TITLE PAGE - Korean Journal for Food Science of Animal Resources -Upload this completed form to website with submission

ARTICLE INFORMATION	Fill in information in each box below		
Article Type	Research article		
Article Title	Angiotensin-I-Converting Enzyme Inhibitory Peptides in Goat Milk Fermented by Lactic Acid Bacteria Isolated from Fermented Food and Breast Milk		
Running Title (within 10 words)	ACEI Peptides in Goat Milk Fermented by Lactic Acid Bacteria		
Author	Yuliana Tandi Rubak ^{1,2} , Lilis Nuraida ^{1,3,*} , Dyah Iswantini ^{4,5} , and Endang Prangdimurti ^{1,3}		
Affiliation	 ¹Department of Food Science and Technology, IPB University (Bogor Agricultural University), IPB Dramaga Campus, Bogor 16680, Indonesia. ²Agrotechnology study program, Faculty of Agriculture, Universitas Nusa Cendana Kupang, UNDANA Lasiana Campus, Kelapa Lima, Nusa Tenggara Timur (NTT) 85228, Indonesia. ³Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), IPB Dramaga Campus, Bogor 16680, Indonesia. ⁴Department of Chemistry, IPB University (Bogor Agricultural University), IPB Dramaga Campus, Bogor 16680, Indonesia ⁵Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), IPB Taman Kencana Campus, Bogor 16128, Indonesia 		
Special remarks – if authors have additional information to inform the editorial office			
ORCID (All authors must have ORCID) https://orcid.org	Yuliana Tandi Rubak (https://orcid.org/0000-0003-4685-1639) Lilis Nuraida (https://orcid.org/0000-0002-0847-5786) Dyah Iswantini (https://orcid.org/0000-0003-1113-2722) Endang Prangdimurti (https://orcid.org/0000-0002-1287-3031)		
Conflicts of interest List any present or potential conflict s of interest for all authors. (This field may be published.)	The authors declare no potential conflict of interest.		
Acknowledgements State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available. (This field may be published.)	The author would like to thank the LPDP (Lembaga Pengelola Dana Pendidikan), Ministry of Finance, Republic of Indonesia for providing research funding under Beasiswa Unggulan Dosen Indonesia, Dalam Negeri. Indonesia scholarship		
Author contributions (This field may be published.)	Conceptualization: Rubak YT, Nuraida L, Iswantini D, Prangdimurti E. Data curation: Rubak YT, Nuraida L, Iswantini D, Prangdimurti E. Formal analysis: Rubak YT, Nuraida L. Methodology: Rubak YT, Nuraida L, Iswantini D, Prangdimurti E Software: Rubak YT, Nuraida L. Validation: Rubak YT, Nuraida L, Iswantini D, Prangdimurti E Investigation: Rubak YT, Nuraida L, Iswantini D, Prangdimurti E Writing - original draft: Rubak YT, Nuraida L. Writing - review & editing: Rubak YT, Nuraida L, Iswantini D, Prangdimurti E.		
Ethics approval (IRB/IACUC) (This field may be published.)	This manuscript does not require IRB/IACUC approval because there are no human and animal participants.		

5 6

CORRESPONDING AUTHOR CONTACT INFORMATION

For the <u>corresponding</u> author (responsible for correspondence, proofreading, and reprints)	Fill in information in each box below
First name, middle initial, last name	Lilis Nuraida
Email address – this is where your proofs will be sent	Inuraida@apps.ipb.ac.id
Secondary Email address	Inuraida@gmail.com
Postal address	Department of Food Science and Technology, IPB University (Bogor Agricultural University), IPB Dramaga Campus, Bogor 16680, Indonesia
Cell phone number	0811118583
Office phone number	(0251) 8626725
Fax number	(0251) 8626725

∟ 7 8

9 Abstract In this study, the inhibitory activity of Angiotensin-I-Converting Enzyme (ACEI) was 10 evaluated in fermented goat milk fermented by lactic acid bacteria (LAB) from fermented foods and breast milk. Furthermore, the potential for ACEI peptides was identified of fermented goat 11 12 milk with the highest ACEI activity. The proteolytic specificity of LAB was also evaluated. The 13 2% isolate was inoculated into reconstituted goat milk (11% w/v), then incubated at 37 °C until pH 4.6 was reached. The supernatant produced by centrifugation was analyzed for ACEI activity 14 15 and total peptide. Viable counts of LAB and titratable acidity were also evaluated after fermentation. Peptide identification was carried out using Nano LC/MS/MS, and potential as an 16 ACEI peptide was carried out based on a literature review. The result revealed that ACEI activity 17 was produced in all samples (20.44-60.33%). Fermented goat milk by Lc. lactis ssp lactis BD17 18 19 produced the highest ACEI activity (60.33%; IC₅₀ 0.297 \pm 0.10 mg/mL) after 48 h incubation, 20 viable counts >8 Log CFU/mL, and peptide content 4.037 ± 0.27 /mL. A total of 261 peptides were released, predominantly casein (93%). The proteolytic specificity of Lc. lactis ssp lactis BD17 21 through cleavage on the amino acid tyrosine, leucine, glutamic acid, and proline. A total of 21 22 23 peptides were identified as ACEI peptides. This study showed that one of the isolates from fermented food, namely Lc. lactis ssp lactis BD17, has the potential as a starter culture for the 24 production of fermented goat milk which has functional properties as a source of antihypertensive 25 26 peptides.

27

Keywords ACE inhibitory activity, antihypertensive peptides, goat milk fermented, proteolytic
specificity, *Lc. lactis* ssp *lactis* BD17

30

32 Introduction

33

Hypertension is a primary risk factor for cardiovascular diseases (CVDs), including stroke, heart 34 35 attack, heart failure, and other complications related to structural damage to the cardiovascular 36 system. In 2021, the World Health Organization (WHO) reported that CVDs are the leading cause of death globally. People who died from CVDs in 2019 were estimated at 17.9 million, 37 38 representing 31% of all deaths worldwide. Heart attacks and strokes are the main causes of these deaths (85%) (WHO, 2021). Human blood pressure is regulated by a system called the "Renin 39 Angiotensin Aldosterone system", in which Angiotensin-I-Converting Enzyme inhibitory (ACE) 40 plays an important role. ACE could catalyze the conversion of the decapeptide angiotensin I to the 41 potent vasoconstrictor angiotensin II. Furthermore, this enzyme hydrolyzes bradykinin and 42 stimulates the release of aldosterone which causes vasoconstriction and fluid retention which 43 increases blood pressure (Rai et al., 2017). Therefore, the treatment of clinical hypertension could 44 45 be done by controlling ACE activity. ACE inhibitors such as captopril, enalapril, alacepril, 46 lisinopril and ramipril are widely used in the clinical treatment of hypertension. However, the use 47 of these synthetic drugs in some cases causes side effects such as coughing, increased blood 48 calcium levels, decreased kidney function, angioedema, and skin rashes (Zeng et al., 2013). 49 Several researchers through in vivo studies on rats with spontaneous hypertension (SHR) and 50 humans with hypertension showed that ACE inhibitors without side effects could be obtained from 51 food protein (Bravo et al., 2019; Chen et al., 2014; Seppo et al., 2003) 52 Food protein from milk and dairy products such as fermented milk is a source of ACE inhibitory

(ACEI) peptides (Begunova et al., 2021;Wu et al., 2019). Among them have been reported from
fermented goat milk. The presence of ACE inhibitors in fermented milk is associated with the

presence of lactic acid bacteria (LAB). Lactic acid bacteria are the dominant group of bacteria involved in fermenting milk such as yogurt and kefir. Kefir is a fermented goat milk that has been consumed for hundreds of years and is believed not only as a source of antihypertensive peptides but also as a source of antioxidants and immunological agents (Ibrahim et al., 2017; Parmar et al., 2020)

During fermentation, milk protein could be hydrolyzed by LAB into peptides and amino acids. The abundance and characteristics of peptides released from milk proteins by LAB are straindependent (Wang et al., 2015). Among these peptides, the presence of bioactive peptides could be identified (Li et al., 2017). Bioactive peptides differ in size and sequence. Bioactive peptides that have functional properties as ACEI peptides have the characteristics that their molecular weight is generally >3 kDa and the presence of the amino acids proline and phenylalanine in the sequence (Gonzalez-Gonzalez et al., 2013; Wu et al., 2006)

The ability of LAB to release bioactive peptides in fermented milk (Ayyash et al., 2020; Kim et 67 al., 2017), and the status of LAB as "generally recognized as safe" (GRAS) for application in food, 68 69 have increased the utilization of certain strains of LAB for production of fermented milk with 70 certain functional properties. The purpose of this study was to investigate ACEI activity in goat milk fermented using LAB from fermented foods and breast milk. The potential of ACEI peptides 71 72 was identified in the <3 kDa fraction of fermented goat milk with the highest ACEI activity. The proteolytic specificity of the LAB used was also evaluated. The ten strains used were selected 73 because they effectively released ACEI peptides in fermented cow milk in our previous study 74 75 (Rubak et al., 2020).

76

78	Materials and methods
79	
80	Lactic acid bacteria
81	
82	The ten LAB isolates from fermented foods and breast milk used in this study were culture
83	collections from the Laboratory of Food Microbiology, Southeast Asian Food and Agricultural
84	Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University).
85	The isolates were refreshed in de Man Rogosa and Sharpe broth and incubated at 37 °C for 24 h,
86	then adapted in fresh skimmed milk for 2 rounds (24 h, 37 °C) before being used as a starter culture
87	in the experiment.
88	
89	Fermentation of goat milk
90	
91	Goat skimmed milk 11% (w/v) was pasteurized at 95 °C for 10 min. After cooling (45 °C), LAB
92	starter culture (2%) was inoculated followed by incubation at 37 °C until pH 4.6 (700 Eutech) was
93	reached. The fermentation process was stopped by heating (75 °C for 1 min) followed by
94	centrifugation (Hettich, Zentrifugen, Mikro 22R) at 6000 x g for 10 min, 4°C. The supernatant was
95	collected for analysis of peptide content and ACE inhibitory activity (Chusman, 1971). Viable
96	counts of LAB and titratable acidity were also analyzed from unheated samples.
97	
98	Determination of ACE Inhibitory Activity

100 Hippuryl-L-Histidyl-L-Leucine (HHL, Sigma, USA) was used as an enzyme-substrate. A total of 101 50 µL of the substrate (50 mM HHL in 0.1 M sodium borate buffer containing 0.3 M NaCl at pH 8.3) was added into a 50 µL sample and incubated at 37 °C for 5 min. To initiate the reaction, 50 102 103 µL of 0.1 U/mL ACE (Rabbit lung, Sigma, USA) solution was added, and the mixture was 104 incubated at 37 °C for 5 min. The reaction was stopped by adding 250 µL 1 M HCl. The resulted 105 hippuric acid (HA) was extracted with 1.5 mL ethyl acetate and centrifuged at 2000 x g for 5 min. 106 An aliquot (0.8 mL) of the ethyl acetate layer was transferred to a clean tube and evaporated at 85 °C for 60 min. Distilled water (4 mL) was then added to dissolve the HA in the tube, and the 107 108 amount of HA formed was measured by measuring the optical density at 228 nm (UV-2800, 109 Hitachi, JPN). The extent of inhibition was calculated as 100% [(B-A)/B] where A is the optical 110 density in the presence of ACE and ACEI components, and B is the optical density without the 111 ACEI component. 112 IC₅₀ and inhibitory efficiency ratio (IER) value 113

114

The IC₅₀ of the sample having the highest ACEI activity was calculated from the linear regression equation by plotting the ACE inhibition (%) versus the inhibitory concentration for each sample dilution. The percentage of ACEI activity was divided by the peptide concentration to obtain the IER value.

