ARTICLE INFORMATION

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article Type</td>
<td>Research article</td>
</tr>
<tr>
<td>Article Title</td>
<td>Raw animal meats as potential sources of Clostridium difficile in Al-Jouf, Saudi Arabia</td>
</tr>
<tr>
<td>Running Title (within 10 words)</td>
<td>Clostridium difficile in animal meats</td>
</tr>
<tr>
<td>Author</td>
<td>Ahmed E. Taha (^1)(^2)</td>
</tr>
<tr>
<td>Affiliation</td>
<td>(^1) Microbiology and Immunology unit, Department of Pathology, College of Medicine, Jouf University, Al-Jouf, Saudi Arabia. (^2) Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt. * Corresponding author: Ahmed E. TAH (PhD)</td>
</tr>
<tr>
<td>Special remarks – if authors have additional information to inform the editorial office</td>
<td>Great Thanks</td>
</tr>
<tr>
<td>ORCID (All authors must have ORCID)</td>
<td>https://orcid.org</td>
</tr>
<tr>
<td>ORCID</td>
<td>Ahmed E. Taha (https://orcid.org/0000-0002-5766-4495)</td>
</tr>
<tr>
<td>Conflicts of interest</td>
<td>The author declares no potential conflict of interest.</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>The author extends his appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no (40/194). I would like to thank Prof. Dr. Ibrahim A. Taher (Head of Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia) for facilitating the use of the microbiology facilities.</td>
</tr>
<tr>
<td>Author contributions</td>
<td>I am a single author. The author designed and performed the research and the manuscript.</td>
</tr>
<tr>
<td>Ethics approval (IRB/IACUC)</td>
<td>Approval was obtained from the local committee of bioethics (LCBE) of Jouf University, Saudi Arabia, (approval No: 07-02/41).</td>
</tr>
</tbody>
</table>

CORRESPONDING AUTHOR CONTACT INFORMATION

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name, middle initial, last name</td>
<td>Ahmed E. Taha</td>
</tr>
<tr>
<td>Email address – this is where your proofs will be sent</td>
<td>drahadmicro@yahoo.com</td>
</tr>
<tr>
<td>Secondary Email address</td>
<td>aeattia@ju.edu.sa, aeattia@mans.edu.eg</td>
</tr>
<tr>
<td>Postal address</td>
<td>College of Medicine, Jouf University, Al-Jouf, Saudi Arabia.</td>
</tr>
<tr>
<td>Cell phone number</td>
<td>00966544427320</td>
</tr>
<tr>
<td>Office phone number</td>
<td>00966544427320</td>
</tr>
<tr>
<td>Fax number</td>
<td></td>
</tr>
</tbody>
</table>
Title: Raw animal meats as potential sources of *Clostridium difficile* in Al-Jouf, Saudi Arabia

Date of Submission: May 26, 2021

Running title: *Clostridium difficile* in animal meats

Abbreviations: CDI: *Clostridium difficile* infection; C. *difficile*: *Clostridium difficile*; CDMN: *Clostridium difficile* Moxalactam Norfloxacin; CLSI: Clinical and laboratory standards institute; E-tests: Epsilon tests; EUCAST: European committee for antimicrobial susceptibility testing; MIC: minimum inhibitory concentration.
Abstract

Clostridium difficile (C. difficile) present in feces of food animals may contaminate their meats and act as a potential source of _C. difficile_ infection (CDI) to humans. _C. difficile_ resistance to antibiotics, its production of toxins and spores play major roles in the pathogenesis of CDI. This is the first study to evaluate _C. difficile_ prevalence in retail raw animal meats, its antibiotics susceptibilities and toxigenic activities in Al-Jouf, Saudi Arabia.

Totally, 240 meat samples were tested. _C. difficile_ was identified by standard microbiological and biochemical methods. Vitek-2 compact system confirmed _C. difficile_ isolates were 15/240 (6.3%). Toxins A/B were not detected by Xpect _C. difficile_ toxin A/B tests. Although all isolates were susceptible to vancomycin and metronidazole, variable degrees of reduced susceptibilities to moxifloxacin, clindamycin or tetracycline antibiotics were detected by Epsilon tests. _C. difficile_ strains with reduced susceptibility to antibiotics should be investigated. Variability between the worldwide reported _C. difficile_ contamination levels could be due to absence of a gold standard procedure for its isolation. Establishment of a unified testing algorithm for _C. difficile_ detection in food products is definitely essential to evaluate the inter-regional variation in its prevalence on national and international levels.

