338 

which contributes to blood pressure elevation. Therefore, ACE inhibitors need to repress the 339 

catalytic action of ACE to lower blood pressure and achieve an antihypertensive effect (Arihara 340 

and Ohata, 2008). The ACE-inhibitory activity of porcine blood plasma hydrolyzed with the single 341 

enzyme trypsin was mild, but the ACE-inhibitory activity of porcine blood plasma hydrolyzed 342 

with multiple enzymes was maximum (Wei and Chiang, 2009). Our results indicated that the non-343 

hydrolyzed goat plasma (G) and its hydrolysates produced from thermolysin (GT) possessed the 344 

highest ACE-inhibitory activity (9.86 ± 3.7% and 21.77 ± 3.74%) respectively (Fig. 7). The 345 

original cattle blood plasma (C), its hydrolysates (CP and CT), and goat blood plasma treated with 346 

Bacillus protease (GP) did not show the ACE inhibitory activity. Among the different ACE 347 

inhibitory peptides that have structure-activity correlations, C-terminal tripeptides strongly 348 

influence binding to the ACE (Li et al., 2004). In addition, peptides possessing hydrophobic 349 

(branched-side chain and aromatic) amino acid residues at each of the three C-terminal positions 350 

have substantial ACE inhibitory action, which is characteristic of ACE inhibitory peptides (Hanafi 351 

et al., 2018). If the hydrophilic characteristic is high, the inhibitory activity is generally low or no 352 

activity is observed because the peptide is rendered inaccessible to the active site of ACE (Li et 353 

al., 2004). Therefore, peptides should contain hydrophobic amino acids for optimal inhibitory 354 



 

 

activity. The hydrophobicity also varies in each hydrolysate, depending on the hydrolysis 355 

conditions. Luo et al. (2014) reported that hydrolysates prepared under different hydrolysis 356 

conditions exhibited different hydrophobicities. In our results, G and GT showed ACE-inhibitory 357 

activity but cattle blood plasma (C), its hydrolysates (CP and CT), and goat blood plasma treated 358 

with Bacillus protease (GP) showed no inhibitory activity. It is assumed that a suitable hydrolysis 359 

process is required to yield optimal ACE inhibitory activity. 360 

Conclusion 361 

Under the test conditions, the plasma proteins of Hanwoo cattle and black goats were 362 

almost completely hydrolyzed using protease from Bacillus licheniformis and thermolysin. The 363 

black goat blood plasma and its hydrolysates are good sources to produce bioactive peptides with 364 

functional properties. In particular, even goat plasma that has not been hydrolyzed exhibits good 365 

functional characteristics like antioxidant activity, metal chelating activity, and ACE inhibitory 366 

activity. Therefore, it can be used to improve antioxidant activity in food processing and reduce 367 

hypertensive people's blood pressure in the future. However, Hanwoo cattle blood plasma and its 368 

hydrolysates have relatively poorer functional characteristics. Some hydrolysis conditions could 369 

negatively affect the functional qualities of these hydrolysates. The best functional features of 370 

blood plasma proteins can only be obtained through further investigation using an appropriate 371 

hydrolysis procedure, enzymes, and the enzyme-substrate ratio. It is essential to analyze the 372 

various hydrolysate concentrations and identify the functional properties based on the 373 

identification of peptides.  374 
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Figure 1:  15% SDS-PAGE of cattle and goat blood plasma hydrolyzed with Protease from Bacillus 548 

licheniformis (pH 6.5/ 55oC). Lane A and I = Marker, Lane B= Cattle blood plasma, Lane C to H= 549 

Cattle blood plasma hydrolyzed at 55oC for 0, 3, 6, 9, 12, and 24 h, Lane J= Goat blood Plasma, 550 

Lane K to P= Goat blood plasma hydrolyzed at 55oC for 0, 3, 6, 9, 12 and 24 h. 551 
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Figure 2:  15% SDS-PAGE of cattle and goat blood plasma hydrolyzed with Thermolysin from 574 

Geobacillus stearothermophilus (pH 7.5/ 37oC). Lane A and I = Marker, Lane B= Cattle blood 575 

plasma, Lane C to H= Cattle blood plasma hydrolyzed at 37oC for 0, 3, 6, 9, 12, and 24 h, Lane 576 

J= Goat blood Plasma, Lane K to P= Goat blood plasma hydrolyzed at 37oC for 0, 3, 6, 9, 12 and 577 

24 h. 578 
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Figure 3: Graphical expression of TBARS value of oil emulsion (mg of malondialdehyde/L) of the 596 

blood plasma and its hydrolysates. C = Cattle blood plasma, G= Goat blood plasma, CP= Cattle 597 

blood plasma hydrolyzed with protease (3 h at 55 oC), GP= goat blood plasma hydrolyzed with 598 

protease (3 h at 55 oC), CT= Cattle blood plasma hydrolyzed with thermolysin (3 h at 37 oC), GT= 599 

Goat blood plasma hydrolyzed with thermolysin (6 h at 37 oC). 600 

 a-fValues with different letters indicate a significant difference between the treatments (p < 0.05) 601 
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Figure 4: Graphical expression of DPPH radical scavenging assay of the blood plasma and its 622 

hydrolysates. C = Cattle blood plasma, G= Goat blood plasma, CP= Cattle blood plasma 623 

hydrolyzed with protease (3 h at 55 oC), GP= goat blood plasma hydrolyzed with protease (3 hr at 624 

55 oC), CT= Cattle blood plasma hydrolyzed with thermolysin (3 h at 37 oC), GT= Goat blood 625 

plasma hydrolyzed with thermolysin (6 h at 37 oC). 626 

 a,bValues with different letters indicate a significant difference between the treatments (p < 0.05) 627 
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Figure 5: Graphical expression of Fe2+ Chelation activity of the blood plasma and its hydrolysates. 649 

C = Cattle blood plasma, G= Goat blood plasma, CP= Cattle blood plasma hydrolyzed with 650 

protease (3 h at 55 oC), GP= goat blood plasma hydrolyzed with protease (3 hr at 55 oC), CT= 651 

Cattle blood plasma hydrolyzed with thermolysin (3 h at 37 oC), GT= Goat blood plasma 652 

hydrolyzed with thermolysin (6 h at 37 oC). 653 

 a-cValues with different letters indicate a significant difference between the treatments (p < 0.05) 654 
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Figure 6: Graphical expression of Cu2+ Chelation activity of the blood plasma and its hydrolysates. 675 

C = Cattle blood plasma, G= Goat blood plasma, CP= Cattle blood plasma hydrolyzed with 676 

protease (3 h at 55 oC), GP= goat blood plasma hydrolyzed with protease (3 h at 55 oC), CT= Cattle 677 

blood plasma hydrolyzed with thermolysin (3 h at 37 oC), GT= Goat blood plasma hydrolyzed 678 

with thermolysin (6 h at 37 oC). 679 

 a-eValues with different letters indicate a significant difference between the treatments (p < 0.05) 680 
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Figure 7: Graphical expression of ACE inhibitory activity of the blood plasma and its hydrolysates. 701 

C = Cattle blood plasma, G= Goat blood plasma, CP= Cattle blood plasma hydrolyzed with 702 

protease (3 h at 55 oC), GP= goat blood plasma hydrolyzed with protease (3 h at 55 oC), CT= Cattle 703 

blood plasma hydrolyzed with thermolysin (3 h at 37 oC), GT= Goat blood plasma hydrolyzed 704 

with thermolysin (6 h at 37 oC). 705 

 a-eValues with different letters indicate a significant difference between the treatments (p < 0.05) 706 
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