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Abstract 9 

Fat deposition in animal muscles differs according to the genetics and muscle anatomical 10 

locations. Moreover, different fat to lean muscle ratios (quality grade) might contribute to 11 

aroma development in highly marbled beef. Scientific evidence is required to determine 12 

whether the abundance of aroma volatiles is positively correlated with the amount of fat in 13 

highly marbled beef. Therefore, this study aims to investigate the effect of quality grade on 14 

beef aroma profile using electronic nose data and a chemometric approach. An electronic 15 

nose with metal oxide semiconductors was used, and discrimination was performed using 16 

multivariate analysis, including principal component analysis and hierarchical clustering. The 17 

M. longissimus lumborum (striploin) of quality grade (QG) 1++, 1+, 1, and 2 of Hanwoo 18 

steers (n = 6), finished under identical feeding systems on similar farms, were used. In 19 

contrast to the proportion of monounsaturated fatty acids (MUFAs), the abundance of volatile 20 

compounds and the proportion of polyunsaturated fatty acids (PUFA) decreased as the quality 21 

grade increased. The aroma profile of striploin from carcasses of different quality grades was 22 

well-discriminated. QG1++ was close to QG1+, while QG1 and QG2 were within a cluster. 23 

In conclusion, aroma development in beef is strongly influenced by fat deposition, 24 

particularly the fat-to-lean muscle ratio with regard to the proportion of PUFA. As MUFA 25 

slows down the oxidation and release of volatile compounds, leaner beef containing a higher 26 

proportion of PUFA produces more volatile compounds than beef with a higher amount of 27 

intramuscular fat. 28 

Keywords: Hierarchical clustering; Lipid oxidation; Marbling; Multivariate analysis; 29 

Principal component analysis; Volatile compounds 30 

 31 

Introduction 32 
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Studies on the effect of fat content on the volatile composition of meat have focused on 33 

processed meat products, such as meat batter, frankfurter, and ham (Jo et al., 1999; 34 

Domínguez et al., 2017; Sirtori et al., 2021). Meanwhile, studies on the effect of carcass 35 

quality grade or the intramuscular fat (IMF) level on the volatile profile of beef are still 36 

limited. Fat content in beef is positively associated with taste preference (Frank et al., 2016). 37 

Further study is necessary in order to provide more scientific evidence to clarify whether the 38 

abundance of aroma volatiles is positively correlated with the fat content in highly marbled 39 

beef.  40 

In Korea, Hanwoo steers are finished on a high-energy diet and slaughtered at the age of 41 

30–32 months, so that the marbling score and fat content of the highest quality grade loin can 42 

reach above 7% and 20%, respectively (Koh et al., 2019). The quality grade, which is 43 

determined by the marbling score, influences the generation of beef volatile compounds. Piao 44 

et al. (2017) reported that the release of some volatile compounds is affected by the quality 45 

grade of Hanwoo beef. The deposition of fat to muscle is affected by genetic factors; even 46 

though the fat amount is similar, beef from different breeds have different aroma profiles 47 

(Utama et al., 2018). Moreover, IMF content could influence the generation of volatile 48 

compounds and the release of such compounds from the matrix of the meat (Echegaray et al., 49 

2021).  50 

Multivariate analysis can help interpret the data for classification. Principal component 51 

analysis (PCA) and cluster analysis (CA) are often used to simplify large amounts of data for 52 

a better understanding. However, as these tools are unsupervised statistical methods, it is 53 

inappropriate to correlate the content of bioactive compounds with in vitro functional 54 

properties (Nunes et al., 2015: Granato et al., 2018). PCA has been widely applied as an 55 

adaptive descriptive data analysis tool to investigate the authenticity of food and to determine 56 

some intrinsic and extrinsic effects on food quality based on their chemical traits, including 57 
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the aroma volatile compounds (Procida et al., 2005; Suslick et al., 2010; Wang et al., 2014; 58 

