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Abstract 32 

Clostridium difficile (C. difficile) present in feces of food animals may contaminate their 33 

meats and act as a potential source of C. difficile infection (CDI) to humans. C. difficile 34 

resistance to antibiotics, its production of toxins and spores play major roles in the 35 

pathogenesis of CDI. This is the first study to evaluate C. difficile prevalence in retail raw 36 

animal meats, its antibiotics susceptibilities and toxigenic activities in Al-Jouf, Saudi Arabia. 37 

Totally, 240 meat samples were tested. C. difficile was identified by standard microbiological 38 

and biochemical methods. Vitek-2 compact system confirmed C. difficile isolates were 15 ⁄ 39 

240 (6.3%). Toxins A/B were not detected by Xpect C. difficile toxin A/B tests. Although all 40 

isolates were susceptible to vancomycin and metronidazole, variable degrees of reduced 41 

susceptibilities to moxifloxacin, clindamycin or tetracycline antibiotics were detected by 42 

Epsilon tests. C. difficile strains with reduced susceptibility to antibiotics should be 43 

investigated. Variability between the worldwide reported C. difficile contamination levels 44 

could be due to absence of a gold standard procedure for its isolation. Establishment of a 45 

unified testing algorithm for C. difficile detection in food products is definitely essential to 46 

evaluate the inter-regional variation in its prevalence on national and international levels. 47 

Proper use of antimicrobials during animal husbandry is crucial to control the selective drug 48 

pressure on C. difficile strains associated with food animals. Investigating the protective or 49 

pathogenic potential of non-toxigenic C. difficile strains and the possibility of gene transfer 50 

from certain toxigenic/antibiotics-resistant to non-toxigenic/antibiotics-sensitive strains, 51 

respectively, should be worthy of attention.    52 

 53 

Keywords: Animal meat, Diarrhea, Pseudomembranous colitis, Resistance, Spores. 54 

 55 
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Introduction 56 

 57 

Clostridium difficile (C. difficile) is a dangerous organism that is responsible for 15%–30% 58 

of antibiotic associated diarrhea cases around the world (Hampikyan et al. 2018). Many 59 

important risk factors such as improper use of antibiotics, reduced immunity and advanced 60 

age of the host may facilitate acquiring of C. difficile infection (CDI) (Rupnik et et al. 2009). 61 

Centers for Disease Control and Prevention listed C. difficile between the most dangerous 62 

three urgent emerging multi-antibiotics resistant pathogens (Mooyottu et al. 2015). The 63 

infected persons may suffer from mild diarrhea, pseudo-membranous colitis, toxic 64 

megacolon or even death (ECDC 2018). 65 

 66 

Lawson et al. (2016) reclassified C. difficile as Clostridioides difficile which is an anaerobic, 67 

Gram-positive, spore-forming bacterium. It grows best at 35–40℃ (Dawson et al. 2009). 68 

Surviving of C. difficile spores on the surfaces for long times and their resistance to many 69 

disinfectants are important factors that favor spreading of the organism (Weese 2010). The 70 

spores, if contaminated the meat from food handlers during slaughtering or from the infected 71 

animals, may survive for two hours at 71℃, so they are not be killed by cooking (Rodriguez 72 

et al. 2013). 73 

 74 

There is change in C. difficile epidemiology with increasing incidence, severity, relapses of 75 

CDI in humans after the emergence of the novel hypervirulent strains, as 078 and 027 76 

ribotypes, in North America and Europe (Smits et al. 2016). Young non-hospitalized persons, 77 

who were earlier considered as a low-risk group, now can be affected by CDI. Furthermore, 78 

in Netherlands and USA there are remarkable rates of probable community-acquired CDI 79 

(Abdel-Glil et al. 2018). 80 



 

5  

 81 

The human carrier rates of C. difficile vary from high percent (15%) in Japan to low percent 82 

(0–3%) in Europe (Mulligan 2008). Similarly, animals can act as carriers for C. difficile 83 

(Keessen 2011). Therefore, C. difficile can contaminate soil, foods and water through feces, 84 

and this could suggest a possible method of transmission to humans resulting in CDI (Abdel-85 