Proper use of antimicrobials during animal husbandry is crucial to control the selective drug pressure on _C. difficile_ strains associated with food animals. Investigating the protective or pathogenic potential of non-toxigenic _C. difficile_ strains and the possibility of gene transfer from certain toxigenic/antibiotics-resistant to non-toxigenic/antibiotics-sensitive strains, respectively, should be worthy of attention.

Keywords: Animal meat, Diarrhea, Pseudomembranous colitis, Resistance, Spores.
Introduction

Clostridium difficile (C. difficile) is a dangerous organism that is responsible for 15%–30% of antibiotic associated diarrhea cases around the world (Hampikyan et al. 2018). Many important risk factors such as improper use of antibiotics, reduced immunity and advanced age of the host may facilitate acquiring of C. difficile infection (CDI) (Rupnik et al. 2009). Centers for Disease Control and Prevention listed C. difficile between the most dangerous three urgent emerging multi-antibiotics resistant pathogens (Mooyottu et al. 2015). The infected persons may suffer from mild diarrhea, pseudo-membranous colitis, toxic megacolon or even death (ECDC 2018).

Lawson et al. (2016) reclassified C. difficile as Clostridioides difficile which is an anaerobic, Gram-positive, spore-forming bacterium. It grows best at 35–40°C (Dawson et al. 2009). Surviving of C. difficile spores on the surfaces for long times and their resistance to many disinfectants are important factors that favor spreading of the organism (Weese 2010). The spores, if contaminated the meat from food handlers during slaughtering or from the infected animals, may survive for two hours at 71°C, so they are not be killed by cooking (Rodriguez et al. 2013).

There is change in C. difficile epidemiology with increasing incidence, severity, relapses of CDI in humans after the emergence of the novel hypervirulent strains, as 078 and 027 ribotypes, in North America and Europe (Smits et al. 2016). Young non-hospitalized persons, who were earlier considered as a low-risk group, now can be affected by CDI. Furthermore, in Netherlands and USA there are remarkable rates of probable community-acquired CDI (Abdel-Gilil et al. 2018).
The human carrier rates of *C. difficile* vary from high percent (15%) in Japan to low percent (0–3%) in Europe (Mulligan 2008). Similarly, animals can act as carriers for *C. difficile* (Keessen 2011). Therefore, *C. difficile* can contaminate soil, foods and water through feces, and this could suggest a possible method of transmission to humans resulting in CDI (Abdel-Gliil *et al.* 2018).

If livestock are potential sources of *C. difficile*, food products contaminated with their feces could be one of the transmission modes from infected or colonized animals to humans through the food chain. It was reported that shedding of *C. difficile* during slaughtering of animals and spillage of their gut contents during evisceration can result in accumulation of *C. difficile* spores within the slaughterhouse environment leading to contamination of the animal carcasses and meats (EFSA 2013).

CDI has a major cost impact with an estimated annual cost of U.S. $3.2 billion (Zilberberg *et al.* 2008). The prevalence rate of CDI among patients with diarrhea in Egypt is 23-6% (Abu Faddan *et al.* 2016), in Lebanon is 65.2% (Moukhaiber *et al.* 2015) and in Jordan is 92.4% (Wadi *et al.* 2015). In Saudi Arabia, there is no published study about prevalence of CDI on a national level, yet, few reports of single-center studies detected low rate of CDIs (Obaid and Alhifany 2020). One of these studies reported 4.6% prevalence rate of CDI among patients with diarrhea (Shehabi *et al.* 2015). Another study reported an increase in the prevalence rate of healthcare-associated CDIs from 17% in 2001 to 20% in 2018 among all suspected diarrheal stool tested (Al-Tawfiq *et al.* 2020).

