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Abstract 9 

This study investigated the effect of exposure to flutriafol based on residues in pigs. 10 

Pigs were exposed to different concentrations (0.313, 0.625, 3.125, 6.25, and 12.5 11 

mg/kg bw/d, n = 20) for 4 wks in different treatment groups. Serum biochemical 12 

analysis, residue levels, and histological analysis were conducted using the VetTest 13 

chemistry analyzer, liquid chromatography mass spectrometry, and Masson's trichrome 14 

staining, respectively. The body weight (initialand final) was not significantly different 15 

between groups. Parameters such as creatinine, blood urea nitrogen, alanine 16 

aminotransferase, and lipase levels were significantly different as compared to the 17 

control group. Flutriafol increased the residue limits in individual tissue of the pigs in a 18 

dose dependent manner. Flutriafol exposures indicated the presence of fibrosis, as 19 

confirmed from Masson's trichrome staining. These results suggest that flutriafol affects 20 

the morphology and serum levels in pigs. The dietary flutriafol levels can provide a 21 

basis for maximum residue limits and food safety for pig meat and related products. 22 

 23 

Keywords: pig, flutriafol, fibrosis  24 

 25 

Introduction 26 

Pesticides are chemical or biological substances that inhibit the growth of living 27 

organisms or prevent and destroy pests for improving product yields. The effects of 28 

pesticide exposure include respiratory, neurological, gastrointestinal, and skin problems 29 

(David, 2012). Pesticides cause biochemical changes, leading to clinical health signs 30 

(Balani et al., 2011; Jonnalagadda et al., 2010). These biochemical changes result from 31 

the destructive and degenerative effects of pesticides on the organs (Khan et al., 2013; 32 
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Mossalam et al., 2011). Farm workers exposed to pesticides were found to have 33 

significantly increased serum concentrations of urea and creatinine (Haghighizadeh et 34 

al., 2015; Ritu et al., 2013). Pesticides are being used globally for improving yields and 35 

the quality of agricultural products (Eddleston et al., 2008; Songa and Okonkwo, 2016; 36 

Yan et al., 2018). However, the abuse of pesticides has led to food and environmental 37 

contamination (Carvalho, 2017; Li et al., 2018; Liu et al., 2016).  38 

Pesticides are effective to increasing agricultural yields, but there are not easy to 39 

management and monitoring (Peshin et al., 2009; Peshin and Zhang, 2014). For 40 

increasing crop yield and quality, pesticides are classified according to their purpose, 41 

such as herbicides, pesticides, and fungicides. Pesticides can also be classified 42 

according to the pest's origin or structure or activity site, such as fungicides, fumigants, 43 

herbicides, and insecticides(EPA, 2020). Therefore, golbal regions (e.g., Codex, EU, US, 44 

Canada, India, Australia) have established policies on maximum residual limits in food 45 

and feedstuff to limit pesticide residues in human and animals (Handford et al., 2015).  46 

Triazole fungicides (e.g., flutriafol, propiconazole, tebuconazole, and tetraconazole) 47 

are used on different types of plants to protect against different fungal diseases (Lass-48 

Flörl, 2011). Among these fungicides, flutriafol ((R,S)-1-(2-fluorophenyl)-1-(4-49 

fluorophenyl)-2-(1H-1,2,4-triazol-1-yl) ethanol) is commonly used to control leaf and 50 

ear diseases in cereal crop and in seed treatment (FAO, 2011). It is a chiral triazole 51 

fungicide employed to control plant pathogens. The fungicidal mechanism of such 52 

pesticides inhibits ergosterol biosynthesis and cell wall synthesis (Song et al., 2019; 53 

Yang et al., 2020). 54 

Several studies have found that fibrosis is caused by pesticide exposure. Exposure to 55 

ethylated dialkylphosphates, which are known to have immunomodulatory potential, 56 
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can induce long-term damage to the heart, leading to fibrosis (Medina-Buelvas et al., 57 

2019). Exposure to residual pesticides increased liver fibrosis and nonalcoholic fatty 58 

liver disease in HepG2 cells in rat liver (Kwon et al., 2021a; Kwon et al., 2021b). 59 