119

120 Ultrafiltration

The supernatan of fermented goat milk (4 mL) was pipetted into ultrafiltration centrifuge tubes [molecular weight (MW) cut-off of 3 kDa; Merck, 4 mL, IRL], then centrifuged at 4000 x g for 30 min, 4 °C. The fractions (<3 kDa and >3 kDa) were collected and the volume was adjusted to 4 mL by addition of water. Fractions were analyzed for ACEI activity.

126

127 Identification of peptides by mass spectrometry

128

129 Peptides in <3 kDa fraction were analyzed by using LC Ultimate 3000 series system Tandem Q Exactive Plus Orbitrap HRMS (Thermo scientific, GER). The samples (5 µL) were injected into 130 131 the LC Nano MS/MS system. The samples were trapped on a trap column (164649, 30 µm x 5 132 mm; Thermo scientific) and washed for 6 min with a gradient of 98% solvent A [water/acetonitrile (98:2, v/v), 0.1% formic acid] and 2% solvent B [Water/acetonitrile (2:98, v/v), 0.1% formic acid] 133 134 at a flow rate of 5 µL/min. The eluted peptides were loaded and separated on a capillary column 135 (PepMap RSLC-C18, 75-µm ×150 mm, 3.5 µm particle size, 100 pore size, Thermo Scientific ES800) at a flow rate of 300 nL/min with a gradient at 2% to 35% solvent B over 30 min, then 136 137 from 35% to 90% over ten min, followed by 90% solvent B for 5 min, and finally 5% solvent B 138 for 15 min. Electrospray was performed at an ion spray voltage of 3500 eV. Automatically, the 139 peptides were analyzed using Proteomic Discoverer 2.2 software. The range of m/z values was 140 200-2000.

Identification of ACEI peptides was carried out through a literature search. The investigated is
a peptide that provides 100% similarity to the ACEI peptide that has been previously reported by
the researchers.

5 Statistical analysis

146

The data were analyzed using Analysis of Variance (ANOVA) performed using SPSS version 147 148 22. $P \leq 0.05$ was considered significant. Each experiments were repeated three times, and the data 149 were presented as mean \pm SD. 150 151 152 **Result and Discussion** 153 Characteristics of goat milk fermented by LAB from fermented food and breast milk 154 155 156 Milk has been known as a suitable growth medium for LAB. The population of the ten LAB in fermented goat milk reached 9 log CFU/mL. Viable counts of the LAB ranged from 9.18 ± 0.46 157 158 to $9.79 \pm 0.39 \log \text{CFU/mL}$. When the pH reached 4.6, there was no difference in population (Table 159 1), which is in accordance with previous results obtained by Elkhtab et al. (2017) and from 160 fermented cow milk using similar cultures (Rubak et al., 2020). However, the fermentation time 161 to reach pH 4.6 was different between isolates that ranged from 18 to 48 h with titratable acidity 162 ranging from 0.77 \pm 0.06 to 0.94 \pm 0.04%. A short fermentation time (18 h) was observed in the 163 fermentation by Lb. rhamnosus R2, while the longest fermentation time (48 h) occurred in the 164 fermentation by Lb. fermentum S206, Lb. delbrueckii BD7, and Lc. lactis ssp lactis BD17. In our 165 research the fermentation was ended at pH 4.6 to obtain high production of peptides. The release of a bioactive peptide from the protein matrix by culture could decrease when the pH value falls 166 167 below 4.5 (Gonzalez-Gonzalez et al., 2013). Increase in coagulation could inhibit bacterial cell

168	diffusion to protein tissue, thus inhibiting access of CEP to milk protein for hydrolysis. Further
169	acidification could be avoided by stopping fermentation when it reaches pH 4.6, or the pH must
170	be controlled by adding alkaline solutions such as sodium hydroxide (Chen et al., 2015).
171	
172	Insert Table 1
173	
174	ACE inhibitory activity
175	
176	ACE inhibitory activity was detected in all supernatants of goat milk fermented in the range of
177	20.44 ± 2.33 to $60.79 \pm 8.78\%$ (Table 2). The highest percentage of ACEI activity (>50%) was
178	obtained in goat milk fermented by Lb. delbrueckii BD7 and Lc. lactis ssp lactis BD17, but it was
179	not significantly different (>0.05) from that of Lb. kefiri YK4 and Lb. kefiri JK17. It has been
180	reported that goat milk could be used as a potential precursor for the production of ACE inhibitors
181	through the fermentation process (Izquierdo-González et al., 2019). Starter cultures of LAB,
182	growth conditions, and substrate are factors that influence ACEI production in fermented milk
183	(Wang et al., 2015; Shu et al., 2015; Li et al., 2017). Lactobacillus species are known to produce
184	high ACEI activity (>50%) in fermented milk (Hati et al., 2018; Wu et al., 2019). The variation of
185	ACEI activity between LAB in milk fermented is related to its proteolytic activity. The proteolytic
186	activity of LAB is determined by the specificity of its proteolytic components (Chen et al., 2015).
187	The proteolytic activity of LAB in goat milk was measured by the OPA method, with results
188	ranging from 3.55 ± 0.26 to 5.69 ± 0.21 mg/mL (Table 2). Goat milk fermented by <i>P. pentasaceus</i>
189	1 W2SR04 and Lb. kefiri YK4 (>5 mg/mL) showed high peptide content. In a study by Toe et al.
190	(2019), P. pentasaceus species also showed high proteolytic activity. However, high peptide

191 content was not always associated with high ACEI activity in samples. This is also seen in the 192 results of our study. ACE inhibitory activity is more related to the abundance of ACEI peptides 193 that could be released during fermentation.

194 The IER values evaluated in ten samples showed that the highest IER values were obtained in 195 fermented goat milk of Lc. lactis ssp lactis BD17. The IC₅₀ value was also determined in this 196 sample and the result was 0.297 ± 0.10 mg/mL. The IC₅₀ value reflects the peptide concentration 197 required to inhibit 50% ACE. The IC₅₀ value in fermented milk <1 mg/mL (Gútiez et al., 2013). Our results show that the obtained IC₅₀ value is lower than that of fermented milk of other 198 Lactobacillus species, as reported by Qian et al. (2011) in fermented milk by Lb. delbrueckii (IC₅₀ 199 200 $67.71 \pm 7.62 \text{ mg/mL}$), by Moslehishad et al. (2013) in fermented milk by *Lb. rhamnosus* (IC₅₀: 201 3.947 ± 0.029 mg/mL) and by Chen et al. (2007) in fermented milk using several isolates (IC₅₀: 202 0.65 mg/mL) and in koumiss ($52.47 \pm 2.87 \text{ mg/mL}$) (Chen et al., 2010). Barla et al. (2016) have also reported from fermented milk by Lb. brevis, Lb. buchnery and W. hellenica (IC₅₀: 0.28-0.83 203 204 mg/mL).

205

206 Insert Table 2

207

208 ACE inhibitory activity of > 3 kDa and <3 kDa fraction

209

Filtration using a 3 kDa MW cut-off showed that the ACEI activity was concentrated in the
MW fraction <3 kDa (Table 3). There was no significant difference (>0.05) in the ACEI activity
of the <3 kDa fraction compared to the supernatant (without filtration). Bioactive peptides with

213 ACEI activity have been reported as peptides with MW of < 3 kDa (Gonzalez-Gonzalez et al., 214 2013). 215 216 Insert Table 3 217 Characteristics of peptides in the <3 kDa fraction of fermented goat milk of Lc. lactis ssp 218 219 lactis BD17 220 A total of 261 peptides were released in fermented goat milk by Lc. lactis ssp lactis BD17 221 222 (Table 4 and Supplementary Data). Most of the peptides were hydrolyzed from casein (97%) and 223 whey (3%). The main fraction of goat milk protein is casein, which is 80% of the total milk protein 224 (Jandal, 1996). This explains the abundance of peptide hydrolyzed from casein in our results. Another thing that casein has a very flexible and open structure so it is very sensitive to proteolysis. 225 226 While whey protein is more resistant which is explained by the presence of a globular structure 227 (Swaisgood, 1993). According to the results, β -casein (54.02%) was the most accessible to the 228 proteolytic system of Lc. lactis ssp lactis BD17 to release a number of peptides. The cleavage site's dominance on the β -casein was also shown by Lb. rhamnosus CGMCC11055 (Guo et al., 229 230 2016) and L. delbrueckii subsp. lactis ACA-DC 178 (Hebert et al., 2008). 231 232 Insert Table 4 233 The spectrum of MS analysis revealed a large number of peaks with retention times of 8 to 65 234 235 min (Figure 1), representing an abundance of released peptides with peptide mass/molecular 236 charge (m/z) ranging from 310.1 to 1146.0. The diversity of detected ions indicates that the nine 237 peaks with retention time (RT) of 11.29 to 30.97 corresponded to thirteen peptides identified in goat milk fermented by Lc. lactis ssp lactis BD17 (Table 5). ARHPHPHLSFM (k-casein; RT 238 239 11.29,11.89; m/z 665.33, 673.33) was a peptide that exhibited a prominent peak according to its 240 abundance in the sample. This peptide was also identified as being present in goat milk kefir 241 (Izquierdo-Gonzales et al., 2019) and goat milk (Ibrahim et al., 2017). Another signal was 242 associated with the abundance of peptides in goat milk fermented by Lc. lactis ssp lactis BD17 from the parent protein β -casein, namely MPFPKYPVEPF (RT 20.54; m/z 676.34), 243 QEPVLGPVRGPFPI (RT 29.61; m/z 753.43) and RDMPIQAFLL (RT 23.59; m/z 602.33). This 244 peptide has also been identified in goat milk kefir (Izquierdo-Gonzales et al., 2019) and bovine 245 246 kefir (Ebner et al., 2015).