Data about *C. difficile* susceptibility to antibiotics are important for better estimating the
organism’s virulence and predicting its management plan (Peng et al. 2017). *C. difficile* resistance to antibiotics and its production of toxins play major roles in the pathogenesis of CDI (Kuehne et al. 2011). Vancomycin and metronidazole were recommended as a treatment of CDI (Debast et al. 2014; Cho et al. 2020). Moreover, clindamycin, tetracycline and moxifloxacin are among the most significant risk antibiotics for developing of CDI (Teng et al. 2019). Recently, concerns about the prophylactic and therapeutic use of many antibiotics, such as vancomycin, metronidazole and fluoroquinolones, in butchery animal husbandry to promote their growth have gradually increased (Muratoglu et al. 2020).

Toxins are the most important virulence factors responsible for CDI in addition to other factors (Janoir 2016). Toxin A is an enterotoxin that can lead to accumulation of fluids in colon of many animal models. Toxin B is a cytotoxin that can lead to inflammation and damage of mucosa of the colon (Voth and Ballard 2005). These two toxins with their regulatory genes are chromosomally encoded in a specific pathogenicity locus (*PaLoc*) that is absent in the non-toxigenic strains (Martin-Verstraete et al. 2016). It should be noted that approximately 11% of the *C. difficile* genome is made up of mobile genetic elements that could facilitate modulation of toxin gene expression, the transfer of antibiotic resistance or toxin genes and the conversion of toxin non-producers into toxigenic strains (Mooyottu et al. 2015; Peng et al. 2017).

A better understanding of *C. difficile* transmission from animals to humans is required all over the world. Information on *C. difficile* isolation and characterization from many animal meat products has amplified quickly in different countries and populations; however, such information is not sufficient in Saudi Arabia. As far as I know, this is the first study to
determine the prevalence of *C. difficile* in raw camel, cow, sheep, and goat meats that were collected from Sakaka, Al-Jouf, Saudi Arabia and to evaluate the isolates’ antibiotics sensitivity patterns and toxigenic activities.

Materials and methods

Collection of samples

Bioethical approval was obtained from the local committee of bioethics (LCBE) of Jouf University, Saudi Arabia, (approval No: 07-02/41). A cross-sectional study was conducted to collect 240 raw animal meat samples (60 from camels, 60 from cows, 60 from sheep, and 60 from goats) in October and November of the year 2019. The samples were randomly purchased (by simple random sampling procedure; flipping a coin) from 25 retail outlets (butcher shops, markets and supermarkets) in Sakaka, Al-Jouf, Saudi Arabia. Each sample, at least 100 g weight, was collected in a sterile bag, and transported in an icebox to microbiology laboratory for processing.

Isolation and identification of *C. difficile*

The samples were processed using aseptic techniques to avoid their contamination as described by Weese and colleagues (Weese *et al.* 2009). Briefly, 25 g from each sample was homogenized by hand massaging for 5 min with 25 mL of sterile phosphate buffered peptone (PBP) inside a sterile bag. From the prepared homogenate, 1 mL was mixed with 9 mL of *C. difficile* Moxalactam Norfloxacin (CDMN) broth (Oxoid, Hampshire, UK) with 0.1% sodium
taurocholate then incubated at 37 °C anaerobically for 7 days by using anaerobic jars with
gas packs and anaerobic indicators (Oxoid, Hampshire, UK). Selection of spores was done by
alcohol shock as the following; 1 mL of CDMN broth culture was mixed with equal volume
of anhydrous ethanol, incubated for 1 h at ambient temperature, centrifuged for 10 min at
1,792 g, the supernatant was discarded then the pellet was inoculated on CDMN agar by
using a sterile swab then incubated at 37 °C anaerobically for 72 h. Suspicious growth on the
CDMN agar was subcultured into thioglycolate broth then incubation at 37 °C under
anaerobic conditions for 72 h. Likewise, suspicious growth on the CDMN agar was
subcultured on blood agar. After incubation under anaerobic conditions at 37 °C for 72 h,
suspected colonies were examined by the standard microbiological and biochemical
techniques including colony morphology and odor testing and Gram staining.