Kebede et al., 2018;). In addition, hierarchical clustering, a part of CA, helps to identify the 59 

origin of the food, the diversity of microorganisms in the food, and ensures the authenticity 60 

and quality of the food (Danezis et al., 2016; Granato et al., 2018). Therefore, the objective of 61 

this study was to investigate, using sensor data from an electronic nose and a chemometrics 62 

approach, whether the differences in the fat to lean muscle ratio (carcass quality grade) of 63 

highly marbled beef contribute to the distinct aroma profile. 64 

 65 

Materials and Methods 66 

Sample preparation  67 

The M. longissimus lumborum (striploin) of grade 1++, 1+, 1, and 2 Hanwoo steers (n = 6), 68 

finished under identical feeding systems on a similar farm, were removed from the left side of 69 

the carcasses after 24-h of chilling. The striploin was chosen because this cut is usually used 70 

for roasts and grills. Samples were vacuum-packed and distributed to the laboratory in an 71 

icebox. Proximate composition, pH, color, and fatty acid analyses were performed on day 4 72 

after postmortem. The remaining sample was lyophilized using a benchtop freeze dryer 73 

(Eyela FDU-1200, Tokyo Rikakikai Co., Ltd., Tokyo, Japan) and stored at –24 °C for 74 

analysis of volatile compounds and aroma patterns. The dry sample was used to avoid the 75 

effect of different moisture contents among quality grades. 76 

 77 

Proximate composition analysis 78 

Samples were ground using a food blender at minimum speed for 10 s (HMF-1600PB, 79 

Hanil Electric, Korea). The proximate composition was determined using the AOAC official 80 

methods (AOAC, 2002). Moisture content was determined by dry-heating the samples at 81 

105 °C for 24 h and calculating the proportion of weight loss during heating per fresh weight. 82 
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Crude fat content was determined by ether extraction using a Soxhlet system. Nitrogen 83 

content was determined using the Kjeltec system (2200 Kjeltec Auto Distillation Unit, Foss, 84 

Sweden), and crude protein was calculated by multiplying the nitrogen content by 6.25. The 85 

ash content was determined by burning the samples in a muffle furnace at 550 °C for 16 h. 86 

  87 

Fatty acid composition analysis 88 

Meat fat was extracted from the samples using a chloroform-methanol (2:1 v/v) solution 89 

and prepared in triplicate (Folch et al., 1957). Fatty acid methyl esters (FAMEs) were 90 

prepared in hexane by mixing saponified fat (added with 1 N KOH) with boron trifluoride at 91 

80°C. The fatty acid composition of beef fat was determined using an Agilent gas 92 

chromatography system (6890N, Agilent Technologies, USA). The sample (1 μL) was 93 

injected into the GC port using an autosampler (7683, Agilent Technologies, USA). A split 94 

ratio of 100:1 was programmed for the inlet and the temperature was set to 250 °C. FAMEs 95 

were separated using a WCOT-fused silica capillary column (100 m × 0.25 mm i.d., 0.20 μm 96 

film thickness; Varian Inc., USA) with a 1.0 mL/min helium flow. The oven temperature and 97 

holding-time were programmed as follows: 150 °C/1 min, 150–200 °C at 7 °C/min, 200 °C/5 98 

min, 200–250 °C at 5 °C/min, and 250 °C/10 min. The temperature of the detector was set to 99 

280 °C. The peaks were identified as fatty acids using the retention time of the fatty acid 100 

standards (47015-U, Sigma-Aldrich Corp., LLC., USA). The peak area of each identified 101 

fatty acid was used to calculate the proportion (%) of the total identified peak area.  102 

 103 

Volatile compound identification and aroma profiling 104 

The volatile compounds from heated samples were separated and identified by gas 105 

chromatography-mass spectrometry (GC-MS) using a modified version of the method 106 

described by Ba et al. (2010). Approximately 1 g of dry sample (prepared in duplicate) was 107 
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immediately placed in a 50-mL headspace vial and heated at 105 °C in a drying oven for 10 108 

min to release the volatile compounds. Prior to extraction, the sample was calibrated to 60 °C 109 

in a drying oven for 10 min. The carboxen®/polydimethylsiloxane fiber (Supelco, Sigma-110 

Aldrich Corp., LLC., USA) with a diameter of 75 µm was injected into the vial for extraction 111 

for 30 min. Following extraction, the fiber was injected into the inlet, which was set to 112 

250 °C. The split ration of 1:5 was used for desorbing the volatile compounds for 5 min. 113 