Furthermore, meta-analysis revealed that the risk of idiopathic pulmonary fibrosis 60 

increased in agricultural workers exposed to pesticides (Park et al., 2021). Pesticide 61 

residues have a substantial influence on growth and health of livestock and humans. 62 

Although flutriafol has been detected in cells (e.g., HepG2, Neuro2A, NIH/3T3, SH-63 

SY5Y, VERO), humans, and laboratory animals, studies on pig meat and related 64 

products are scarce. Therefore, this study investigated the potential effects of flutriafol 65 

residues in pig meat and related products. 66 

 67 

Materials and Methods 68 

Ethics statement 69 

All experimental procedures were reviewed and approved by the Institutional Animal 70 

Care and Use Committee of the National Institute of Animal Science, Korea (No. 2019-71 

1576). 72 

 73 

Animal care and experimental design 74 

Pigs were purchased from the Darby breeding company (Anseong, Republic of 75 

Korea). Twenty castrated male pigs (Landrace × Yorkshire, 72.0 ± 2.2 kg) were housed 76 

in individual pens (2.1 × 1.4 m). For the experimental period including acclimatization, 77 

the housing conditions were: a light-dark cycle of 12:12 h and a constant temperature 78 

(22 ± 2 °C) and relative humidity (55 ± 5%). The pigs were divided into six groups 79 

according to acceptable daily intake on OECD test guideline 505: control (n = 3), T1 80 
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(0.313 mg/kg bw/d; n =3), T2 (0.625 mg/kg bw/d; n =3), T3 (3.125 mg/kg bw/d; n =3), 81 

T4 (6.25 mg/kg bw/d; n =4), and T5 (12.5 mg/kg bw/d; n =4). Animals were fed 82 

according to the Korean feeding standards for pig (2017). Flutriafol (NH chemical, 83 

Republic of Korea) was thoroughly mixed into the feed according to the concentrations 84 

per body weight. Animals were treated a diet exposed to flutriafol twice daily for 28 d. 85 

At the end of the experimental period, all pigs were anesthetized with the T61 agent. 86 

After exsanguination, the blood, liver, kidney, ileum, muscle, and fat tissues were 87 

quickly removed. These tissues were immediately frozen in liquid nitrogen for residue 88 

analysis and then stored at −80 °C. Some tissues were fixed with 10% neutral buffered 89 

formalin (NBF; Sigma-Aldrich) for histological analysis. Average daily weight gain 90 

(ADG), average daily feed intake (ADFI), and feed conversion ratio (FCR) were 91 

calculated as follows: ADG = (finish weight – start weight) / age (days), ADFI = 92 

provide feed amount - residual feed amount, FCR = feed intake / average daily gain. 93 

Biochemical analysis 94 

Blood samples were collected with a suitable vacutainer tube containing no 95 

anticoagulants. The serum was extracted using centrifugation (700 g for 15 min at 4 °C) 96 

and then kept at −80 °C. A total of 15 parameters, consisting of glucose, creatinine, 97 

blood urea nitrogen, phosphate, calcium, total protein, albumin globulin, alanine 98 

aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase, total bilirubin, 99 

cholesterol, amylase, and lipase were determined using the VetTest chemistry analyzer 100 

(IDEXX, USA), following the manufacturer’s procedure.  101 

 102 

Pesticide residue analysis 103 

To quantify flutriafol, the collected samples (2.0 g tissue or 2.0 ml blood) were mixed 104 
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with distilled water (10 mL), set for 10 min, and mixed with acetonitrile and sodium 105 

chloride (20 mL and 5 g, respectively). The samples were stirred using a vortex for 10 s 106 

and shaken for 60 min. The extract was centrifuged at 3,500 g for 5 min. Primary-107 

secondary amine (PSA) and octadecylsilane (C18) were used for analyzing the samples. 108 