Confirmation of C. difficile

Suspected colonies (greyish white with horse manure odor and revealing Gram-positive
bacilli) were examined by L-proline aminopeptidase and *C. difficile* test kits (Oxoid,
Hampshire, UK) as per the manufacturer's instructions. The positive isolates were confirmed
by Vitek-2 compact system (BioMérieux, Marcy l'Etoile, France). A control positive
reference strain (ATCC 9689) was included in all steps (Oxoid, Hampshire, UK) (ECDC
2018).

Toxins A/B detection

Toxins A/B production by the confirmed *C. difficile* isolates was evaluated by Xpect CD
Toxin A/B test (Oxoid, Hampshire, UK) according to the supplier’s manual. Triplicate
testing was done for each isolate. Briefly, thioglycolate broth of isolates was incubated at 37 °C anaerobically for 24 h. Sufficient volume of the broth culture was mixed with an equal volume of brain heart infusion (BHI) broth and incubated anaerobically at 37 °C for 72 h then used to detect the toxins (ECDC 2018). *C. difficile* ATCC 9689 (Oxoid, Hampshire, UK) was used as a positive control strain (toxigenic A+/B+/CDT-).

Antibiotic susceptibility testing

The Vitek-2-confirmed *C. difficile* isolates susceptibility/resistance to vancomycin, metronidazole, tetracycline, clindamycin and moxifloxacin antibiotics was evaluated by Epsilon tests (E-tests, BioMérieux, Marcy l'Etoile, France) according to the manufacturer's manual. *C. difficile* ATCC 9689 (Oxoid, Hampshire, UK) was used as a positive control reference strain. Triplicate testing was performed for each isolate. The isolates were inoculated on brucella agar (Oxoid, Hampshire, UK) supplemented with 5.0% sheep blood. Two minimum inhibition concentration (MIC) evaluator strips were placed on the agar then the plates were incubated at 37 °C anaerobically for 72 h. Vancomycin MIC values were compared with the European committee for antimicrobial susceptibility testing (EUCAST 2019) breakpoints, while MIC values of metronidazole, tetracycline, clindamycin and moxifloxacin were compared with the clinical and laboratory standards institute (CLSI) breakpoints (CLSI 2019).

Data analysis

C. difficile prevalence was compared between animal meat types by Chi-square and Fisher exact tests. Statistical significance was considered at p<0.05.
Results

Contamination of raw animal meats by *C. difficile* was screened in 240 meat samples. One hundred isolates were suspected (greyish white, rounded with a distinctive horse manure odor on CDMN agar). Fifty-five of them were positive by L-proline aminopeptidase and *C. difficile* test kits. *C. difficile* was confirmed by Vitek-2 compact system from 15/240 (6.3%) raw animal meat samples. Furthermore, Other *Clostridium* species were identified (Table 1). A Statistical significance (p=0.019) was detected in *C. difficile* prevalence between different animal meat samples (Table 2). It was clear that contamination of cow meats is more prevalent followed by camel meats.

Although all Vitek-2 compact system-confirmed *C. difficile* isolates were susceptible to vancomycin and metronidazole antibiotics, some isolates were intermediate/resistant to tetracycline, clindamycin or moxifloxacin with variable degrees (Table 3). Toxins (A and B) were not detected among all confirmed *C. difficile* isolates.

Discussion

Food contamination with feces of colonized or infected livestock animals could be one of the transmission routes of *C. difficile* from animals to humans via the food chain. *C. difficile* has been detected in a wide range food, from beef (Rodriguez *et al.* 2014), pork (Rodriguez *et al.* 2016), chicken meats (de Boer 2014; Taha 2021) to raw milk (Romano *et al.* 2018), vegetables (Eckert *et al.* 2013) and seafood (Troiano *et al.* 2015), taken directly from the grocery stores worldwide. The presence of *C. difficile* spores in these end products can be
explained by initial contamination of their raw materials, cross-contamination during their
industry or production of the spores during their processing (Gauvry et al. 2016). In the
domestic environment, spores present in refrigerators and on kitchen surfaces can
contaminate the food products (Weese et al. 2010).