247

248 Insert Fig 1

249

250 Insert Table 5

251

The release of peptides from the protein matrix is initiated by *Cell Envelope Proteinase* (CEP), one of the essential enzymes in the LAB proteolytic system (Griffiths & Tellez, 2013) which cleaves the proteins resulting in peptides with 4 to 30 amino acid. The CEP of LAB is classified into three types based on the hydrolysis of casein (Kunji, 1996): (1) CEP type PI which specifically hydrolyzes β -casein, (2) CEP type PIII which hydrolyzes α S1-casein and κ -casein, (3) CEP intermediate type PI/PIII which hydrolyzes β -casein and α S1-casein. Based on this classification, our results indicate that the CEP of *Lc. lactis* ssp *lactis* BD17 represents CEP types I and III. These types of CEP were also reported from *Lb. casei* PRA205 and *Lb. rhamnosus* PRA331(Solieri et
al., 2018), and *Lb. paracasei* ssp. *Paracasei* (Nikolić et al., 2009).

261 Types and domains in the CEP region of each LAB provide variations in the specificity of the 262 hydrolyzed substrate which have implications for the diversity of molecular weights and amino 263 acid sequences of the released peptides (Raveschot et al., 2020). The molecular weight of the 264 peptide released by Lc. lactis ssp lactis BD17 ranged from 659 to 2201.1 Dalton with amino acid 265 residues ranging from 6 to 20. An investigation was carried out to determine the specificity of cleavage of CEP Lc. lactis ssp lactis BD17 in goat milk parent protein during fermentation to 266 release a number of peptides. The results are presented in Figure 2. It appears that sites of Lc. lactis 267 268 ssp lactis BD17 dispersed throughout the parent protein, although certain amino acids are favorite 269 for cleavage by CEP of Lc. lactis ssp lactis BD17. In the αS1-casein region, the cleavage sites 270 were frequently at serine, aspartate, and phenylalanine amino acid (f183-f184, f186-f187, and 271 f184-f185), in aS2-casein region the sites were at amino acids tyrosine, leucine, and glutamine (f116-f117, f114-f115, f112-f113), and in the β -casein region the sites were at amino acids 272 273 tyrosine, leucine, glutamic acid and proline (f208-f209, f207-f208, f123-f124, f125-f126). 274 Moreover, in a κ -case in region the cleavage sites were at amino acids leucine, tyrosine, and alanine 275 (f53-f54, f51-f52, f44-f45). These results indicate that the cleavage sites of casein by Lc. 276 lactis ssp lactis BD17 occur mostly in hydrophobic and aromatic amino acids. It seems that hydrophobic and aromatic amino acids are more easily accessed and released from parent protein. 277 278 Similar results have been reported by Lozo et al. (2011) on Lb. subsp. paracasei BGHN14 (prtp), 279 Lb. rhamnosus BGT10 (prtR), and Lb. helveticus BGRA43 (prtP), and Hebert et al. (2008) 280 reported on Lb. delbrueckii subsp. lactis CRL 581.

282	Insert Fig 2
283	
284	ACE inhibitory peptides
285	
286	Twenty-one of the 261 peptides released by Lc. lactis ssp lactis BD17 were identified as ACEI
287	peptides (Table 5), most of which were released from β -casein. One of peptides namely
288	ARHPHPHLSFM from parent protein ĸ-casein; 116-f117 was reported as an ACEI peptide
289	(Ibrahim et al., 2017), and VLNENLR (aS1-casein; f39-f40) (Swaisgood, 1993). ACE inhibitory
290	peptides could be identified based on their amino acid sequence (Lunow et al., 2015).
291	
292	Insert Table 6
293	
294	The three amino acids located at the C-terminus could determine whether a peptide could act
295	as an ACEI peptide (Wu et al., 2006). Amino acids from aliphatic groups (proline, isoleucine,
296	valine) and aromatic amino acids (phenylalanine) are the dominant amino acids found in the ACEI
297	peptide. Our investigation of other peptide released by Lc. lactis ssp lactis BD17 which has not
298	been identified as an ACEI peptide according to a literature search, demonstrated its potential as
299	an ACEI peptide. A total of 36% of these peptides had a proline amino acid residue and 21% a
300	phenylalanine amino acid residue at the C-terminus.
301	The characteristics of the ACEI peptide were not only observed in the presence of amino acids
302	at the C-terminus. By other researchers, the presence of amino acids at the N-terminal was also
303	evaluated. Aslam et al. (2018) showed that three identified ACEI peptides were released in goat

304 milk fermented by *Lb. helveticus* cicc22171 has hydrophobic/aliphatic amino acids not only at the

C-terminus but also at the N-terminus (valine and proline). Daliri et al. (2018) also presented their
research results that four peptides identified as ACEI peptides were associated with the presence
of negative amino acids (glutamate) and uncharged amino acids (glutamine) at their N-terminus.
The presence of this amino acid in the *Lc. lactis* ssp *lactis* BD17 peptide was also identified,
namely in the peptide released from the parent protein β-casein and α-S1-casein (Table 4).

310 In addition to the presence of certain amino acids in the ACEI peptide sequence. Another 311 characteristic of ACEI peptides is their molecular weight. ACE inhibitory peptides are generally short peptides with molecular weight < 3 kDa, may consist of 6 to 16 amino acids (Ibrahim et al., 312 2017). However, ACEI peptides with 20 amino acid residues have also been reported (Elkhtab et 313 314 al., 2017). The ACEI peptide identified in our study has a molecular weight of <2 kDa (657-1994 315 Da), consisting of 6 to 18 amino acids. Short peptides are known to easily bind to the active site 316 of ACE (Aslam et al., 2018). ACE inhibitory peptide binding to the active of ACE is facilitated by hydrogen bonding, hydrophobic interactions, and disrupting the stability of the Zn^{+2} ion. The 317 318 presence of ACEI peptide in fermented milk is highly dependent on the type of LAB used for the 319 fermentation process. it is therefore very important to use isolates that have been shown to have 320 the ability to release ACEI peptides. Lc. lactis ssp lactis BD17 used in this study was an isolate 321 isolated from kefir. Although the ability of this strain has only been explored in this study, as a 322 comparison, the results of studies using kefir grain could be presented. Ebner et al. (2015) stated 323 that kefir microbes were able to release 12 ACEI peptides in fermented milk. The same thing was 324 also conveyed by Dallas et al. (2016) that kefir microbes release 29 bioactive peptides, including 325 ACEI peptides in fermented cow milk. A recent study by Izquierdo-González et al. (2019) showed that in goat milk using kefir grains, five ACEI peptides were identified. 326

328 Conclusion

329

ACE inhibitory activity was detected in all fermented goat milk using isolates from fermented food 330 331 and breast milk. Goat milk fermented using Lc. lactis ssp lactis BD17 produced the highest ACE 332 inhibitory activity (IC₅₀: 0.297 \pm 0.10 mg/mL) after 48 h of incubation. A total of 261 peptides 333 were hydrolyzed by Lc. lactis ssp lactis BD17 during fermentation, most of which were released 334 from casein (β -casein). The peptide has a molecular weight of 659 to 2201.1 Dalton, consisting of 6-20 amino acid residues. The CEP specificity of Lc. lactis ssp lactis BD17 in goat milk parent 335 protein, dominant with cleavage on the amino acids tyrosine, leucine, glutamic acid, and proline. 336 337 A total of 21 peptides were identified as ACEI peptides, having 100% homology to the reported 338 ACEI peptides. Several characteristics of ACEI peptides are present in peptides hydrolyzed by Lc. 339 lactis ssp lactis BD17. These peptides mostly have hydrophobic and aromatic amino acids at the 340 C-terminus. The results of this study add to the information that Lc. lactis ssp lactis BD17 is a candidate that could be considered as a starter culture to obtain fermented milk that has functional 341 342 properties as a source of ACE inhibitory peptides.

343

344 Acknowledgments

345

The author would like to thank the LPDP (Lembaga Pengelola Dana Pendidikan), Ministry of
Finance, Republic of Indonesia for providing research funding under the scheme of Scholarship of
Beasiswa Unggulan Dosen Indonesia, Dalam Negeri.

349

350 Conflicts of interest

2	5	1
Э	J	Т

352 The authors declare no conflicts of interest

353

354

355 **References**

356

357	Amorim M, Marques C, Pereira JO, Guardão L,	Martins MJ, Osório H, Moura D, Calhau C,
358	Pinheiro H, Pintado M. 2019. Antihypertensiv	e effect of spent brewer yeast peptide. Process
359	Biochem 76:213-218.	

360 Aslam MZ, Shoukat S, Hongfei Z, Bolin Z. 2018. Proteomic Analysis of ACE Inhibitory Peptides

361 extracted from Fermented Goat Milk. Int J Pept Res Ther 25:12591270.

Ayyash M, Olaimat A, Al-Nabulsi A, Liu SQ. 2020. Bioactive properties of novel probiotic
 lactococcus lactis fermented camel sausages: Cytotoxicity, angiotensin converting enzyme

inhibition, antioxidant capacity, and antidiabetic activity. Korean J Food Sci An 40:155-171.

365 Barla F, Koyanagi T, Tokuda N, Matsui H, Katayama T, Kumagai H, Michihata T, Sasaki T, Tsuji

366 A, Enomoto T. 2016. The γ -aminobutyric acid-producing ability under low pH conditions of

367 lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan,

368 with a strong ability to produce ACE-inhibitory peptides. Biotech Reports 10:105-110.

Begunova AV., Savinova OS, Glazunova OA, Moiseenko KV, Rozhkova IV, Fedorova TV. 2021.

370 Development of antioxidant and antihypertensive properties during growth of *Lactobacillus*

- 371 *helveticus, Lactobacillus rhamnosus* and *Lactobacillus reuteri* on cow's milk: Fermentation
- and peptidomics study. Foods: 10:17.

Bravo FI, Mas-Capdevila A, Margalef M, Arola-Arnal A, Muguerza B. 2019. Novel
Antihypertensive Peptides Derived from Chicken Foot Proteins. Mol Nutr Food Res 63:1–8.