The filtered samples were injected and the peak area was compared to estimate the 109 

residue levels. The samples (5 uL each of plasma, liver, kidney, muscle, and fat) were 110 

injected into a liquid chromatography-tandem mass spectrometer (LC-MS/MS). The 111 

quantitative limit of the assay was 0.01 mg/kg. Residue analysis was conducted by an 112 

ExionLC system with a QTRAP 4500 mass spectrometer (SCIEX, Framingham, MA, 113 

USA). The conditions were: columns (100 × 2.0 mm, 3.0 µm) maintained at 40 °C, 114 

mobile phase composition of 10 mM ammonium acetate and methanol, linear gradient 115 

mode from 20% to 90% methanol, and flow rate of 0.1 mL/min. 116 

 117 

Histological analysis 118 

The tissue (i.e., liver, kidney, muscle, fat, and ileum) samples were fixed with 10% 119 

neutral buffered formalin and then dehydrated (from 70% to 100% EtOH), embedded, 120 

cut (5 μm-thick), mounted, and heated (40 °C) for 1 h on a hot plate. For staining, the 121 

sections were dewaxed with xylene, rehydrated (from 100% to 70% EtOH), and washed 122 

with distilled water. The sections were stained using Masson’s trichrome (MT) staining 123 

reagents following the manufacturer’s protocol. The slices were observed under 100x 124 

magnification in an optical microscope.  125 

 126 

Statistical Analysis 127 

All results including growth performance and biochemical analysis were analyzed 128 
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using one-way ANOVA (Prism 5.01, San Diego, CA, USA), followed by Tukey’s 129 

multiple comparison post-hoc test. Results are showed as mean and standard error of the 130 

mean. A p‑value of less than 0.05 between the control and treatment groups was 131 

considered to be significant. 132 

 133 

Results and Discussion 134 

Growth performance of flutriafol-treated pig  135 

The growth performances of flutriafol-exposed pigs were not significantly different 136 

between control and treatment groups (data not shown). Briefly, the difference in initial 137 

(72.0 ± 2.36 kg) and final (96.9 ± 4.48 kg) body weights was not statistically significant. 138 

Furthermore, no significant differences were detected in average daily weight gain, 139 

average daily feed intake, and feed conversion ratio of flutriafol treated pigs as 140 

compared to control, despite its acute toxicity. Body weight of flutriafol treated rats was 141 

increased compared to control at 1 and 2 wks. However,  the body weights at 3 wks 142 

were not significantly different (Kwon et al., 2021). No significant effects of 143 

tebuconazole treatment were observed on body condition, growth, and sex ratio of 144 

chicks (Lopez-Antia et al., 2021). In this study, flutriafol exposure did not affect the 145 

growth performances in pigs, similar to the observations of previous studies. 146 

 147 

Blood biochemical analysis 148 

Table 1 presents the effect of pesticide exposure on biochemical properties of pig 149 

serum. The parameters are as follows: glucose (GLU), creatinine (CREA), blood urea 150 

nitrogen (BUN), phosphate (PHOS), calcium (CA), total protein (TP = ALB+GLOB), 151 

albumin globulin (ALB), alanine aminotransferase (ALT), alkalinephosphatase (ALKP), 152 
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gamma glutamyl transpeptidase (GGT), total bilirubin (TBIL), cholesterol (CHOL), 153 

amylase (AMYL), lipase (LIPA).Creatinine (CREA), blood urea nitrogen (BUN), 154 

BUN/CREA ratio, total protein (TP), albumin globulin (ALB), globulin (GLOB), 155 

ALB/GLOB ratio, alanine aminotransferase (ALT), gamma glutamyl transpeptidase 156 

(GGT), amylase (AMYL), and lipase (LIPA) showed significant differences from those 157 

of the control (p < 0.05). In particular, CREA decreased significantly in the T4 and T5 158 

treatment groups compared with control (p < 0.05). BUN, ALT, and LIPA showed a 159 

significant increase in all treatment groups than that of control (p < 0.05). No significant 160 

differences were detected in the other biochemical parameters (i.e., GLU, PHOS, CA, 161 