Variable methods and culturing techniques can be used for C. difficile detection in food
products due to absence of a gold standard procedure. The variability in the methodologies
preclude the data comparison from different studies (Rupnik and Songer 2010). In the current
study, only 15 C. difficile isolates were confirmed by the Vitek-2 compact system among 240
tested raw animal meat samples. In addition, Other Clostridium species (most of them were C.
bifermentans and C. sordellii) that displayed similar growth characters and colony
morphology on CDMN agar were detected (Table 1). Similarly, Limbago et al. (2012)
reported many Clostridia with similar growth characters on CDMN agar, as C. cadaveris, C.
sporogenes, C. bifermentas, C. perfringens, C. septicum, C. difficile and some other
unidentified Clostridia. These Clostridia may cross-react with C. difficile during its
identification by L-proline aminopeptidase and C. difficile test kits. Consequently, in the
conducted study, confirmation was done by Vitek-2 compact system with including a
particular positive control reference strain of C. difficile (ATCC 9689) in each experiment.
Other studies used Api 20A (Kouassi et al. 2014), API Rapid ID 32A (Troiano et al. 2015) or
molecular (Bakri 2018; Romano et al. 2018; Zhang et al. 2019; Usui et al. 2020) tests to
confirm C. difficile isolates.

In the conducted study, the detected contamination level of raw animal meats by C. difficile
was low (6.3 %). Many previous studies from different countries reported a contamination level of animal meats by *C. difficile* lower than 9% (Jöbstl *et al.* 2010; De Boer *et al.* 2011; Quesada-Gómez *et al.* 2013; Esfandiari *et al.* 2014a, Esfandiari *et al.* 2014b, Rodriguez *et al.* 2014; Varshney *et al.* 2014; Esfandiari *et al.* 2015; Lund and Peck 2015; Bakri 2018).

Contrary to these results, Bouttier *et al.* (2010) in France and Pires *et al.* (2018) in Brazil, respectively. On the other hand, higher detection rates, up to 42% were reported by some studies (Weese *et al.* 2009; Kouassi *et al.* 2014). Lund and Peck (2015) have reported a higher rate (44%) in North America.

Among the reasons for variability in *C. difficile* detection rates may be the variability in the methodologies used for enrichment, isolation, identification and confirmation of the isolates (Lund and Peck 2015). Another reason may be the variability in the degree of meat samples processing. Songer *et al.* (2009) have reported that uncooked meats were less commonly contaminated by *C. difficile* than ready-to-eat meat products. Many studies have reported the increase in *C. difficile* detection rates with more handling, grinding and processing due to failure of most cleaning and sanitation practices to inactivate the spores that may accumulate on more environmental surfaces with increasing the possibility of meat contamination (Esfandiari *et al.* 2014b) (Varshney *et al.* 2014).

It was clear in the current study that contamination of cow meats is more prevalent followed by camel meats. This might be due to more contact of humans with cows and camels on a daily basis to get their milk. Furthermore, farmers keep cows most of the time in cowsheds
that are usually close to their houses and this increases the possibility of *C. difficile* transmission between humans and cows.

Resistance of *C. difficile* to antibiotics plays an important role in development of CDI. The most commonly reported risk factor for development of CDI in humans is the prolonged use of antibiotics that could disrupt the colonic microbiota resulting in *C. difficile* overgrowth (Kuehne *et al.* 2011). Fifteen confirmed *C. difficile* isolates were tested against five antibiotics including vancomycin, metronidazole, tetracycline, clindamycin and moxifloxacin. Tetracycline, clindamycin and moxifloxacin are major risk antibiotics for CDI development (Teng *et al.* 2019). Vancomycin and metronidazole were recommended for treatment of severe and non-severe CDIs, respectively (Debast *et al.* 2014). Recently, it was reported that the use of metronidazole alone for treatment of non-severe CDIs is associated with higher recurrence rates. Consequently, metronidazole was recommended for treatment of non-severe CDIs only if vancomycin and fidaxomicin are not tolerated or unavailable. Fulminant cases need combination of vancomycin with metronidazole (Cho *et al.* 2020).