- 375 Chen GW, Tsai JS, Sun Pan B. 2007. Purification of angiotensin I-converting enzyme inhibitory
 376 peptides and antihypertensive effect of milk produced by protease-facilitated lactic
 377 fermentation. Int Dairy J 17:641-647.
- 378 Chen Y, Wang Z, Chen X, Liu Y, Zhang H, Sun T. 2010. Identification of angiotensin I-converting
- enzyme inhibitory peptides from koumiss, a traditional fermented mare's milk. J Dairy Sci93: 884-892.
- Chen Y, Li C, Xue J, Kwok L, Yang, J, Zhang H, Menghe B. 2015. Characterization of
 angiotensin-converting enzyme inhibitory activity of fermented milk produced by *Lactobacillus helveticus*. J Dairy Sci 98:5113-5124.
- Chen Y, Liu W, Xue J, Yang J, Chen X, Shao Y, Kwok L, Bilige M, Mang L, Zhang H. 2014.
 Angiotensin-converting enzyme inhibitory activity of *Lactobacillus helveticus* strains from
 traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9.
 J Dairy Sci 97:11.
- Chusman N. 1971. Spectrophotometric Assay and Properties of the angiotensin-Converting
 Enzyme of Rabbit Lung. Biochem Pharmacol 20:1637-1648.
- Contreras M. del mar Carron R, Montero MJ, Ramos M, Recio I. 2009. Novel casein-derived
 peptides with antihypertensive activity. Int Dairy J 19: 566-573.
- 392 Daliri EBM, Lee BH, Park MH, Kim JH, Oh DH. 2018. Novel angiotensin I-converting enzyme
 393 inhibitory peptides from soybean protein isolates fermented by *Pediococcus pentosaceus* 394 SDL1409. LWT 93:88-93.
- 395 Dallas DC, Citerne F, Tian T, Silva VLM, Kalanetra KM, Frese SA, Robinson RC, Mills D A,
- Barile D. 2016. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on
- bovine milk proteins. Food Chem 197:273-284.

- Ebner J, Aşçi Arslan A, Fedorova M, Hoffmann R, Küçükçetin A, Pischetsrieder M. 2015. Peptide
 profiling of bovine kefir reveals 236 unique peptides released from caseins during its
 production by starter culture or kefir grains. J Proteomics 117:41-57.
- 401 Elkhtab E, El-Alfy M, Shenana M, Mohamed A, Yousef AE. 2017. New potentially
 402 antihypertensive peptides liberated in milk during fermentation with selected lactic acid
 403 bacteria and kombucha cultures. J Dairy Sci 100:9508-9520.
- 404 Fan H, Liao W, Wu J. 2018. Molecular interactions, bioavailability, and cellular mechanisms of
 405 angiotensin-converting enzyme inhibitory peptides. J Food Biochem 43:1-8.
- Gobbetti M, Ferranti P, Smacchi E, Goffredi F, Addeo F. 2000. Production of angiotensin-Iconverting-enzyme-inhibitory peptides in fermented milks started by *Lactobacillus delbrueckii* subsp. *bulgaricus* SS1 and *Lactococcus lactis* subsp. *cremoris* FT4. Appl and
 Environ Microbiol 66: 3898-3904.
- Gonzalez-Gonzalez C, Gibson T, Jauregi P. 2013. Novel probiotic-fermented milk with
 angiotensin I-converting enzyme inhibitory peptides produced by *Bifidobacterium bifidum*MF 20/5. Int J Food Microbiol 167:131-137.
- 413 Griffiths MW, Tellez AM. 2013. *Lactobacillus helveticus*: The proteolytic system. Frontiers in
 414 Microbiol 4:1-9.
- Guo T, Ouyang X, Xin Y, Wang Y, Zhang S, Kong J. 2016. Characterization of a New Cell
 Envelope Proteinase PrtP from *Lactobacillus rhamnosus* CGMCC11055. J Agri and Food
 Chem 64:6985-6992.
- 418 Gútiez L, Gómez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE. 2013.
- 419 *Enterococcus faecalis* strains from food, environmental, and clinical origin produce ACE-
- 420 inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Int J Food

421 Microbiol 166:93-101.

- Hati S, Patel N, Mandal S. 2018. Comparative Growth Behaviour and Biofunctionality of Lactic
 Acid Bacteria During Fermentation of Soy Milk and Bovine Milk. Probiotics and Antimicrob
 Proteins 10:277-283.
- Hayes M, Stanton C, Slattery H, Sullivan OO, Hill C, Fitzgerald GF, Ross RP. 2007. Casein
 Fermentate of *Lactobacillus animalis* DPC6134 Contains a Range of Novel Propeptide
 Angiotensin-Converting Enzyme Inhibitors. Appl Environmental Microbiol 73:4658-4667.
- Hebert EM, Mamone G, Picariello G, Raya RR, Savoy G, Ferranti P, Addeo F. 2008.
 Characterization of the pattern of αs1- and β-casein breakdown and release of a bioactive
 peptide by a cell envelope proteinase from *Lactobacillus delbrueckii* subsp. *lactis* CRL 581.
- 431 Appl Environmental Microbiol 74:3682-3689.
- Hernandes-Ledesma L, Ramos M, Recio I. 2004. Angiotensin Converting Enzyme Inhibitory
 Activity in Commercial Fermented Products. Formation of Peptides under. J Agric Food
 Chem, 52:1504-1510.
- 435 Ibrahim HR, Ahmed AS, Miyata T. 2017. Novel angiotensin-converting enzyme inhibitory
 436 peptides from caseins and whey proteins of goat milk. J Adv Res 8: 63-71.
- Izquierdo-González JJ, Amil-Ruiz F, Zazzu S, Sánchez-Lucas R, Fuentes-Almagro CA,
 Rodríguez-Ortega MJ. 2019. Proteomic analysis of goat milk kefir: Profiling the
 fermentation-time dependent protein digestion and identification of potential peptides with
 biological activity. Food Chem 295:456-465.
- Jandal JM. 1996. Comparative aspects of goat and sheep milk. Small Ruminant Res 22: 177–185.
- 442 Kalyankar P, Zhu Y, O'Keeffe M, O'Cuinn G, Fitzgerald RJ. 2013. Substrate specificity of
- glutamyl endopeptidase (GE): Hydrolysis studies with a bovine α -casein preparation. Food

444 Chem 136:501-512.

- Kim BK, Choi IS, Kim J, Han SH, Suh HJ, Hwang JK. 2017. Effects of fermented milk with
 mixed strains as a probiotic on the inhibition of loperamide-induced constipation. Food Sci
 Anim Resour 37:906-916.
- Kunji ERS. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek, Int
 J General and Molecular Microbiology 70:2-4.
- 450 Li C, Kwok LY, Mi Z, Bala J, Xue J, Yang J, Ma Y, Zhang H, Chen Y. 2017. Characterization of

451 the angiotensin-converting enzyme inhibitory activity of fermented milks produced with

452 *Lactobacillus casei*. J Dairy Sci 100:9495-9507.

453 Lozo J, Strahinic I, Dalgalarrondo M, Chobert JM, Haertlé T, Topisirovic L. 2011. Comparative

454 analysis of β -case proteolysis by PrtP proteinase from *Lactobacillus paracasei* subsp.

- *paracasei* BGHN14, PrtR proteinase from *Lactobacillus rhamnosus* BGT10 and PrtH
 proteinase from *Lactobacillus helveticus* BGRA43. Int Dairy J 21:863-868.
- Lunow D, Kaiser S, Rückriemen J, Pohl C, Henle T. 2015. Tryptophan-containing dipeptides are
 C-domain selective inhibitors of angiotensin converting enzyme. Food Chem 166:596-602.

- 459 Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, Moosavi-
- Movahedi AA. 2013. The comparative assessment of ACE-inhibitory and antioxidant
 activities of peptide fractions obtained from fermented camel and bovine milk by *Lactobacillus rhamnosus* PTCC 1637. Int Dairy J 29:82-87.
- 463 Nikolić M, Tolinački M, Fira D, Golić N, Topisirović L. 2009. Variation in specificity of the prtP
- 464 extracellular proteinases in *Lactococcus lactis* and *Lactobacillus paracasei* subsp. *paracasei*.

465 Folia Microbiologica 54:188-194.

466 Papadimitriou CG, Vafopoulou-Mastrojiannaki A, Silva SV, Gomes AM, Malcata FX,

467 Alichanidis E. 2007. Identification of peptides in traditional and probiotic sheep milk voghurt 468 with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem 105:647-656.

- 469 Parmar H, Hati S, Panchal G, Sakure AA. 2020. Purification and Production of Novel Angiotensin
- 470 I-Converting Enzyme (ACE) Inhibitory Bioactive Peptides Derived from Fermented Goat 471 Milk. Int J Pept Res and Ther 26:997-1011.
- 472 Perpetuo EA, Juliano L, Lebrun I. 2003. Biochemical and Pharmacological Aspects of Two 473 Bradykinin-Potentiating Peptides Obtained from Tryptic Hydrolysis of Casein. J Protein 474 Chem 22: 601-606.
- Pihlanto A, Virtanen T, Korhonen H. 2010. Angiotensin I converting enzyme (ACE) inhibitory 475 476 activity and antihypertensive effect of fermented milk. Int. Dairy J. 20:3-10.
- 477 Qian B, Xing M, Cui L, Deng Y, Xu Y, Huang M, Zhang S. 2011. Antioxidant, antihypertensive, 478 and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J Dairy Res 78:72-79. 479

- Quirós A, Contreras M, del M Ramos M, Amigo L, Recio I. 2009. Stability to gastrointestinal 480
- 481 enzymes and structure-activity relationship of β -casein-peptides with antihypertensive 482 properties. Peptides 30:1848-1853.
- Rai AK, Sanjukta S, Jeyaram K. 2017. Production of angiotensin I converting enzyme inhibitory 483
- 484 (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Cri Rev Food Sci Nut 57:2789-2800. 485
- Raveschot C, Cudennec B, Deracinois B, Frémont M, Vaeremans M, Dugersuren J, Demberel S, 486
- 487 Drider D, Dhulster P, Coutte F, Flahaut C. 2020. Proteolytic activity of Lactobacillus strains
- isolated from Mongolian traditional dairy products: A multiparametric analysis. Food Chem 488
- 489 304:125415.