ALKP, TBIL, and CHOL). The principal component analysis did not show a difference 162 

between control and treatment groups (data not shown). 163 

Blood biochemistry values provides important biological information to humans and 164 

animals. The results of our study showed that pesticide exposure affects pigs, resulting 165 

in significant differences in parameters such as CREA, BUN, ALT, and LIPA. These 166 

biochemical changes can lead to destructive and degenerative changes in the renal 167 

corpuscles based on pesticides (Khan et al., 2013; Mossalam et al., 2011). Farmers 168 

exposed to pesticides had significantly higher serum levels of urea and CREA 169 

(Haghighizadeh et al., 2015; Ritu et al., 2013). The urea and CREA levels showed 170 

significant differences between control and treatment groups. However, CREA levels in 171 

the T5 group were lower than those in control. Urea is formed by ammonia produced in 172 

the liver and is excreted through the kidney. Urea and CREA excreted by the kidneys 173 

are used as biomarkers to determine kidney damage (Singh et al. 2011). 174 

Organophosphates are widely used pesticides. The organophosphate pesticides increase 175 

CREA levels because of impaired glomerular function and damage to the renal tubules 176 
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(Mohssen, 2001). ALT, also known as transaminases, provide important information 177 

about damaged hepatocytes (Hernandez et al. 2013). The ALT levels caused by 178 

pesticide-induced stress are associated with the production of reactive oxygen species 179 

and oxidative tissue damage (Patil et al. 2009, Singh et al. 2011). In particular, increase 180 

in blood glucose, insulin, triglycerides, and lipases exposed to organophosphorus 181 

pesticides have been reported in several studies (Romero-Navarro et al., 2006; Gangemi 182 

et al., 2016; Kamath and Rajini, 2007; Rodrigues et al., 1986). Immobilized lipase is 183 

used as a biosensor to determine TG due to its accuracy and efficiency (Chandra et al., 184 

2020; Escamilla-Mejía et al., 2014). Significant elevations were observed in urea and 185 

CREA concentrations of serum samples exposed to pesticides. These elevations 186 

correspond to renal impairment and renal dysfunction (Pandya et al., 2016). Serum 187 

CREA and urea, known as renal biochemical markers, were significantly different 188 

between control and treatment groups. The elevated serum urea observed in response to 189 

pesticide exposure in this study could be explained by impaired synthesis and protein 190 

metabolism due to hepatic dysfunction. Together, CREA, BUN, ALT, and LIPA can act 191 

as potential biomarkers to detect exposure to flutriafol. 192 

 193 

Flutriafol residue analysis 194 

The linear and quadratic equations of flutriafol exposure concentrations were used for 195 

determining maximum residue limits in liver (Fig. 1A), kidney (Fig. 1B), fat (Fig. 1C), 196 

muscle (Fig. 1D), and blood (Fig. 1E). The residual levels of all tissues increased with 197 

an increase in flutriafol concentration. The quadratic equations for liver (R2 = 0.9982, p 198 

< 0.001), kidney (R2 = 0.9960, p < 0.01), muscle (R2 = 0.9928, p < 0.05), and blood (R2 199 

= 0.9856, p < 0.01) showed significant differences between control and treatment 200 
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groups (Fig. 1). The linear equations of liver (R2 = 0.9951), kidney (R2 = 0.9599), 201 

muscle (R2 = 0.9092), and blood (R2 = 0.9847) were concentration dependent (Fig. 1B-202 

D). However, although the residual levels increased according to treated flutriafol 203 

concentrations in fat, there was no significant differences between the treatment groups 204 

(Fig. 1C).  205 

Flutriafol, known as conazole fungicide, is used to control leaf and ear diseases in 206 

cereals (FAO, 2011)and to prevent fungal diseases (Bhuiyan et al., 2015; Lass-Flörl, 207 

2011). Exposure to pesticides through oral, dermal, or inhalation routes is associated 208 

with low or moderate toxicity (Kwon et al., 2021; Shahinasi et al., 2017; Toumi et al., 209 

2017;). The high performance liquid chromatography method was used to establish the 210 

maximum residue limits of flutriafol exposure in wheat and soil (Pingzhong et al., 2012, 211 