Although all isolates in the conducted study were susceptible to vancomycin and metronidazole antibiotics, variable degrees of reduced susceptibility to tetracycline, clindamycin or moxifloxacin were detected in some isolates (Table 3). This result is in agreement with Varshney *et al.* (2014) and Berger *et al.* (2020) who reported complete susceptibility of *C. difficile* strains isolated from meat samples to vancomycin and metronidazole. Furthermore, Freeman *et al.* (2015) reported the resistance to vancomycin and metronidazole among 953 *C. difficile* isolates as 0.87 and 0.11 %, respectively. Moreover, Muratoglu *et al.* (2020) and Taha (2021) detected only one out of 22 and 11 *C. difficile*
isolates was resistant to metronidazole, respectively. On the other hand, Ersoz and Cosansu (2018) detected one tetracycline-vancomycin resistant *C. difficile* isolate recovered from uncooked meatball and another metronidazole-vancomycin resistant *C. difficile* isolate recovered from cooked meat sample.

The current study detected 4/15 clindamycin-intermediate, 6/15 moxifloxacin-intermediate and 3/15 moxifloxacin-resistant *C. difficile* isolates. Berger *et al.* (2020) reported 2/80 clindamycin-resistant and 26/80 moxifloxacin-resistant isolates. The relative decrease in the susceptibility of *C. difficile* to moxifloxacin might be cross-resistance with other fluoroquinolones which might be used for treatment of multiple gastrointestinal infections.

The variability of reported results regarding antibiotic susceptibility of *C. difficile* isolates from animal meat origins can be explained by exposure of the food animals to different antibiotics during farm rearing or differences in the genetic characters of the strains.

The toxins A and B were not detected in the broth cultures of the 15 confirmed *C. difficile* isolates. This result is consistent with the results of two studies in which 100.00 % of *C. difficile* isolates detected in animal meats were non-toxigenic (Mooyottu *et al.* 2015; Ersoz and Cosansu 2018). Furthermore, some studies reported predominance of the non-toxigenic *C. difficile* isolates at rates 66.70 % and 76.30 % (Jöbstl *et al.* 2010; Wu *et al.* 2017), respectively. In contrast, some researchers reported that majority of the *C. difficile* isolates were toxigenic at rates 78.50, and 88.80 % (Rodriguez *et al.* 2014; Bakri 2018), respectively.
In addition, some reports detected 100.00% toxigenic \textit{C. difficile} isolates (Bouttier \textit{et al.} 2010; Esfandiari \textit{et al.} 2014a; Esfandiari \textit{et al.} 2014b; Muratoglu \textit{et al.} 2020).

Some reports considered the existence of non-toxigenic \textit{C. difficile} strains in meat products could be a potential public health problem by generation of toxigenic strains through horizontal gene transfer (Mooyottu \textit{et al.} 2015; Peng \textit{et al.} 2017). On the other hand, other reports considered non-toxigenic \textit{C. difficile} strains isolated from samples of human, environmental or animal origin, including food products, are non-pathogenic. Furthermore, some reports proved a protective role of colonization by these non-toxigenic strains against the toxigenic ones in the hamster model (Janoir 2016).

More studies in animal models and humans are needed to evaluate the protective or pathogenic potential of non-toxigenic \textit{C. difficile} strains and to examine the possibility acquiring the \textit{PaLoc} genes by toxin-negative strains to express clinically relevant levels of toxins.

Conclusion

A better understanding of \textit{C. difficile} contamination of animal meats is required to assess their role in CDIs all over the world. As far as I know, the conducted study is the first one in Al-Jouf region, Saudi Arabia, to evaluate this possibility. The study detected a low contamination level by non-toxigenic strains with different degrees of reduced susceptibility to some antibiotics. Variability between the worldwide reported \textit{C. difficile} contamination levels could be due to absence of a gold standard procedure for its isolation. The
establishment of a unified screening and testing algorithm for *C. difficile* detection in food products is definitely essential to evaluate the inter-regional variation in its prevalence on national and international levels. It is highly recommended to include and compare *C. difficile* susceptibility/resistance data in future studies and combine these data with nucleic acid amplification testing for better understanding of its virulence and suspecting its best empirical treatment. Proper use of antimicrobials during butchery animal husbandry is crucial to control the selective drug pressure on *C. difficile* strains associated with food animals. Investigating the protective or pathogenic potential of non-toxigenic *C. difficile* strains and the possibility of gene transfer from certain toxigenic and antibiotics-resistant strains to non-toxigenic and antibiotics-sensitive strains, respectively, should be worthy of attention to avoid CDI especially for persons who are immune-compromised or on broad spectrum antibiotics for long periods.