Glil et al. 2018).  86 

 87 

If livestock are potential sources of C. difficile, food products contaminated with their feces 88 

could be one of the transmission modes from infected or colonized animals to humans 89 

through the food chain. It was reported that shedding of C. difficile during slaughtering of 90 

animals and spillage of their gut contents during evisceration can result in accumulation of C. 91 

difficile spores within the slaughterhouse environment leading to contamination of the animal 92 

carcasses and meats (EFSA 2013).  93 

 94 

CDI has a major cost impact with an estimated annual cost of U.S. $3.2 billion (Zilberberg et 95 

al. 2008). The prevalence rate of CDI among patients with diarrhea in Egypt is 23·6% (Abu 96 

Faddan et al. 2016), in Lebanon is 65.2% (Moukhaiber et al. 2015) and in Jordan is 92.4% % 97 

(Wadi et al. 2015). In Saudi Arabia, there is no published study about prevalence of CDI on a 98 

national level, yet, few reports of single-center studies detected low rate of CDIs (Obaid and 99 

Alhifany 2020). One of these studies reported 4.6% prevalence rate of CDI among patients 100 

with diarrhea (Shehabi et al. 2015). Another study reported an increase in the prevalence rate 101 

of healthcare-associated CDIs from 17% in 2001 to 20% in 2018 among all suspected 102 

diarrheal stool tested (Al-Tawfiq et al. 2020). 103 

 104 

Data about C. difficile susceptibility to antibiotics are important for better estimating the 105 
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organism’s virulence and predicting its management plan (Peng et al. 2017). C. difficile 106 

resistance to antibiotics and its production of toxins play major roles in the pathogenesis of 107 

CDI (Kuehne et al. 2011). Vancomycin and metronidazole were recommended as a treatment 108 

of CDI (Debast et al. 2014; Cho et al. 2020). Moreover, clindamycin, tetracycline and 109 

moxifloxacin are among the most significant risk antibiotics for developing of CDI (Teng et 110 

al. 2019). Recently, concerns about the prophylactic and therapeutic use of many antibiotics, 111 

such as vancomycin, metronidazole and fluoroquinolones, in butchery animal husbandry to 112 

promote their growth have gradually increased (Muratoglu et al. 2020).  113 

 114 

Toxins are the most important virulence factors responsible for CDI in addition to other 115 

factors (Janoir 2016). Toxin A is an enterotoxin that can lead to accumulation of fluids in 116 

colon of many animal models. Toxin B is a cytotoxin that can lead to inflammation and 117 

damage of mucosa of the colon (Voth and Ballard 2005). These two toxins with their 118 

regulatory genes are chromosomally encoded in a specific pathogenicity locus (PaLoc) that is 119 

absent in the non-toxigenic strains (Martin-Verstraete et al. 2016). It should be noted that 120 

approximately 11% of the C. difficile genome is made up of mobile genetic elements that 121 

could facilitate modulation of toxin gene expression, the transfer of antibiotic resistance or 122 

toxin genes and the conversion of toxin non-producers into toxigenic strains (Mooyottu et al. 123 

2015; Peng et al. 2017).  124 

 125 

A better understanding of C. difficile transmission from animals to humans is required all 126 

over the world. Information on C. difficile isolation and characterization from many animal 127 

meat products has amplified quickly in different countries and populations; however, such 128 

information is not sufficient in Saudi Arabia. As far as I know, this is the first study to 129 
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determine the prevalence of C. difficile in raw camel, cow, sheep, and goat meats that were 130 

collected from Sakaka, Al-Jouf, Saudi Arabia and to evaluate the isolates’ antibiotics 131 

sensitivity patterns and toxigenic activities. 132 

 133 

 134 

 135 

Materials and methods 136 

 137 

Collection of samples 138 

Bioethical approval was obtained from the local committee of bioethics (LCBE) of Jouf 139 