Zhang et al., 2014). Therefore, our results suggest that the residual values for different 212 

tissues showed variations according to pesticide concentrations. Taken together, the 213 

equations for graded levels of flutriafol will help predict the risk assessment and 214 

maximum residue limits in pig production and meat safety. 215 

 216 

Histological analysis 217 

In this study, the histological changes in liver, kidney, muscle, fat, and ileum tissues 218 

of pig due to exposure to flutriafol were assessed using MT staining (Fig. 2). Fibrosis 219 

deposition and tissue destruction at different flutriafol concentrations were observed for 220 

all treatment groups. Fibrosis in treatment groups was measured by MT staining on the 221 

portal areas and lobular boundary of the liver. The glomeruli, tubulus, and vasculature in 222 

kidney tissues were stained blue. Kidneys showed interstitial fibrosis and 223 

glomerulosclerosis at different flutriafol concentrations. Villus form and lamina propria 224 

../211108-3편/논문원고3편/kosfa-2021-00185_F/(FAO
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in ileum were deteriorated and exhibited prominent blue staining after flutriafol 225 

exposure as compared to that in control. Muscle and fat tissues were stained with blue 226 

after being exposed to flutriafol. Collagen fibrosis also showed concentration-dependent 227 

effects in the treatment groups than in control. The ethylated dialkylphosphates, known 228 

as metabolites of organophosphorus pesticides, are known to aggravate heart fibrosis 229 

and inflammation (Medina-Buelvas et al., 2019).In our study, the flutriafol also showed 230 

changes in vacuoles of the proximal tubules causing necrosis and hepatocyte damage in 231 

the liver and kidney. Fibrosis lead to ectopic fat accumulation, resulting in non-alcoholic 232 

fatty liver disease (Akbel et al., 2018; Khan et al., 2016; Kwon et al., 2021; Ojha et al., 233 

2011). These histological changes were also observed in our study. Fibrosis due to 234 

exposure to flutriafol affected the morphological characteristics in liver, kidney, muscle, 235 

fat, and ileum tissue of pigs.  236 

 237 

Conclusion 238 

The results of the present study suggest that flutriafol exposure affects pig tissues 239 

(e.g., muscle, fat, blood, liver, kidney, and ileum), causing significant alterations in 240 

some biochemical parameters including BUN, CREA, ALT, and LIPA. In particular, the 241 

linear and quadratic equations for liver and blood showed a significant increase (p < 242 

0.05) after exposure to different flutriafol concentrations. Flutriafol also can lead to 243 

morphological changes related to fibrosis in several tissues. Therefore, these results 244 

indicate that pesticides such as flutriafol can provide the basis for risk assessment and 245 

safety based on maximum residue limits in pig meat and related products. 246 

 247 

248 
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Figure legends 401 

Fig. 1. Residue levels in different tissues of pigs fed on a flutriafol-exposed diet. Liver 402 

(A), kidney (B), fat (C), muscle (D), and blood (E). 403 

Fig. 2. Histology of flutriafol exposure in pig liver, kidney, muscle, fat, and ileum 404 

tissues as represented by Masson’s trichrome staining. Original magnification at 100x 405 

(scale bar = 100 µm) 406 

 407 
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Table 1. Changes of blood biochemical characteristics by exposed to flutriafol in finishing pigs 423 

Biochemical parameter Control T1(x1) T2(x5) T3(x10) T4(x50) T5(x100) p value 

GLU, mg/dL 87.40 ± 2.89 89.89 ± 3.19 85.07 ± 3.30 83.08 ± 2.30 82.19 ± 2.86 85.81 ± 3.75 0.5524 

CREA, mg/dL 0.95 ± 0.03a 1.05 ± 0.02a 0.97 ± 0.05a 1.03 ± 0.02a 0.91 ± 0.03b 0.89 ± 0.03b 0.0047 

BUN, mg/dL 9.67 ± 0.44b 11.07 ± 0.57a 8.13 ± 0.70b 11.17 ± 0.81a 12.38 ± 0.58a 11.56 ± 0.52a <0.0001 