Helium was used as the carrier gas at a flow rate of 1 mL/min. Separation of the individual 114 

compound was performed using a DB5 fused silica column (30 m x 0.25 mm inner diameter, 115 

0.25 μm film thickness, J&W Scientific, USA) in a gas chromatograph (7890A Agilent 116 

Technologies, USA). The GC oven was set to operate at an initial temperature of 40 °C for 2 117 

min, increased to 160 °C (at rate of 5 °C/min), then to 180 °C (at rate of 6 °C/min, holding 118 

time of 5 min), and finally to 200 °C (at rate of 10 °C/min, holding time of 5 min). The 119 

interface and quadruple temperatures were set at 280 °C and 150 °C, respectively. Volatile 120 

compounds were detected using a mass spectrometer (5975C, Agilent Technologies, USA). 121 

The ion source temperature of the MS was set to 280 °C with an electron impact of 70 eV. A 122 

scanning mass range of 50–450 m/z with a scan rate of 1 scan/s was used. Identification was 123 

performed by comparing the experimental spectra with the National Institute of Standards 124 

and Technology (NIST) mass spectral library. Data are presented as area units (AU) × 106/g. 125 

An electronic nose (FOX3000, Alpha MOS, France) was used for analyzing the aroma 126 

pattern. Dry and heated samples (0.5 g) were placed in a 10 mL headspace vial and prepared 127 

in duplicate. The vial was sealed with a rubber septa cap (Supelco 29176-U, Sigma-Aldrich 128 

Corp., LLC, USA). The samples were heated at 60 °C for 600 s at an agitation speed of 500 129 

rpm. The 2.5 mL of headspace gas was extracted with an automatic sampler syringe (HS 100, 130 

Alpha MOS, France) at 65 °C, flow-injected into the port of the electronic nose with 131 

synthetic air as the carrier gas (pressure was set to 0.5 bar with 150 mL/min flow rate) and 132 
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detected by a metal oxide sensor (MOS) array system with an acquisition time of 150 s. The 133 

following sensors were chosen (T30/1, P10/1, P10/2, P40/1, T70/2, PA2) as the sensitivity 134 

against fat-derived volatile compounds are high. The sensor resistance ratio (R-R0)/R0 was 135 

calculated (R is the real-time resistance and R0 is the sensor’s resistance baseline). The time 136 

taken to return to baseline after acquisition was 1,080 s. The maximum resistance ratio was 137 

considered as the data value of a single measurement. 138 

 139 

Statistical analysis 140 

The statistically significant difference between the mean values from different quality 141 

grades was determined using a one-way analysis of variance (ANOVA). The mean values 142 

were then separated by Duncan’s multiple range test at a 5% significance level. Correlation 143 

coefficients between the resistance ratio of the six metal sensors of the electronic nose and the 144 

peak area of the volatile groups were determined using Pearson’s method. Multiple 145 

regression analysis was also performed to determine the multiple correlations between the 146 

resistance ratio of the six metal sensors of the electronic nose and the peak area of the volatile 147 

groups. Two-dimensional principal component analysis (PCA) and cluster dendrograms were 148 

used to discriminate the aroma profile according to the sensor resistance ratio. Analyses were 149 

performed using R-version 3.3.3 (R Core Team, 2018) with the “agricolae” package for 150 

Duncan’s multiple range test (De Mandiburu, 2017) and with the “dendextend,” “ggfortify,” 151 

and “ggplot2” packages for plotting the PCA and cluster dendrogram (Galili, 2015; Tang et 152 

al., 2016; Wickham, 2016). 153 

 154 

Results and Discussion 155 

The proximate composition of beef striploins of different quality grades is presented in 156 



 

9 

 

Table 1. Among the quality grades, moisture and protein content decreased as the quality 157 

grade increased. In contrast, the crude fat content increased as the quality grade increased. 158 

Different carcass quality grades showed different fat-to-lean muscle ratios, and the ratio 159 

increased linearly as the quality grade increased. No differences were found in ash content 160 

among the quality grades. These findings are in accordance with those of previous reports by 161 