University, Saudi Arabia, (approval No: 07-02/41). A cross-sectional study was conducted to 140 

collect 240 raw animal meat samples (60 from camels, 60 from cows, 60 from sheep, and 60 141 

from goats) in October and November of the year 2019. The samples were randomly 142 

purchased (by simple random sampling procedure; flipping a coin) from 25 retail outlets 143 

(butcher shops, markets and supermarkets) in Sakaka, Al-Jouf, Saudi Arabia. Each sample, at 144 

least 100 g weight, was collected in a sterile bag, and transported in an icebox to 145 

microbiology laboratory for processing.  146 

 147 

Isolation and identification of C. difficile 148 

The samples were processed using aseptic techniques to avoid their contamination as 149 

described by Weese and colleagues (Weese et al. 2009). Briefly, 25 g from each sample was 150 

homogenized by hand massaging for 5 min with 25 mL of sterile phosphate buffered peptone 151 

(PBP) inside a sterile bag. From the prepared homogenate, 1 mL was mixed with 9 mL of C. 152 

difficile Moxalactam Norfloxacin (CDMN) broth (Oxoid, Hampshire, UK) with 0.1% sodium 153 
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taurocholate then incubated at 37 ℃ anaerobically for 7 days by using anaerobic jars with 154 

gas packs and anaerobic indicators (Oxoid, Hampshire, UK). Selection of spores was done by 155 

alcohol shock as the following; 1 mL of CDMN broth culture was mixed with equal volume 156 

of anhydrous ethanol, incubated for 1 h at ambient temperature, centrifuged for 10 min at 157 

1,792 g, the supernatant was discarded then the pellet was inoculated on CDMN agar by 158 

using a sterile swab then incubated at 37 ℃ anaerobically for 72 h. Suspicious growth on the 159 

CDMN agar was subcultured into thioglycolate broth then incubation at 37 ℃ under 160 

anaerobic conditions for 72 h. Likewise, suspicious growth on the CDMN agar was 161 

subcultured on blood agar. After incubation under anaerobic conditions at 37 ℃ for 72 h, 162 

suspected colonies were examined by the standard microbiological and biochemical 163 

techniques including colony morphology and odor testing and Gram staining. 164 

 165 

Confirmation of C. difficile   166 

Suspected colonies (greyish white with horse manure odor and revealing Gram-positive 167 

bacilli) were examined by L-proline aminopeptidase and C. difficile test kits (Oxoid, 168 

Hampshire, UK) as per the manufacturer's instructions. The positive isolates were confirmed 169 

by Vitek-2 compact system (BioMérieux, Marcy l'Etoile, France). A control positive 170 

reference strain (ATCC 9689) was included in all steps (Oxoid, Hampshire, UK) (ECDC 171 

2018). 172 

 173 

 174 

Toxins A/B detection  175 

Toxins A/B production by the confirmed C. difficile isolates was evaluated by Xpect CD 176 

Toxin A/B test (Oxoid, Hampshire, UK) according to the supplier’s manual. Triplicate 177 
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testing was done for each isolate. Briefly, thioglycolate broth of isolates was incubated at 37 ℃ 178 

anaerobically for 24 h. Sufficient volume of the broth culture was mixed with an equal 179 

volume of brain heart infusion (BHI) broth and incubated anaerobically at 37 ℃ for 72 h 180 

then used to detect the toxins (ECDC 2018). C. difficile ATCC 9689 (Oxoid, Hampshire, UK) 181 

was used as a positive control strain (toxigenic A+/B+/CDT-).  182 

 183 

Antibiotic susceptibility testing 184 

The Vitek-2-confirmed C. difficile isolates susceptibility/resistance to vancomycin, 185 

metronidazole, tetracycline, clindamycin and moxifloxacin antibiotics was evaluated by 186 

Epsilon tests (E-tests, BioMérieux, Marcy l'Etoile, France) according to the manufacturer's 187 

manual. C. difficile ATCC 9689 (Oxoid, Hampshire, UK) was used as a positive control 188 

reference strain. Triplicate testing was performed for each isolate. The isolates were 189 

inoculated on brucella agar (Oxoid, Hampshire, UK) supplemented with 5.0% sheep blood. 190 