- 490 Rodríguez-Figueroa JC, González-Córdova AF, Torres-Llanez MJ, Garcia HS, Vallejo-Cordoba
 491 B. 2012. Novel angiotensin I-converting enzyme inhibitory peptides produced in fermented
 492 milk by specific wild *Lactococcus lactis* strains. J Dairy Sci 95:5536-5543.
- Rubak YT, Nuraida L, Iswantini D, Prangdimurti E. 2020. Angiotensin-I-converting enzyme
 inhibitory peptides in milk fermented by indigenous lactic acid bacteria. Veterinary World
 13:345-353.
- 496 Seppo L, Jauhiainen T, Poussa T, Korpela R. 2003. A fermented milk high in bioactive peptides
 497 has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 77: 326–330.
- Shu G, Yang H, Chen H, Zhang Q, Tian Y. 2015. Effect of incubation time, inoculum size,
 temperature, pasteurization time, goat milk powder and whey powder on ace inhibitory
 activity in fermented milk by *L. Plantarum* LP69. Acta Sci Pol Technol Aliment 14:107–116.
- Solieri L, De Vero L, Tagliazucchi D. 2018. Peptidomic study of casein proteolysis in bovine milk
 by *Lactobacillus casei* PRA205 and *Lactobacillus rhamnosus* PRA331. Int Dairy J 85:237-
- 503 246.
- Swaisgood HE. 1993. Review and Update of Casein Chemistry. Journal of Dairy Science,
 76:3054-3061.
- Toe CJ, Foo HL, Loh TC, Mohamad R, Rahim RA, Idrus Z. 2019. Extracellular proteolytic activity
 and amino acid production by lactic acid bacteria isolated from malaysian foods. . Int J Mol
 Sci 20: 1777.
- 509 Torres-Llanez MJ, González-Córdova AF, Hernandez-Mendoza A, Garcia HS, Vallejo-Cordoba
- 510 B. 2011. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. J
 511 Dairy Sci 94:3794-3800.
- 512 Villegas JM, Picariello G, Mamone G, Beatriz M, Turbay E, Giori GS. De Hebert EM. 2014. Milk-

- 513 derived angiotensin-I-converting enzymeinhibitory peptides generated by *Lactobacillus*514 *delbrueckii* subsp *lactis* CRL 581. Peptidomics 1:22-29.
- 515 Wang J, Li C, Xue J, Yang J, Zhang Q, Zhang H, Chen Y. 2015. Fermentation characteristics and
- 516angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in
- 517 cow milk, soy milk, and mare milk. J Dairy Sci 98:3655-3664.
- 518 WHO. 2021. Cardiovascular diseases (CVDs). WHO. https://www.who.int/news-room/fact519 sheets/detail/cardiovascular-diseases-(cvds).
- Wu J, Aluko RE, Nakai S. 2006. Structural requirements of angiotensin I-converting enzyme
 inhibitory peptides: Quantitative structure-activity relationship modeling of peptides
 containing 4-10 amino acid residues. QSAR and Comb Sci 25:873-880.
- Wu N, Xu W, Liu K, Xia Y, Shuangquan. 2019. Angiotensin-converting enzyme inhibitory
 peptides from *Lactobacillus delbrueckii* QS306 fermented milk. J. Dairy Sci 102:5913-5921.
- 525 Zeng Y, Wang N, Qian W. 2013. Production of angiotensin I converting enzyme inhibitory
- 526 peptides from peanut meal fermented with lactic acid bacteria and facilitated with protease.
- 527 Adv J Food Sci and Tech 5: 1198–1203.
- 528 Zhao YQ, Zhang L, Tao J, Chi CF, Wang B. 2019. Eight antihypertensive peptides from the protein
- 529 hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity
- evaluation on human umbilical vein endothelial cells (HUVECs). Food Res Int 121:197-204.
- 531
- 532

533 Tables and Figures

C	5	0	
	Fermentation	Titratable acidity	Viable count
Culture	time to reach	-	
	pH 4.6 (h)	(%)	(Log CFU/mL)
Lactobacillus rhamnosus R2	18	0.90 ± 0.01	9.69 ± 0.11
Pediococcus pentasaceus 1 W2SR04	24	0.94 ± 0.04	9.18 ± 0.46
Lactobacillus kefiri YK4	24	0.80 ± 0.03	9.79 ± 0.39
Lactobacillus kefiri JK17	24	0.79 ± 0.02	9.67 ± 0.07
Lactobacillus fermentum R6	24	0.84 ± 0.01	9.58 ± 0.03
Lactobacillus plantarum 1W22408	32	0.77 ± 0.06	9.25 ± 0.39
Lactobacillus R7F	36	0.81 ± 0.02	9.46 ± 0.52
Lactobacillus fermentum S206	48	0.70 ± 0.06	9.53 ± 0.17
Lactobacillus delbrueckii BD7	48	0.75 ± 0.05	9.73 ± 0.36
Lactococcus lactis ssp lactis BD17	48	0.75 ± 0.05	9.55 ± 0.38

Table 1. Profile of goat milk fermented by LAB from kefir grains and breast milk

Table 2. ACE inhibitory activity, peptide content, and IER of goat milk fermented by LAB afterreaching pH 4.6

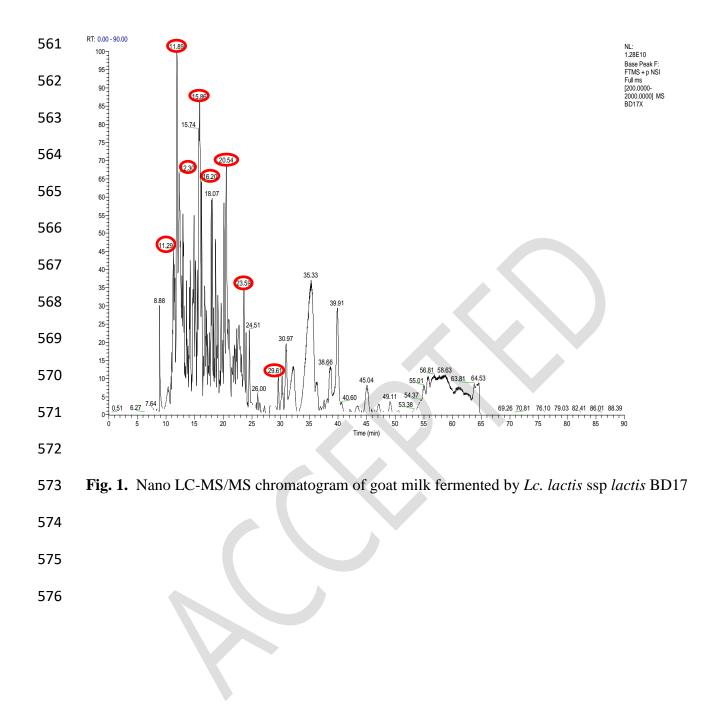
Culture	Inhibition	Peptide content	IER (% per
Culture	of ACE (%)	(mg/mL)	mg/mL)
Pediococcus pentasaceus 1 W2SR04	$20.44 \pm 2.33^{\circ}$	5.696 ± 0.21^{a}	$3.60 \pm 0.49^{\circ}$
Lactobacillus kefiri YK4	58.65 ± 8.87^a	5.691 ± 0.25^{a}	10.31 ± 1.55^{b}
Lactobacillus fermentum S206	26.64 ± 3.90^{c}	4.809 ± 0.23^{b}	$5.59 \pm 1.04^{\rm c}$
Lactobacillus delbrueckii BD7	60.79 ± 8.78^a	4.767 ± 0.27^{b}	12.81 ± 2.12^{ab}
Lactobacillus kefiri JK17	56.94 ± 2.81^{a}	$4.750\pm0.30^{\text{b}}$	12.06 ± 1.23^{b}
Lactobacillus fermentum R6	48.50 ± 6.92^{ab}	$4.089\pm0.10^{\rm c}$	11.83 ± 1.42^{b}
Lactobacillus R7F	42.85 ± 5.10^{b}	$4.007\pm0.23^{\text{c}}$	10.66 ± 0.73^{b}
Lactococcus lactis ssp lactis BD17	60.33 ± 4.73^{a}	$4.037\pm0.27^{\rm c}$	$14.99 \pm 1.26 ^{\text{a}}$
Lactobacillus rhamnosus R2	40.51 ± 6.15^b	$3.658\pm0.19^{\text{c}}$	11.03 ± 1.10^b
Lactobacillus plantarum I W22408	39.69 ± 4.70^{b}	3.548 ± 0.26^{c}	11.15 ± 0.53^{b}

543 ^{a-c} Different superscript in the same column indicated significant (p < 0.05)

- **Table 3.** ACE inhibitor activity of supernatant (without ultrafiltration), fractions of >3 kDa and
- 548 <3 kDa of goat milk fermented by *Lc. lactis* ssp *lactis* BD17

	ACE inhibitory activity (%)	
Supernatant (Without ultrafiltration)	>3 kDa	<3 kDa
60.33 ± 4.73^a	24.57 ± 2.36^{b}	57.31 ± 2.41

Table 4. Characteristics of peptides (<3 kDa) of fermented goat milk of *Lc. lactis* ssp *lactis*


554 BD17

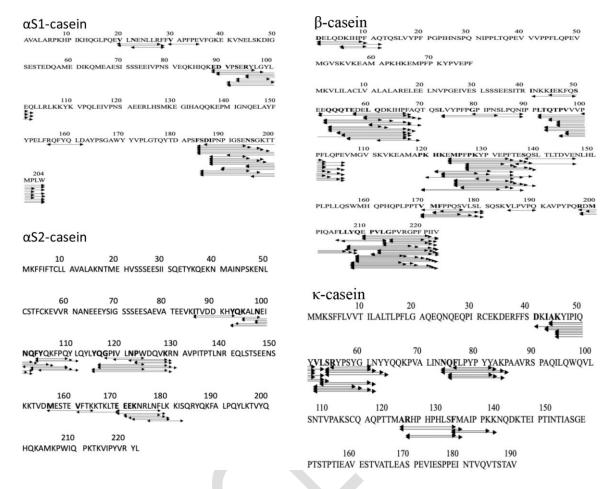
555

Parent	Total	Range of	Range of	Amino	Dominant peptide
protein*	Peptides	precursor	precussor	acid	
		m/z	MW	residue	
αS1-casein	41	330.1-1146.0	659.3-2291.1	6 - 20	FSDIPNPIGSE,
					FSDIPNPIGSENSGKTTMP,
					NSGKTTMPLW
αS2-casein	37	310.1-906.9	772.4-1812.9	6 - 15	QGPIVLNPWDQVKR
β-casein	141	326.7-1072.5	652.40-2201.1	6 - 18	QEPVLGPVRGPFPII,
					QEPVLGPVRGPFPI,
			$\langle \rangle$		QEPVLGPVRGPFPIIV,
					VLGPVRGPFPIIV,
					TQTPVVVPPFLQPE
κ-casein	36	376.5-750.8	761.45-1500.7	6 - 10	ARHPHPHLSFM
ά-lactalbumin	3	497.7-563.7	994.4-1126.4	8 - 10	AFHTSGYDTQ
β-lactoglobulin	3	420.5-482.2	903.57-1259.7	8 - 11	

556

*Protein access code at <u>https://www.uniprot.org/</u>. A: Alanine, D: Aspartic Acid, E: Glutamic Acid, F:
Phenylalanine, G: Glysin, I: Isoleucine, K: Lysine, L: Leucine, M: Methionine, N: Asparagine, P:
Proline, Q: Glutamine, R: Arginine, S: Serine, T: Threonin, V: Valine, W: Triptophan, Y: Tyrosine,
MW: Molecular Weight.