Piao et al. (2017) and Koh et al. (2019). 162 

The fatty acid composition of Hanwoo beef, categorized by different quality grades, is 163 

shown in Table 2. No differences were found in the proportions of saturated fatty acids 164 

(SFA). However, quality grade 1++ had the lowest proportion of palmitic acid (C16:0) (P = 165 

0.04). The highest proportion of monounsaturated fatty acids (MUFAs) was found in beef 166 

with the highest quality grade (1++). A higher oleic acid (C18:1n9) proportion was observed 167 

in grade 1++ striploin than in lower quality grades, contributing to the increased proportion of 168 

MUFAs. In contrast with MUFA, the PUFA proportion was found to be lower in higher 169 

quality grades. This is mainly attributed to the higher proportion of linoleic acid (C18:2n6) 170 

and arachidonic acid (C20:4n6) in lower-grade striploin. The ratio of omega-6 to omega-3 171 

was found to be higher in beef with higher quality grade as the α-linolenic acid (C18:3n3) 172 

content decreased. Wood et al. (2008) mentioned that neutral lipids are predominantly 173 

deposited into intramuscular adipose tissue to build marbling, whereas PUFAs are mostly 174 

deposited into the membrane of muscle cells as cell membranes are built by phospholipids. 175 

Cho et al. (2020) reported that coarsely marbled Hanwoo beef loins contain higher 176 

proportions of PUFAs than the finer ones, which corresponds to linoleic acid (C18:2n6) and 177 

eicosapentaenoic acid (C20:5n3). In other words, the proportion of PUFA increases as the 178 

meat cut has more muscle area or tends to be coarse in appearance. PUFAs have a lower 179 

melting point and are stable in liquid form at ambient temperature, thus establishing the 180 

elasticity of muscle cells to contract and relax (Abbott et al., 2012). Previous studies have 181 
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reported that oleic acid is the major fatty acid in highly marbled Hanwoo beef, and this fatty 182 

acid may contribute to a more acceptable flavor (Jo et al., 2013). Furthermore, this study 183 

confirms that the proportion of oleic acid in Hanwoo striploin increases with an increase in 184 

intramuscular fat content or carcass quality grade, as previously reported (Lim et al., 2014; 185 

Joo et al., 2017; Piao et al., 2017). 186 

Three major groups of volatile compounds were identified from different quality grades of 187 

Hanwoo beef striploin (Table 3). Pyrazine and aldehyde were the two predominant volatile 188 

compounds, as the peak areas of these volatile groups were higher than those of 189 

hydrocarbons. Lyophilized samples (dry, with low water activity) were used in this study, and 190 

the occurrence of the Maillard reaction, which produces pyrazines, was high. Water activity is 191 

one of the many factors affecting the rate of the Maillard reaction. The maximum reaction 192 

can occur under low water activity conditions (Labuza and Saltmarch, 1981). The proportions 193 

of pyrazine and aldehyde ranged from 41–58% and 32–48%, respectively. The hydrocarbon 194 

content was the third most abundant, ranging from 10–11%.  195 

Lower grade (QG1 and QG2) striploin released more fatty and meaty flavor aldehydes and 196 

hydrocarbons (in area units), such as 2- and 3-methyl butanal, hexanal, heptanal, nonanal, 197 

dodecane, and pentadecane, although the proportion of aldehyde groups was higher in higher 198 

quality grades (QG1++ and QG1+). The proportion of aldehydes increased as the quality 199 

grade (intramuscular fat content) increased. The fat content in emulsion systems and meat 200 

products slows down the release of polar volatile compounds, such as aldehydes, ketones, and 201 

alcohols (Jo et al., 1999; Jo and Ahn, 1999). Thus, the present results confirm previous 202 

findings (Jo et al., 1999; Jo and Ahn, 1999). Aldehyde is also one of the products of the 203 