Two minimum inhibition concentration (MIC) evaluator strips were placed on the agar then 191 

the plates were incubated at 37 °C anaerobically for 72 h. Vancomycin MIC values were 192 

compared with the European committee for antimicrobial susceptibility testing (EUCAST 193 

2019) breakpoints, while MIC values of metronidazole, tetracycline, clindamycin and 194 

moxifloxacin were compared with the clinical and laboratory standards institute (CLSI) 195 

breakpoints (CLSI 2019). 196 

  197 

Data analysis    198 

C. difficile prevalence was compared between animal meat types by Chi-square and Fisher 199 

exact tests. Statistical significance was considered at p<0.05. 200 

 201 



 

10  

Results 202 

 203 

Contamination of raw animal meats by C. difficile was screened in 240 meat samples. One 204 

hundred isolates were suspected (greyish white, rounded with a distinctive horse manure 205 

odor on CDMN agar). Fifty-five of them were positive by L-proline aminopeptidase and C. 206 

difficile test kits. C. difficile was confirmed by Vitek-2 compact system from 15 ⁄ 240 (6.3%) 207 

raw animal meat samples. Furthermore, Other Clostridium species were identified (Table 1). 208 

A Statistical significance (p=0.019) was detected in C. difficile prevalence between different 209 

animal meat samples (Table 2). It was clear that contamination of cow meats is more 210 

prevalent followed by camel meats. 211 

 212 

Although all Vitek-2 compact system-confirmed C. difficile isolates were susceptible to 213 

vancomycin and metronidazole antibiotics, some isolates were intermediate/resistant to 214 

tetracycline, clindamycin or moxifloxacin with variable degrees (Table 3). Toxins (A and B) 215 

were not detected among all confirmed C. difficile isolates. 216 

 217 

Discussion 218 

 219 

Food contamination with feces of colonized or infected livestock animals could be one of the 220 

transmission routes of C. difficile from animals to humans via the food chain. C. difficile has 221 

been detected in a wide range food, from beef (Rodriguez et al. 2014), pork (Rodriguez et al. 222 

2016), chicken meats (de Boer 2014; Taha 2021) to raw milk (Romano et al. 2018), 223 

vegetables (Eckert et al. 2013) and seafood (Troiano et al. 2015), taken directly from the 224 

grocery stores worldwide. The presence of C. difficile spores in these end products can be 225 
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explained by initial contamination of their raw materials, cross-contamination during their 226 

industry or production of the spores during their processing (Gauvry et al. 2016). In the 227 

domestic environment, spores present in refrigerators and on kitchen surfaces can 228 

contaminate the food products (Weese et al. 2010). 229 

 230 

Variable methods and culturing techniques can be used for C. difficile detection in food 231 

products due to absence of a gold standard procedure. The variability in the methodologies 232 

preclude the data comparison from different studies (Rupnik and Songer 2010). In the current 233 

study, only 15 C. difficile isolates were confirmed by the Vitek-2 compact system among 240 234 

tested raw animal meat samples. In addition, Other Clostridium species (most of them were C. 235 

bifermentans and C. sordellii) that displayed similar growth characters and colony 236 

morphology on CDMN agar were detected (Table 1). Similarly, Limbago et al. (2012) 237 

reported many Clostridia with similar growth characters on CDMN agar, as C. cadaveris, C. 238 

sporogenes, C. bifermentas, C. perfringens, C. septicum, C. difficile and some other 239 

unidentified Clostridia. These Clostridia may cross-react with C. difficile during its 240 

identification by L-proline aminopeptidase and C. difficile test kits. Consequently, in the 241 

conducted study, confirmation was done by Vitek-2 compact system with including a 242 

particular positive control reference strain of C. difficile (ATCC 9689) in each experiment. 243 