Table 5. Peptides identified of goat milk fermented by *Lc. lactis* ssp *lactis* BD17 with Retention


578 Time (RT) detected on Nano LC-MS/MS. Peptides in bold letters indicate a match with RT.

Retention	Retentior	n m/z	MH+		
Time	time			Peptide identified	Parent Protein
(min)	(min)	[Da]	[Da]		
11.29	11.29	665.33	1329.66	ARHPHPHLSFM	к-casein (A0A140T8A9 [*])
	11.22	495.75	990.49	ITVDDKHY	αs2-casein (P02663 [*])
11.89	11.81	563.74	1126.48	AFHTSGYDTQ	ά- lactalbumin (B6V3I5*)
	11.87	581.34	1161.67	EKNRLNFLK	αs2-casein (P02663 [*])
	11.89	673.33	1345.66	ARHPHPHLSFM	к-casein (A0A140T8A9 [*])
12.30	12.30	559.75	1118.49	QQQTEDELQ	β-casein (P02666 [*])
	12.30	546.79	1092.57	YQKALNEIN	αs2-casein (P02663 [*])
15.86	15.86	470.74	940.47	IPNPIGSEN	αs1-casein (P02662 [*])
	15.86	521.27	1041.54	RYLGYLEQ	αs1-casein (P02662 [*])
16.20	16.20	413.72	826.43	IPNPIGSE	αs1-casein (P02662 [*])
	16.20	560.78	1120.55	FYQKFPQY	αs2-casein (P02663 [*])
	16.24	621.31	1241.61	DELQDKIHPF	β-casein (P02666 [*])
	16.26	457.24	913.48	RYLGYLE	αs1-casein (P02662 [*])
	16.26	610.29	1219.57	SRYPSYGLNY	к-casein (A0A140T8A9 [*])
20.54	20.54	676.34	1351.68	MPFPKYPVEPF	β-casein (P02666 [*])
	20.59	329.20	657.40	VVVPPF	β-casein (P02666 [*])
23.59	23.50	683.86	1366.72	RDMPIQAFLLY	β-casein (P02666 [*])

Retention	Retention	m/z	MH+			
Time	time	[Da]	[Da]	Peptide identified	Parent Protein	
(min)	(min)	[Du]	[[]]			
	23.51	559.80	1118.59	MFPPQSVLSL	β-casein (P02666 [*])	
	23.53	385.74	770.48	VVVPPFL	β -casein (P02666 [*])	
	23.54	948.04	1895.07	LYQEPVLGPVRGPFPII	β-casein (P02666 [*])	
	23.56	795.47	1589.94	EPVLGPVRGPFPIIV	β-casein (P02666 [*])	
	23.59	602.33	1203.66	RDMPIQAFLL	β-casein (P02666 [*])	
24.51	24.50	859.50	1718.00	QEPVLGPVRGPFPIIV	β-casein (P02666 [*])	
	24.55	484.79	968.58	TPVVVPPFL	β-casein (P02666 [*])	
26.00	26.07	548.30	1095.59	MPIQAFLLY	β-casein (P02666 [*])	
	26.08	809.97	1618.93	QEPVLGPVRGPFPII	β-casein (P02666 [*])	
29.61	29.61	753.42	1505.84	QEPVLGPVRGPFPI	β-casein (P02666 [*])	
30.97	30.98	776.42	1551.83	TQTPVVVPPFLQPE	β-casein (P02666 [*])	

582 Phenylalanine, G: Glysin, I: Isoleucine, K: Lysine, L: Leucine, M: Methionine, N: Asparagine, P: Proline,

```
583 Q: Glutamine, R: Arginine, S: Serine, T: Threonin, V: Valine, W: Triptophan, Y: Tyrosine
```


- **Fig. 2**. Cleavage specifics of the peptide of the parent protein α s1-casein, α s2- casein, β casein,
- 592 and κ casein

Parent	Sequence	m/z	MH+	Charge	Deferrer og -
Protein*		[Da]	[Da]		References
к-cas.	ARHPHPHLSFM	665.33	1329.66	3	Ibrahim et al. (2017)
β-cas.	DELQDKIHPF	621.30	1241.61	2	Rodríguez-Figueroa et a
					(2012)
β-cas.	DKIHPF	378.71	756.41	2	Fan et al. (2018)
β-cas.	DKIHPFAQ	478.25	955.50	2	Gobbetti et al. (2000)
β-cas.	EMPFPKYPVEPF	740.86	1480.71	2	Papadimitriou et al.
					(2007)
β-cas.	ELQDKIHPF	563.80	1126.59	2	Fan et al. (2018)
β-cas.	GPVRGPFPI	470.27	939.54	2	Amorim et al. (2019)
β-cas.	LGPVRGPFP	470.27	939.54	2	Hernandes-Ledesma et
					(2004)
β-cas.	LTQTPVVVPPF	599.34	1197.68	2	Villegas et al. (2014)
β-cas.	LVYPFPGPIHNSLPQN	896.96	1792.93	2	Quirós et al. (2009)
β-cas.	LYQEPVLGPVRGPFPIIV	997.58	1994.14	2	Pihlanto et al. (2010)
β- cas.	MPFPKYPVEP	602.80	1204.60	2	Contreras et al. (2009)
β-cas.	MPFPKYPVEPF	676.34	1351.67	2	Hayes et al. (2007)
β-cas.	QEPVLGPVRGPFP	696.88	1392.76	2	Hernandes-Ledesma et
					(2004)
β-cas.	QEPVLGPVRGPFPIIV	859.50	1718.00	2	Perpetuo et al. (2003)

Table 6. ACE inhibitory peptides in fermented goat milk of *Lc. lactis* ssp *lactis* BD17 as

597 reported in the literature

Parent	Sequence	m/z	MH+	Charge	
Protein*		[Da]	[Da]		References
αs1-cas.	VLNENLR	485.78	970.56	2	Zhao et al. (2019)
β-cas.	VLGPVRGPFP	519.81	1038.61	2	Gútiez et al. (2013)
β-cas.	VVVPPF	329.20	657.39	2	Torres-Llanez et al.
					(2011)
β-cas.	YQEPVLGPVRGPFPI	834.95	1668.90	2	Zhao et al. (2019)
β-cas.	YQEPVLGPVRGPFPIIV	627.69	1881.06	3	Zhao et al. (2019)
β-cas.	YQEPVLGPVR	579.31	1157.63	2	Kalyankar et al. (2013)

*Protein access code at <u>https://www.uniprot.org/.A:Alanine</u>, D:Aspartic Acid, E:Glutamic Acid, F:
Phenylalanine, G: Glysin, I: Isoleucine, K: Lysine, L: Leucine, M: Methionine, N: Asparagine, P: Proline,
Q: Glutamine, R: Arginine, S: Serine, T: Threonin, V: Valine, W: Triptophan, Y: Tyrosine, cas: casein

Supplementari Dataset 1. Peptide profile (<3 kDa) released from goat milk proteins during

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
as1-	DIPNPIGSENSGKTTMPLW	2057.00	1029.00	2057.00	1029.00	2	21.97
casein	DVPSERYLGYLE	1440.70	720.85	1440.70	720.85	2	19.95
	DVPSERYLGYLEQ	1568.76	784.88	1568.76	784.88	2	19.81
	EDVPSERY	994.45	497.73	994.45	497.73	2	12.21
	EDVPSERYLG	1164.55	582.78	1164.55	582.78	2	14.95
	FSDIPNPIGSE	1175.56	588.28	1175.56	588.28	2	19.45
	FSDIPNPIGSEN	1289.60	645.30	1289.60	645.30	2	19.16
	FSDIPNPIGSENSG	1433.65	717.33	1433.65	717.33	2	19.04
	FSDIPNPIGSENSGK	1561.75	781.38	1561.75	781.38	2	16.64
	FSDIPNPIGSENSGKT	1662.79	831.90	1662.80	831.90	2	16.62
	FSDIPNPIGSENSGKTTMP	1991.93	996.47	1991.94	996.47	2	17.90
	FSDIPNPIGSENSGKTTMPLW	2291.10	1146.05	2291.10	1146.05	2	21.9
	IGSENSGKTTMPLW	1520.74	760.87	1520.74	760.87	2	18.4
	IPNPIGSE	826.43	413.72	826.43	413.72	2	16.20
	IPNPIGSEN	940.47	470.74	940.47	470.74	2	15.8
	IPNPIGSENSEKT	1385.69	693.35	1385.69	693.35	2	14.4
	IPNPIGSENSG	1084.52	542.77	1084.53	542.77	2	15.6
	IPNPIGSENSGK	1212.62	606.81	1212.62	606.81	2	13.1
	IPNPIGSENSGKTTMP	1642.81	821.91	1642.81	821.91	2	15.69
	IPNPIGSENSGKTTMPLW	1941.97	971.49	1941.97	971.49	2	20.3
	NENLLRF	905.48	453.24	905.48	453.25	2	17.8