Maillard reaction at high temperatures and is derived from the thermal degradation of 204 

unsaturated fatty acids, such as linoleic and linolenic acids (Elmore et al., 2004). Some 205 

aldehydes possess pleasant flavors, such as fatty, roasted meat, and an almond-like aroma 206 
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based on olfactory analysis (Xie et al., 2008). Ba et al. (2012) found that the longissimus 207 

tissue of Hanwoo released high amounts of aldehydes. Furthermore, Frank et al. (2016) 208 

reported that the proportion of most aliphatic aldehydes increases as the polar lipid content 209 

increases. These results indicate that the major aldehydes from leaner striploins were mainly 210 

derived from lipid oxidation of muscle cell membrane phospholipids.  211 

Among pyrazines, 2,5-dimethylpyrazine was the most abundant volatile in leaner 212 

striploin, comprising more than 30% of the total volatile compounds, followed by styrene, a 213 

hydrocarbon, which was remarkably higher than that of higher quality grades. Pyrazines are 214 

generally the products of the Maillard reaction between free amino acids and reducing sugars 215 

(Yu et al., 2021). The flavor characteristics of pyrazines are roasted and nutty, and are mostly 216 

found in roasted beef, coffee beans and nuts (Mortzfeld et al., 2020). This suggests that the 217 

roasted aroma from aldehydes in lower-quality grade Hanwoo striploin was obtained from 218 

pyrazines. Mottram and Edwards (1983) reported that the amount of pyrazines is negatively 219 

associated with the presence of the lipid fraction in beef. Therefore, the present results are in 220 

line with those of previous reports. Hydrocarbons, which are the main products of the 221 

oxidation of polyunsaturated fatty acids through thermal degradation, were higher in leaner 222 

striploins. This can also be associated with the higher proportion of PUFAs in lower quality 223 

grade striploin than in higher quality grades. Legako et al. (2015) and Hunt et al. (2016) 224 

reported that higher quality grade beef is associated with more neutral lipids (MUFA) than 225 

polar lipids (PUFA).  226 

From electronic nose sensor data, the findings from gas chromatography can be associated 227 

with the highest intensity of beef volatile compounds released from the lowest quality grade 228 

group, wherein a significant proportion of pyrazines was observed. The sensor resistance 229 

ratios of the volatile compounds in the headspace derived from the heated samples are shown 230 

in Figure 1. The resistance ratios of T30/1, P10/1, P10/2, P40/1, T70/2, and PA2 were 231 
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significantly higher in the lower quality grade, indicating significant differences in the 232 

intensity of volatile compounds. The clustering is clear, indicating statistical discrimination 233 

(Utama et al., 2017). Among the volatile groups, aldehydes were positively correlated with 234 

the resistance ratio of the T30/1, P10/2, T70/2, and PA2 sensors, while hydrocarbons and 235 

pyrazines were positively correlated with the resistance ratio of all sensors (Table 4). Multiple 236 

regression models revealed that the combination of all volatile groups showed significant 237 

regression with the resistance ratio of each sensor (Table 5). However, each volatile group 238 

independently affected the resistance ratio of all sensors. Although the regression model is 239 

significant, the linearity or accuracy (0.57 < R2 < 0.62) shows that the model is not good 240 

enough to predict the response of the sensor using the abundance of volatile groups. 241 

The principal component analysis plot (Fig. 2) and cluster dendrogram (Fig. 3) revealed 242 

that the aroma profile differed according to quality grade. The loading plots and the resistance 243 

ratio of the sensors led to a group with a high intensity of volatile release. The aroma profile 244 

of striploin with different quality grades was well-discriminated, indicating that marbling or 245 

the fat to lean muscle ratio affects the release of volatile compounds. However, the cluster 246 

dendrogram shows that the aroma profile between the higher quality grades (QG1++ and 247 

QG1+) and the lower quality grades (QG1 and QG2) is close to each other with a smaller 248 

distance than that between the higher quality grade group and lower quality grade groups. 249 

 250 

Conclusion 251 

The aroma profile of beef according to carcass quality grade can be discriminated using 252 

chemometrics approach. The higher the quality grade, the less abundant volatile compounds 253 

released from the beef. The chemometrics approach helps to confirm the effect of fat 254 

deposition on the differences in the aroma profiles of beef. The correlation between the 255 
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sensor resistance ratio or the response of the electronic nose and the abundance of volatile 256 

compounds is strongly dependent on the intensity of the volatile compounds. Therefore, to 257 

predict the abundance of individual volatile compounds using the response of each sensor, 258 

pre-treatments, such as temperature adjustment prior to the extraction of volatile compounds, 259 

should be considered. 260 
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Tables  

Table 1. Proximate composition of beef striploin as affected by carcass quality 

grade 

 Variable 
Quality grade 

SEM P value 
1++ 1+ 1 2 

Moisture (%) 61.4c 64.2b 66.8a 68.0a 1.11 <0.001 

Crude fat (%) 24.5a 19.7b 14.4c 12.2c 1.53 <0.001 

Crude protein (%) 12.9c 15.0bc 17.6ab 18.7a 0.75 0.01 

Ash (%) 1.17 1.08 1.12 1.14 0.02 0.39 

SEM, standard error of the means.  