Other studies used Api 20A (Kouassi et al. 2014), API Rapid ID 32A (Troiano et al. 2015) or 244 

molecular (Bakri 2018; Romano et al. 2018; Zhang et al. 2019; Usui et al. 2020) tests to 245 

confirm C. difficile isolates. 246 

 247 

In the conducted study, the detected contamination level of raw animal meats by C. difficile 248 
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was low (6.3 %). Many previous studies from different countries reported a contamination 249 

level of animal meats by C. difficile lower than 9% (Jöbstl et al. 2010; De Boer et al. 2011; 250 

Quesada-Gómez et al. 2013; Esfandiari et al. 2014a, Esfandiari et al. 2014b, Rodriguez et al. 251 

2014; Varshney et al. 2014; Esfandiari et al. 2015; Lund and Peck 2015; Bakri 2018). 252 

Contrary to these results, Bouttier et al. (2010) in France and Pires et al. (2018) in Brazil, 253 

reported that they did not detect any C. difficile isolate from 59 and 80 animal meat samples, 254 

respectively. On the other hand, higher detection rates, up to 42% were reported by some 255 

studies (Weese et al. 2009; Kouassi et al. 2014). Lund and Peck (2015) have reported a 256 

higher rate (44%) in North America. 257 

 258 

Among the reasons for variability in C. difficile detection rates may be the variability in the 259 

methodologies used for enrichment, isolation, identification and confirmation of the isolates 260 

(Lund and Peck 2015). Another reason may be the variability in the degree of meat samples 261 

processing.  Songer et al. (2009) have reported that uncooked meats were less commonly 262 

contaminated by C. difficile than ready-to-eat meat products. Many studies have reported the 263 

increase in C. difficile detection rates with more handling, grinding and processing due to 264 

failure of most cleaning and sanitation practices to inactivate the spores that may accumulate 265 

on more environmental surfaces with increasing the possibility of meat contamination 266 

(Esfandiari et al. 2014b) (Varshney et al. 2014).  267 

 268 

It was clear in the current study that contamination of cow meats is more prevalent followed 269 

by camel meats. This might be due to more contact of humans with cows and camels on a 270 

daily basis to get their milk. Furthermore, farmers keep cows most of the time in cowsheds 271 



 

13  

that are usually close to their houses and this increases the possibility of C. difficile 272 

transmission between humans and cows. 273 

 274 

Resistance of C. difficile to antibiotics plays an important role in development of CDI.  The 275 

most commonly reported risk factor for development of CDI in humans is the prolonged use 276 

of antibiotics that could disrupt the colonic microbiota resulting in C. difficile overgrowth 277 

(Kuehne et al.  2011). Fifteen confirmed C. difficile isolates were tested against five 278 

antibiotics including vancomycin, metronidazole, tetracycline, clindamycin and moxifloxacin. 279 

Tetracycline, clindamycin and moxifloxacin are major risk antibiotics for CDI development 280 

(Teng et al. 2019). Vancomycin and metronidazole were recommended for treatment of 281 

severe and non-severe CDIs, respectively (Debast et al. 2014). Recently, it was reported that 282 

the use of metronidazole alone for treatment of non-severe CDIs is associated with higher 283 

recurrence rates. Consequently, metronidazole was recommended for treatment of non-severe 284 

CDIs only if vancomycin and fidaxomicin are not tolerated or unavailable. Fulminant cases 285 

need combination of vancomycin with metronidazole (Cho et al. 2020).    286 

 287 

Although all isolates in the conducted study were susceptible to vancomycin and 288 

metronidazole antibiotics, variable degrees of reduced susceptibility to tetracycline, 289 

clindamycin or moxifloxacin were detected in some isolates (Table 3). This result is in 290 

agreement with Varshney et al. (2014) and Berger et al. (2020) who reported complete 291 

susceptibility of C. difficile strains isolated from meat samples to vancomycin and 292 

metronidazole. Furthermore, Freeman et al. (2015) reported the resistance to vancomycin and 293 

metronidazole among 953 C. difficile isolates as 0.87 and 0.11 %, respectively. Moreover, 294 

Muratoglu et al. (2020) and Taha (2021) detected only one out of 22 and 11 C. difficile 295 
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isolates was resistant to metronidazole, respectively. On the other hand, Ersoz and Cosansu 296 