⁶⁰⁴ fermentation using *Lc. lactis* ssp *lactis* BD17

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
	NSGKTTMPL	948.48	474.74	948.48	474.74	2	12.03
	NSGKTTMPLW	1134.56	567.78	1134.56	567.78	2	17.5
	PIGSENSGKTTMP	1318.63	659.82	1318.63	659.82	2	12.1
	PIGSENSGKTTMPLW	1617.79	809.40	1617.79	809.40	2	18.7
	RQFYQLD	969.48	485.24	969.48	485.24	2	16.04
	RYLGYLE	913.48	457.24	913.48	457.24	2	16.26
	RYLGYLEQ	1041.54	521.27	1041.54	521.27	2	15.86
	SDIPNPIGSEN	1142.53	571.77	1142.53	571.77	2	17.19
	SDIPNPIGSENSG	1286.58	643.79	1286.59	643.80	2	17.07
	SDIPNPIGSENSGKTTMP	1844.87	922.94	1844.87	922.94	2	16.72
	SDIPNPIGSENSGKTTMPLW	2144.03	1072.52	2144.03	1072.52	2	21.19
	SERYLGY	887.42	444.22	887.43	444.22	2	14.12
	SERYLGYLE	1129.55	565.28	1129.55	565.28	2	17.28
	SGKTTMPLW	1020.52	510.76	1020.52	510.76	2	17.59
	VAPFPE	659.34	330.17	659.34	330.17	2	17.23
	VLNENLLR	970.57	485.79	970.57	485.79	2	15.29
	VLNENLLRF	1117.64	559.32	1117.64	559.32	2	19.78
	VPSERYLGYL	1196.63	598.82	1196.63	598.82	2	18.44
	VPSERYLGYLE	1325.67	663.34	1325.67	663.34	2	18.13
	VPSERYLGYLEQ	1453.73	727.37	1453.73	727.37	2	17.95
as2-	EEEKNRLNF	1178.58	589.79	1178.58	589.79	2	12.64
casein	EEEKNRLNFL	1291.66	646.33	1291.66	646.34	2	15.88
	EEKNRLNF	1049.54	525.27	1049.54	525.27	2	11.90

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
-	EEKNRLNFL	1162.62	581.81	1162.62	581.81	2	15.54
	EKNRLNFLK	1161.67	581.34	1161.67	581.34	2	11.87
	FYQKFPQ	957.48	479.24	957.48	479.25	2	14.06
	FYQKFPQY	1120.55	560.78	1120.55	560.78	2	16.20
	FYQKFPQYL	1233.63	617.32	1233.63	617.32	2	18.63
	GPIVLNPW	895.50	448.25	895.50	448.26	2	22.37
	ITVDDKHY	990.49	495.75	990.49	495.75	2	11.22
	ITVDDKHYQKALN	1544.80	515.61	1544.81	515.61	3	12.22
	IVLNPWDQVK	1211.68	606.34	1211.68	606.34	2	18.66
	KALNEINQ	929.51	465.26	929.51	465.26	2	8.98
	KALNEINQF	1076.57	538.79	1076.57	538.79	2	15.44
	KNRLNFLK	1032.63	344.88	1032.63	344.88	3	10.93
	LNFLKKIS	962.60	481.80	962.60	481.81	2	15.05
	MESTEVFTK	1071.50	536.25	1071.50	536.25	2	13.62
	NEINQFYQ	1055.48	528.24	1055.48	528.24	2	17.52
	NEINQFYQK	1183.57	592.29	1183.57	592.29	2	14.66
	NPWDQVKR	1042.54	348.19	1042.54	348.19	3	12.96
	NQFYQKFPQ	1199.58	600.30	1199.58	600.30	2	15.36
	PWDQVK	772.40	386.70	772.40	386.70	2	12.47
	PWDQVKR	928.50	310.17	928.50	310.17	3	10.59
	QFYQKFPQ	1085.54	543.27	1085.54	543.27	2	14.89
	QFYQKFPQY	1248.60	624.80	1248.60	624.81	2	16.83
	QGPIVLNPW	1023.56	512.28	1023.56	512.28	2	22.27
	QGPIVLNPWDQVK	1493.81	747.41	1493.81	747.41	2	19.51

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
	QGPIVLNPWDQVKR	1649.90	825.46	1649.91	825.46	2	17.90
	QGPIVLNPWDQVKRN	1763.95	882.48	1763.96	882.48	2	17.75
	QKALNEINQ	1057.56	529.28	1057.56	529.29	2	10.95
	VFTKKTKLTE	1194.71	597.86	1194.71	597.86	2	9.81
	YQGPIVLNPW	1186.62	593.82	1186.63	593.82	2	23.21
	YQGPIVLNPWDQVK	1656.87	828.94	1656.87	828.94	2	20.32
	YQGPIVLNPWDQVKR	1812.97	906.99	1812.98	906.99	2	18.51
	YQKALNEIN	1092.57	546.79	1092.57	546.79	2	12.30
	YQKALNEINQ	1220.62	610.82	1220.63	610.82	2	12.46
	YQKFPQYL	1086.56	543.78	1086.56	543.78	2	17.42
β-	DELQDKIHP	1094.55	547.78	1094.55	547.78	2	12.66
casein	DELQDKIHPF	1241.61	621.31	1241.62	621.31	2	16.24
	DELQDKIHPFAQ	1440.71	480.91	1440.71	480.91	3	16.44
	DKIHPF	756.40	378.70	756.40	378.71	2	20.37
	DKIHPFAQ	955.50	478.25	955.50	478.25	2	12.10
	EDELQDKIHP	1223.59	408.53	1223.59	408.53	3	13.45
	EDELQDKIHPF	1370.66	685.83	1370.66	685.83	2	16.69
	EEQQQTEDELQDKIHP	1966.90	656.30	1966.90	656.30	3	14.60
	ELQDKIHPF	1126.59	563.80	1126.59	563.80	2	14.92
	ELQDKIHPFA	1197.62	599.32	1197.63	599.32	2	15.04
	ELQDKIHPFAQ	1325.68	663.35	1325.68	663.35	2	14.89
	EMPFPKYPVEP	1333.65	667.33	1333.65	667.33	2	18.71
	EMPFPKYPVEPF	1480.72	740.86	1480.72	740.86	2	21.40
	EMPFPKYPVEPFTE	1726.80	863.90	1726.80	863.91	2	19.59

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
-	EMPFPKYPVEPFTES	1813.83	907.42	1813.84	907.42	2	20.89
	EMPFPKYPVEPFTESQ	1941.89	971.45	1941.89	971.45	2	20.65
	EPVLGPVRGPFP	1264.70	632.86	1264.70	632.86	2	18.78
	EPVLGPVRGPFPI	1377.79	689.40	1377.79	689.40	2	20.98
	EPVLGPVRGPFPII	1490.87	745.94	1490.87	745.94	2	22.40
	EPVLGPVRGPFPIIV	1589.95	795.48	1589.94	795.47	2	23.56
	EQQQTEDELQ	1247.54	624.27	1247.54	624.27	2	12.66
	EQQQTEDELQDK	1490.66	745.83	1490.66	745.83	2	10.45
	EQQQTEDELQDKIHP	1837.85	613.29	1837.86	613.29	3	13.82
	EQQQTEDELQDKIHPF	1984.92	992.96	1984.92	992.97	2	16.78
	FLLYQEPVL	1121.62	561.32	1121.62	561.32	2	24.24
	FPKYPVE	879.46	440.23	879.46	440.23	2	14.87
	FPKYPVEPF	1123.58	562.29	1123.58	562.29	2	19.12
	FPKYPVEPFT	1224.63	612.82	1224.63	612.82	2	18.77
	FPKYPVEPFTES	1440.70	720.85	1440.70	720.86	2	18.66
	FPKYPVEPFTESQ	1568.76	784.88	1568.76	784.89	2	18.65
	FPKYPVEPFTESQS	1655.79	828.40	1655.80	828.40	2	18.47
	FPPQSVLSL	987.55	494.28	987.55	494.28	2	22.89
	GPIPNSLPQN	1036.54	518.77	1036.54	518.77	2	16.11
	GPVRGPFP	826.46	413.73	826.46	413.73	2	14.30
	GPVRGPFPI	939.54	470.27	939.54	470.27	2	17.48
	GPVRGPFPII	1052.62	526.82	1052.63	526.82	2	20.18
	HKEMPFPKYP	1273.64	637.32	1273.64	637.32	2	13.54
	HKEMPFPKYPVEPF	1745.87	873.44	1745.87	873.44	2	17.82

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
-	IEKFQSE	880.44	440.72	880.44	440.72	2	10.32
	INKKIEKFQ	1147.68	574.34	1147.68	574.35	2	9.73
	KEMPFPK	876.46	438.74	876.46	438.74	2	11.13
	KEMPFPKYP	1136.58	568.79	1136.58	568.79	2	14.79
	KEMPFPKYPVEPF	1624.81	542.27	1624.81	542.27	3	17.85
	KEMPFPKYPVEPFTESQ	2053.99	1027.50	2053.99	1027.50	2	18.37
	KHKEMPFPKYPVEPLTE	2070.09	518.28	2070.07	518.27	4	16.31
	KYPVEPF	879.46	440.23	879.46	440.23	2	16.30
	LGPVRGPFP	939.54	470.27	939.54	470.27	2	16.86
	LGPVRGPFPI	1052.62	526.82	1052.63	526.82	2	19.27
	LGPVRGPFPII	1165.71	583.36	1165.71	583.36	2	21.23
	LLYQEPVL	974.55	487.78	974.56	487.78	2	20.67
	LQDKIHPF	997.55	499.28	997.55	499.28	2	13.46
	LQDKIHPFAQ	1196.64	598.82	1196.64	598.82	2	13.32
	LTQTPVVVPP	1050.62	525.81	1050.62	525.81	2	17.35
	LTQTPVVVPPF	1197.69	599.35	1197.69	599.35	2	22.14
	LTQTPVVVPPFLQPE	1664.93	832.97	1664.93	832.97	2	24.04
	LVYPFPGPIHN	1253.67	627.34	1253.67	627.34	2	19.39
	LVYPFPGPIHNSLPQN	1792.93	896.97	1792.94	896.97	2	19.59
	LYQEPVLGPVR	1270.72	635.86	1270.72	635.86	2	16.42
	LYQEPVLGPVRGP	1424.79	712.90	1424.79	712.90	2	17.40
	LYQEPVLGPVRGPFPI	1782.00	891.50	1781.99	891.50	2	21.94
	LYQEPVLGPVRGPFPII	1895.07	948.04	1895.08	948.04	2	23.54
	LYQEPVLGPVRGPFPIIV	1994.14	997.58	1994.15	997.58	2	24.37