Sample size; each quality grade (n = 6). 

Carcass quality grade (1++, 1+, 1 and 2) was assessed according to Korea Institute for 

Animal Products Quality Evaluation (KAPE, 2017).  

Different superscripts (a-c) a, b, c in the same row indicate differences among quality 

grades (P <0.05).
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Table 2. Fatty acid composition (%) of beef striploin as affected by carcass quality 

grade 

Fatty acid  
Quality grade 

SEM P value 
1++ 1+ 1 2 

C14:0 3.34 3.11 2.88 2.81 0.07 0.35 

C16:0 27.9b 29.3a 29.6a 29.2a 0.21 0.04 

C16:1n7 4.80 4.32 4.73 4.15 0.09 0.74 

C18:0 11.08 12.24 12.2 13.6 0.30 0.42 

C18:1n9 50.4a 49.4ab 48.9ab 47.8b 0.39 0.01 

C18:2n6 1.16b 1.21b 1.22b 1.78a 0.08 0.02 

C18:3n6 0.07 0.08 0.09 0.09 0.00 0.33 

C18:3n3 0.10c 0.11c 0.15b 0.25a 0.02 <0.001 

C20:4n6 0.09b 0.09b 0.10b 0.13a 0.01 0.03 

C22:4n6 0.04 0.04 0.05 0.05 0.00 0.14 

SFA 42.4 44.7 44.7 45.6 0.40 0.21 

MUFA 56.2a 53.8ab 53.6ab 52.0b 0.49 0.02 

PUFA 1.45b 1.54b 1.62b 2.30a 0.11 0.02 

n6 1.36b 1.43b 1.46b 2.05a 0.09 0.03 

n3 0.10c 0.11c 0.15b 0.25a 0.02 <0.001 

n6/n3 14.3a 13.3a 9.60ab 8.25b 0.83 0.01 

SEM, standard error of the means. 

Sample size; each quality grade (n = 6). 

Carcass quality grade (1++, 1+, 1 and 2) was assessed according to Korea Institute for 

Animal Products Quality Evaluation (KAPE, 2017). 

SFA, saturated fatty acids. 

MUFA, monounsaturated fatty acids 

PUFA, polyunsaturated fatty acids.  

Different superscripts (a-c) a, b, c in the same row indicate differences among quality 

grades (P <0.05).
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Table 3. Aroma volatile compounds (area unit x 106) released from beef striploin as 

affected by carcass quality grade 

 