(2018) detected one tetracycline-vancomycin resistant C. difficile isolate recovered from 297 

uncooked meatball and another metronidazole-vancomycin resistant C. difficile isolate 298 

recovered from cooked meat sample. 299 

 300 

The current study detected 4/15 clindamycin-intermediate, 6/15 moxifloxacin-intermediate 301 

and 3/15 moxifloxacin-resistant C. difficile isolates. Berger et al. (2020) reported 2/80 302 

clindamycin-resistant and 26/80 moxifloxacin-resistant isolates. The relative decrease in the 303 

susceptibility of C. difficile to moxifloxacin might be cross-resistance with other 304 

fluoroquinolones which might be used for treatment of multiple gastrointestinal infections. 305 

 306 

The variability of reported results regarding antibiotic susceptibility of C. difficile isolates 307 

from animal meat origins can be explained by exposure of the food animals to different 308 

antibiotics during farm rearing or differences in the genetic characters of the strains.  309 

 310 

The toxins A and B were not detected in the broth cultures of the 15 confirmed C. difficile 311 

isolates. This result is consistent with the results of two studies in which 100.00 % of C. 312 

difficile isolates detected in animal meats were non-toxigenic (Mooyottu et al. 2015; Ersoz 313 

and Cosansu 2018). Furthermore, some studies reported predominance of the non-toxigenic 314 

C. difficile isolates at rates 66.70 % and 76.30 % (Jöbstl et al. 2010; Wu et al. 2017), 315 

respectively. In contrast, some researchers reported that majority of the C. difficile isolates 316 

were toxigenic at rates 78.50, and 88.80 % (Rodriguez et al. 2014; Bakri 2018), respectively. 317 
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In addition, some reports detected 100.00 % toxigenic C. difficile isolates (Bouttier et al. 318 

2010; Esfandiari et al. 2014a; Esfandiari et al. 2014b; Muratoglu et al. 2020).  319 

 320 

Some reports considered the existence of non-toxigenic C. difficile strains in meat products 321 

could be a potential public health problem by generation of toxigenic strains through 322 

horizontal gene transfer (Mooyottu et al. 2015; Peng et al. 2017). On the other hand, other 323 

reports considered non-toxigenic C. difficile strains isolated from samples of human, 324 

environmental or animal origin, including food products, are non-pathogenic. Furthermore, 325 

some reports proved a protective role of colonization by these non-toxigenic strains against 326 

the toxigenic ones in the hamster model (Janoir 2016). 327 

 328 

More studies in animal models and humans are needed to evaluate the protective or 329 

pathogenic potential of non-toxigenic C. difficile strains and to examine the possibility 330 

acquiring the PaLoc genes by toxin-negative strains to express clinically relevant levels of 331 

toxins. 332 

 333 

Conclusion 334 

 A better understanding of C. difficile contamination of animal meats is required to assess 335 

their role in CDIs all over the world. As far as I know, the conducted study is the first one in 336 

Al-Jouf region, Saudi Arabia, to evaluate this possibility. The study detected a low 337 

contamination level by non-toxigenic strains with different degrees of reduced susceptibility 338 

to some antibiotics. Variability between the worldwide reported C. difficile contamination 339 

levels could be due to absence of a gold standard procedure for its isolation. The 340 
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establishment of a unified screening and testing algorithm for C. difficile detection in food 341 

products is definitely essential to evaluate the inter-regional variation in its prevalence on 342 

national and international levels. It is highly recommended to include and compare C. 343 

difficile susceptibility/resistance data in future studies and combine these data with nucleic 344 

acid amplification testing for better understanding of its virulence and suspecting its best 345 

empirical treatment. Proper use of antimicrobials during butchery animal husbandry is crucial 346 

to control the selective drug pressure on C. difficile strains associated with food animals. 347 