BUN/CREA 10.40 ± 0.68b 10.60 ± 0.64b 8.33 ± 0.54b 11.00 ± 0.94b 13.94 ± 0.85a 13.06 ± 0.47a <0.0001 

PHOS, mg/dL 7.31 ± 0.23 7.23 ± 0.27 7.18 ± 0.23 7.15 ± 0.23 7.36 ± 0.20 7.56 ± 0.20 0.8184 

CA, mg/dL 11.01 ± 0.14 11.15 ± 0.12 10.96 ± 0.14 10.93 ± 0.33 11.19 ± 0.14 11.09 ± 0.16 0.7952 

TP, g/dL 8.05 ± 0.11a 7.95 ± 0.06b 7.45 ± 0.11b 7.61 ± 0.25b 7.91 ± 0.14b 8.48 ± 0.15a <0.0001 

ALB, g/dL 3.87 ± 0.11a 4.00 ± 0.07a 3.57 ± 0.08b 3.47 ± 0.20b 3.73 ± 0.10a 3.75 ± 0.10a 0.0138 

GLOB, g/dL 4.19 ± 0.11b 3.94 ± 0.11b 3.88 ± 0.09b 4.14 ± 0.13b 4.18 ± 0.09b 4.73 ± 0.17a <0.0001 

ALB/GLOB 0.93 ± 0.05b 1.05 ± 0.04a 0.93 ± 0.03b 0.84 ± 0.05b 0.91 ± 0.03b 0.82 ± 0.05b 0.0068 

ALT, U/L 45.93 ± 2.18b 54.40 ± 1.87b 49.13 ± 1.65b 51.25 ± 3.88b 44.88 ± 2.75b 94.44 ± 10.66a <0.0001 

ALKP, U/L 129.9 ± 7.46 164.7 ± 4.93 142.4 ± 5.19 130.8 ± 11.75 154.2 ± 12.37 145.0 ± 11.60 0.0898 

GGT, U/L 25.13 ± 3.74b 14.93 ± 1.32b 25.53 ± 2.64b 22.58 ± 1.58b 23.94 ± 1.78b 29.13 ± 4.36a 0.0242 

TBIL, mg/dL 0.32 ± 0.13 0.21 ± 0.02 0.19 ± 0.02 0.26 ± 0.02 0.35 ± 0.11 0.39 ± 0.07 0.4072 
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CHOL, mg/dL 73.87 ± 4.49 74.07 ± 4.32 64.80 ± 3.61 73.50 ± 5.30 76.94 ± 3.55 65.25 ± 6.52 0.3195 

AMYL, U/L 539.7 ± 30.28a 542.3 ± 48.86a 523.9 ± 26.11a 344.3 ± 17.08b 521.8 ± 62.43a 603.6 ± 37.66a 0.0011 

LIPA, U/L 13.27 ± 1.73b 16.07 ± 2.11b 15.40 ± 1.41b 12.00 ± 0.91b 28.75 ± 6.05a 20.88 ± 2.76a 0.0038 

Values are mean ± SEM. n = 20. Reference ranges : GLU (85-160), CREA (0.5-2.1), BUN (6-30), PHOS (3.6-9.2), CA (6.5-11.4), TP (6.0-8.0), 424 

ALB (1.8-3.3), ), GLOB (2.5-4.5), ALT (9-43), ALKP (92-294), GGT (16-30), TBIL (0.1-0.3), CHOL (18-79), AMYL (271-1198), LIPA (10-44). 425 

GLU, glucose; CREA, creatinine; BUN, blood urea nitrogen; PHOS, phosphate; CA, calcium; TP, total protein (TP=ALB+GLOB); ALB, 426 

albumin globulin; ALT, alanine aminotransferase; ALKP, alkalinephosphatase; GGT, gamma glutamyl transpeptidase; TBIL, total bilirubin, 427 

CHOL, cholesterol; AMYL, amylase; LIPA, lipase. All traits in the table were analyzed by one-way ANOVA with Tukey's multiple comparison 428 

test. 429 
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Fig. 1. 436 
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Fig. 2. 449 
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