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
-	MFPPQSVLS	1005.51	503.26	1005.51	503.26	2	19.98
	MFPPQSVLSL	1118.59	559.80	1118.59	559.80	2	23.51
	MPFPKYP	879.44	440.22	879.44	440.23	2	19.47
	MPFPKYPVEP	1204.61	602.81	1204.61	602.81	2	16.50
	MPFPKYPVEPF	1351.68	676.34	1351.68	676.34	2	20.54
	MPFPKYPVEPFT	1452.72	726.86	1452.72	726.87	2	20.24
	MPFPKYPVEPFTE	1597.76	799.38	1597.76	799.38	2	19.13
	MPFPKYPVEPFTES	1668.80	834.90	1668.80	834.90	2	20.16
	MPFPKYPVEPFTESQS	1883.89	942.45	1883.89	942.45	2	19.98
	MPIQAFLLY	1095.59	548.30	1095.59	548.30	2	26.07
	PFPKYPVEP	1073.57	537.29	1073.57	537.29	2	16.40
	PFPKYPVEPF	1220.63	610.82	1220.64	610.82	2	19.42
	PKHKEMPFPKYPV	1597.85	533.29	1597.86	533.29	3	12.70
	PKHKEMPFPKYPVEPFTE	2201.13	734.38	2201.11	734.37	3	16.73
	PKYPVEPFTE	1206.60	603.80	1206.60	603.81	2	16.75
	PKYPVEPFTES	1293.63	647.32	1293.64	647.32	2	16.52
	PVLGPVRGPFPI	1248.74	624.88	1248.75	624.88	2	20.30
	PVLGPVRGPFPIIV	1460.90	730.95	1460.90	730.95	2	23.12
	PVVVPPFLQP	1092.64	546.83	1092.65	546.83	2	23.69
	PVVVPPFLQPE	1221.69	611.35	1221.69	611.35	2	23.43
	QDKIHPFAQ	1083.56	542.28	1083.56	542.28	2	11.59
	QEPVLGPV	838.47	419.74	838.47	419.74	2	17.73
	QEPVLGPVR	994.57	497.79	994.57	497.79	2	13.75
	QEPVLGPVRGP	1148.64	574.82	1148.64	574.82	2	15.26

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
-	QEPVLGPVRGPF	1295.71	648.36	1295.71	648.36	2	18.59
	QEPVLGPVRGPFP	1392.76	696.88	1392.76	696.89	2	18.86
	QEPVLGPVRGPFPI	1505.85	753.43	1505.85	753.43	2	26.61
	QEPVLGPVRGPFPII	1618.93	809.97	1618.93	809.97	2	26.08
	QEPVLGPVRGPFPIIV	1718.00	859.50	1718.00	859.50	2	24.50
	QQQTEDELQ	1118.49	559.75	1118.50	559.75	2	12.30
	QQQTEDELQD	1233.52	617.26	1233.52	617.27	2	12.81
	QQQTEDELQDKIHP	1708.81	854.91	1708.81	854.91	2	13.18
	QQQTEDELQDKIHPF	1855.88	619.30	1855.88	619.30	3	16.44
	QQQTEDELQDKIHPFA	1926.92	642.98	1926.92	642.98	3	16.39
	QQTEDELQDKIHP	1580.75	790.88	1580.76	790.88	2	13.22
	QQTEDELQDKIHPF	1727.82	864.41	1727.82	864.42	2	16.54
	QTEDELQDKIHP	1452.70	726.85	1452.70	726.85	2	13.75
	QTEDELQDKIHPF	1599.76	800.39	1599.76	800.39	2	16.45
	QTPVVVPPFL	1096.64	548.82	1096.64	548.82	2	24.27
	QTPVVVPPFLQPE	1450.79	725.90	1450.79	725.90	2	23.43
	RDMPIQAFL	1090.57	545.79	1090.57	545.79	2	20.65
	RDMPIQAFLL	1203.65	602.33	1203.66	602.33	2	23.59
	RDMPIQAFLLY	1366.72	683.86	1366.72	683.86	2	23.50
	SEEQQQTEDELQDKIHP	2053.92	1027.47	2053.93	1027.47	2	15.05
	SQSLTLTDVE	1092.54	546.77	1092.54	546.77	2	18.13
	TEDELQDKIHP	1324.64	662.82	1324.64	662.82	2	13.33
	TEDELQDKIHPF	1471.70	736.36	1471.71	736.36	2	16.02
	TESQSLTLTDVE	1322.63	661.82	1322.63	661.82	2	18.26

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
-	TPVVVPPF	855.50	428.25	855.50	428.25	2	21.27
	TPVVVPPFL	968.58	484.79	968.58	484.79	2	24.55
	TPVVVPPFLQP	1193.69	597.35	1193.69	597.35	2	23.75
	TPVVVPPFLQPE	1322.73	661.87	1322.74	661.87	2	23.43
	TQTPVVVPPF	1084.60	542.80	1084.60	542.81	2	21.60
	TQTPVVVPPFL	1197.69	599.35	1197.69	599.35	2	24.43
	TQTPVVVPPFLQP	1422.80	711.90	1422.80	711.90	2	23.63
	TQTPVVVPPFLQPE	1551.84	776.43	1551.84	776.42	2	30.97
	VLGPVRGPFP	1038.61	519.81	1038.61	519.81	2	18.19
	VLGPVRGPFPI	1151.69	576.35	1151.69	576.35	2	20.03
	VLGPVRGPFPII	1264.78	632.89	1264.78	632.89	2	22.78
	VLGPVRGPFPIIV	1363.84	682.43	1363.85	682.43	2	28.17
	VLPVPQ	652.40	326.70	652.40	326.71	2	15.32
	VMFPPQS	805.39	403.20	805.39	403.20	2	16.30
	VMFPPQSVL	1017.54	509.27	1017.54	509.28	2	22.36
	VMFPPQSVLS	1104.57	552.79	1104.58	552.79	2	21.62
	VMFPPQSVLS	1120.57	560.79	1120.57	560.79	2	19.49
	VMFPPQSVLSL	1233.65	617.33	1233.65	617.33	2	23.33
	VMFPPQSVLSL	1217.66	609.33	1217.66	609.33	2	24.26
	VVVPPF	657.40	329.20	657.40	329.20	2	20.59
	VVVPPFL	770.48	385.74	770.48	385.74	2	24.53
	VVVPPFLQPE	1124.63	562.82	1124.64	562.82	2	24.08
	YQEPVLGPV	1001.53	501.27	1001.53	501.27	2	18.92
	YQEPVLGPVR	1157.63	579.32	1157.63	579.32	2	15.35

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
	YQEPVLGPVRG	1214.66	607.83	1214.65	607.83	2	15.39
	YQEPVLGPVRGP	1311.70	656.36	1311.71	656.36	2	16.47
	YQEPVLGPVRGPFP	1555.82	778.42	1555.83	778.42	2	19.51
	YQEPVLGPVRGPFPI	1668.91	834.96	1668.91	834.96	2	64.61
	YQEPVLGPVRGPFPII	1781.99	594.67	1781.99	594.67	3	22.93
	YQEPVLGPVRGPFPIIV	1881.06	627.69	1881.06	627.69	3	23.72
К-	AKYIPIQY	995.56	498.28	995.56	498.28	2	16.34
casein	AKYIPIQYVL	1207.70	604.36	1207.71	604.36	2	20.15
	ARHPHPHLSF	1198.62	599.81	1198.62	599.82	2	10.28
	ARHPHPHLSFM	1329.66	665.33	1329.66	665.34	2	11.29
	ARHPHPHLSFM	1345.65	673.33	1345.66	673.33	2	11.89
	DKIAKYIPIQY	1351.76	676.38	1351.76	676.38	2	17.78
	FLPYPYY	962.47	481.74	962.47	481.74	2	21.87
	FMAIPPK	819.44	410.23	819.44	410.23	2	11.73
	FMAIPPK	803.45	402.23	803.45	402.23	2	16.49
	FMAIPPKK	931.54	466.27	931.54	466.28	2	11.40
	IAKYIPIQY	1108.64	554.82	1108.64	554.82	2	17.45
	IAKYIPIQYVL	1320.79	660.90	1320.79	660.90	2	21.29
	KYIPIQ	761.45	381.23	761.46	381.23	2	13.23
	KYIPIQY	924.52	462.76	924.52	462.76	2	16.01
	KYIPIQYVL	1136.67	568.84	1136.67	568.84	2	20.10
	KYIPIQYVLS	1223.70	612.35	1223.70	612.36	2	19.15
	LSRYPSYGL	1055.55	528.28	1055.55	528.28	2	15.88
	LSRYPSYGLN	1169.59	585.30	1169.59	585.30	2	15.07

Parent protein [*]	Sequence	Prec MW	Prec m/z	Theor MW	Ther m/z	Charge	RT
Proven	NQFLPYPYYA	1275.60	638.30	1275.60	638.31	2	22.27
	NQFLPYPYYAK	1403.70	702.35	1403.70	702.35	2	18.61
	NQFLPYPYYAKP	1500.75	750.88	1500.75	750.88	2	19.05
	QFLPYPYY	1090.52	545.77	1090.52	545.77	2	22.46
	QFLPYPYYA	1161.56	581.28	1161.56	581.28	2	22.24
	QFLPYPYYAK	1289.65	645.33	1289.66	645.33	2	18.58
	RHPHPHLSF	1127.58	376.53	1127.59	376.53	3	10.16
	RHPHPHLSFM	1258.62	629.82	1258.63	629.82	2	12.78
	RHPHPHLSFm	1274.62	637.81	1274.62	637.81	2	10.50
	RYPSYGL	855.43	428.22	855.44	428.22	2	14.89
	SRYPSYGL	942.47	471.74	942.47	471.74	2	15.20
	SRYPSYGLN	1056.51	528.76	1056.51	528.76	2	14.19
	SRYPSYGLNY	1219.57	610.29	1219.57	610.29	2	16.26
	SRYPSYGLNYY	1382.64	691.82	1382.64	691.82	2	17.51
	VLSRYPSY	984.51	492.76	984.51	492.76	2	13.81
	VLSRYPSYG	1041.53	521.27	1041.54	521.27	2	13.44
	VLSRYPSYGL	1154.62	577.81	1154.62	577.81	2	16.60
	VLSRYPSYGLN	1268.66	634.83	1268.66	634.84	2	15.66
ά- lb	AFHTSGYDTQ	1126.48	563.74	1126.48	563.74	2	11.81
	DKVGINYW	994.50	497.75	994.50	497.75	2	18.44
	FHTSGYDTQ	1055.44	528.22	1055.44	528.23	2	11.48
β-lg	KTKIPAVF	903.57	452.29	903.57	452.29	2	14.03
	KTKIPAVFKID	1259.77	420.59	1259.77	420.60	3	15.07
	LEKFDKAL	963.55	482.28	963.55	482.28	2	13.25

- 607 *Protein access code at <u>https://www.uniprot.org/.A:Alanine</u>, D: Aspartic Acid, E: Glutamic Acid,
- 608 F: Phenylalanine, G: Glysin, I: Isoleucine, K: Lysine, L: Leucine, M: Methionine, N: Asparagine,
- 609 P: Proline, Q: Glutamine, R: Arginine, S: Serine, T: Threonin, V: Valine, W: Triptophan, Y:
- 610 Tyrosine, lb: lactalbumin, lg: lactoglobulin, MW: Molecular Weight, RT: Retention Time.
- 611
- 612