Investigating the protective or pathogenic potential of non-toxigenic C. difficile strains and 348 

the possibility of gene transfer from certain toxigenic and antibiotics-resistant strains to non-349 

toxigenic and antibiotics-sensitive strains, respectively, should be worthy of attention to 350 

avoid CDI especially for persons who are immune-compromised or on broad spectrum 351 

antibiotics for long periods.    352 

 353 
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TABLES 559 

Table 1. Results of isolates identification by Vitek-2 compact system 560 

Identification result Number of isolates 

Clostridium difficile 15 

Clostridium bifermentans 4 

Clostridium sordellii 4 

Clostridium tertium 2 

Clostridium baratii 1 

Clostridium glycollicum 1 

Clostridium ramosum 1 

Clostridium septicum 1 

Non-Clostridium 8 

Unidentified 18 

Total 55 

The sample size was calculated on line 561 

(https://www.surveysystem.com/sscalc.htm#one) with confidence interval 6.32 at 95% 562 

confidence level and 250000 Sakaka populations.  563 

 564 

 565 

 566 

https://www.surveysystem.com/sscalc.htm#one
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Table 2. Prevalence of Clostridium difficile in different animal meat 567 

samples 568 

Sample type Number of samples 

collected 

C. difficile positive 

samples: Number (%) 

Cow meat  60 8 (13.3 %) * 

Camel meat 60 5 (8.3 %) 

Sheep meat 60 1 (1.7 %) 

Goat meat 60 1 (1.7 %) 

Total 240 15 (6.3 %) 

 569 

* The chi-square statistic is 9.88. The P-value is 0.019. The result is significant at P ≤0.05. It 570 

was clear that contamination of cow meats is more prevalent followed by camel meats. 571 

 572 

 573 
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Table 3. Minimum inhibitory concentration (MIC) values of selected antibiotics against C. difficile isolates by E-tests 

Antibiotics MIC(μg/mL) 

breakpoints  
Number of C. difficile 

isolates  

MIC values (μg/mL) of C. difficile isolates and control  

S I R S 

(%) 

I   

(%) 

R  

(%) 

Isolate 

(1) 

Isolate 

(2) 

Isola

te (3)  

Isolate 

(4)  

Isolate 

(5)  

Isolate 

(6)  

Isolate 

(7)  

Isolate 

(8)  

Isolate 

(9) 

Isolate 

(10) 

Isolate 

(11) 

Isolate 

(12) 

Isolate 

(13) 

Isolate 

(14) 

Isolate 

(15) 

ATCC 

9689 

Vancomycin1) ≤2 - >2 15 

(100%) 

0 

(0%) 

0 

(0%) 

0.5 1.0 0.5 0.5 0.25 0.25 1.0 0.25 2.0 0.5 1.0 1.0 0.5 0.25 0.25 0.5 

Metronidazole2) ≤8 16 ≥32 15 

(100%) 

0 

(0%) 

0 

(0%) 

0.5 0.5 0.25 1.0 0.03 8.0  0.5 1.0 0.5 0.5 0.06 4.0 8.0 0.25 1.0 2.0 

)2Tetracycline ≤4 8 ≥16 10  

(66.7%) 

5 

(33.3%) 

0 

(0%) 

8.0 0.25 0.015 0.25 4.0 8.0 2.0 0.03 8.0  0.03 8.0 

 

0.015 0.06 8.0  

 

4.0 4.0 

Clindamycin2) ≤2 4 ≥8 11  

(73.3%) 

4 

(26.7%) 

0 

(0%) 

0.5 4.0 4.0 2.0 4.0 0.5 1.0 4.0  2.0 1.0 0.25 0.25 0.25 1.0 0.25 1.0 

Moxifloxacin2) ≤2 4 ≥8 6  

(40.0%) 

6 

(40.0%) 

3 

(20.0%) 

0.5 4.0 8.0 4.0 8.0 0.25 4.0 0.25 0.25 4.0 1.0 4.0 8.0 4.0 0.25 2.0 

MIC, minimum inhibitory concentration; S, sensitive; I, intermediate; R, resistant.  
1) The breakpoints defined by European Committee for Antimicrobial Susceptibility Testing (EUCAST). 
2) The breakpoints defined by Clinical and Laboratory Standards Institute (CLSI).                                                                                                

 