Compound name 
Quality grade 

SEM P value 
1++ 1+ 1 2 

Aldehydes       

2-Methyl butanal 11.0ab 15.5a 8.06b 16.9a 1.26 0.03 

3-Methyl butanal 14.4 19.3 14.5 21.9 1.54 0.23 

Hexanal 18.7 25.6 27.0 28.5 1.68 0.18 

Heptanal 3.55 3.19 3.19 4.26 0.19 0.17 

Benzaldehyde 3.69c 5.95b 6.63b 14.1a 1.17 <0.01 

Nonanal 3.32 3.34 3.30 3.44 0.16 0.99 

Hydrocarbons       

Toluene 4.84c 7.90bc 9.50b 13.9a 0.91 <0.001 

Styrene 5.02b 5.75b 8.40ab 11.3a 0.70 0.02 

Dodecane 1.38 1.48 1.05 1.26 0.10 0.21 

Pentadecane 0.87a 0.82a 0.43b 0.50b 0.05 0.03 

Pyrazines       

Pyrazine 1.29bc 1.88a 1.01c 1.80ab 0.11 0.01 

2-Methyl pyrazine 23.0b 30.9b 32.9b 56.0a 4.07 0.01 

2,5-Dimethyl pyrazine 18.3b 26.0b 72.6a 62.9a 6.72 <0.01 

2-Ethyl-6-methyl 

pyrazine 
0.77b 0.68b 1.56a 1.59a 0.13 <0.01 

2,3,5-Trimethyl 

pyrazine 
2.14b 2.89b 2.93b 6.80a 0.54 0.03 

3-Ethyl-2,5-dimethyl 

pyrazine 
0.62c 0.87c 2.26b 6.10a 0.63 <0.01 

Total 112.9 152.1 195.3 251.3 16.1 <0.01 

SEM, standard error of the means. 

Sample size; each quality grade (n = 6). 

Carcass quality grade (1++, 1+, 1 and 2) was assessed according to Korea Institute for 

Animal Products Quality Evaluation (KAPE, 2017).  

Different superscripts (a-c) a, b, c in the same row indicate differences among quality 

grades (P <0.05).
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Table 4. Correlation coefficients between the volatile groups and resistance ratio of 

six metal sensors of electronic nose  

 

Major volatile group 
Sensor 

T30/1 P10/1 P10/2 P40/1 T70/2 PA2 

Aldehydes 0.34* 0.32 0.33* 0.33 0.34* 0.36* 

Hydrocarbons 0.56*** 0.55*** 0.56*** 0.56*** 0.56*** 0.58*** 

Pyrazines 0.61*** 0.58*** 0.59*** 0.59*** 0.61*** 0.63*** 

Significance level; *** P <0.001, * P <0.05. 

Sample size; for each quality grade (1++, 1+, 1 and 2, n = 6) and each beef cut 

(striploin, brisket and chuck, n=6). 
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Table 5. Multiple regression models for resistance ratio of six metal sensors of 

electronic nose using the measured peak area of volatile groups in study 2 as 

covariate 

 

Sensor Intercept 
Covariate 

R2 P value 
Aldehydes Hydrocarbons Pyrazines 

T30/1 <0.001 <0.001* <0.001*** <0.001*** 0.60 <0.001 

P10/1 <0.001 <0.001* <0.001*** <0.001*** 0.57 <0.001 

P10/2 <0.001 <0.001* <0.001*** <0.001*** 0.59 <0.001 

P40/1 <0.001 <0.001* <0.001*** <0.001*** 0.58 <0.001 

T70/2 <0.001 <0.001* <0.001*** <0.001*** 0.60 <0.001 

PA2 <0.001 <0.001* <0.001*** <0.001*** 0.62 <0.001 

Significance level; *** P <0.001, * P <0.05.  

Sample size; for each quality grade (1++, 1+, 1 and 2, n = 6) and each beef cut 

(striploin, brisket and chuck, n=6).
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Figure Captions 1 

 2 

Fig. 1. Differences in aroma intensity among quality grades (A) and beef cuts (B). Data 3 

are shown as mean of each sensor’s resistance ratio. Metal oxide sensors; T30/1, P10/1, 4 

P10/2, P40/1, T70/2, PA2. Sample size for each quality grade (n = 6). Carcass quality grade 5 

(1++, 1+, 1 and 2) was assessed according to Korea Institute for Animal Products Quality 6 

Evaluation (KAPE, 2017). 7 

 8 
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 10 

Fig. 2. Principal component analysis plot of the aroma profile of different quality grades 11 

(QG). Total contribution of principal component 1 and 2 (PC1 and PC2) is 100%, which 12 

means that 100% of data variance is explained. Loading plots; T30/1, P10/1, P10/2, P40/1, 13 

T70/2, PA2, are the intensity of the response of the sensor. Sample size for each quality grade 14 

(n = 6). Carcass quality grade (1++, 1+, 1 and 2) was assessed according to Korea Institute 15 

for Animal Products Quality Evaluation (KAPE, 2017). 16 
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 19 

Fig. 3. Cluster dendrogram of the aroma profile of different quality grades. Sample size 20 

for each quality grade (n = 6). Carcass quality grade (1++, 1+, 1 and 2) was assessed 21 

according to Korea Institute for Animal Products Quality Evaluation (KAPE, 2017). 22 