Acknowledgments

The author extends his appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant no (40/194). I would like to thank Prof. Dr. Ibrahim A. Taher (Head of Microbiology Unit, Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia) for facilitating the use of the microbiology facilities.
References

Clinical and Laboratory Standards Institute (CLSI). 2019. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Wayne, PA, USA

Voth DE, Ballard JD. 2005. Clostridium difficile toxins: mechanism of action and role in

Clostridium difficile infections among hospitalized patients in Amman, Jordan: A Multi-

Weese JS, Avery BP, Rousseau J, Reid-Smith RJ. 2009. Detection and enumeration of

Weese JS, Reid-Smith RJ, Avery BP, Rousseau J. 2010. Detection and characterization of

molecular characterization of Clostridium difficile isolates from a pig slaughterhouse, pork,
https://doi.org/10.1016/j.ijfoodmicro.2016.11.010.

Zhang LJ, Yang L, Gu XX, Chen PX, Fu JL, Jiang HX. 2019. The first isolation of
https://doi.org/10.1371/journal.pone.0212965.

Zilberberg MD, Shorr AF, Kollef MH. 2008. Increase in adult Clostridium difficile-related
hospitalizations and case-fatality rate, United States, 2000-2005. Emerg Infect Dis 14:929-
Table 1. Results of isolates identification by Vitek-2 compact system

<table>
<thead>
<tr>
<th>Identification result</th>
<th>Number of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clostridium difficile</td>
<td>15</td>
</tr>
<tr>
<td>Clostridium bifermentans</td>
<td>4</td>
</tr>
<tr>
<td>Clostridium sordellii</td>
<td>4</td>
</tr>
<tr>
<td>Clostridium tertium</td>
<td>2</td>
</tr>
<tr>
<td>Clostridium baratii</td>
<td>1</td>
</tr>
<tr>
<td>Clostridium glycollicum</td>
<td>1</td>
</tr>
<tr>
<td>Clostridium ramosum</td>
<td>1</td>
</tr>
<tr>
<td>Clostridium septicum</td>
<td>1</td>
</tr>
<tr>
<td>Non-Clostridium</td>
<td>8</td>
</tr>
<tr>
<td>Unidentified</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td>55</td>
</tr>
</tbody>
</table>

The sample size was calculated online (https://www.surveysystem.com/sscalc.htm#one) with confidence interval 6.32 at 95% confidence level and 250000 Sakaka populations.
Table 2. Prevalence of *Clostridium difficile* in different animal meat samples

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Number of samples collected</th>
<th>C. difficile positive samples: Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow meat</td>
<td>60</td>
<td>8 (13.3 %)*</td>
</tr>
<tr>
<td>Camel meat</td>
<td>60</td>
<td>5 (8.3 %)</td>
</tr>
<tr>
<td>Sheep meat</td>
<td>60</td>
<td>1 (1.7 %)</td>
</tr>
<tr>
<td>Goat meat</td>
<td>60</td>
<td>1 (1.7 %)</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>15 (6.3 %)</td>
</tr>
</tbody>
</table>

The chi-square statistic is 9.88. The P-value is 0.019. The result is significant at P ≤0.05. It was clear that contamination of cow meats is more prevalent followed by camel meats.
Table 3. Minimum inhibitory concentration (MIC) values of selected antibiotics against *C. difficile* isolates by E-tests

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MIC (µg/mL) breakpoints</th>
<th>Number of C. difficile isolates</th>
<th>MIC values (µg/mL) of C. difficile isolates and control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vancomycin1)</td>
<td>≤2 - >2</td>
<td>15 0 0</td>
<td>0.5 1.0 0.5 0.25 0.25 1.0 0.25 2.0 0.5 1.0 1.0 0.5 0.25 0.25 0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100%) (0%) (0%)</td>
<td>(100%) (0%) (0%)</td>
</tr>
<tr>
<td>Metronidazole2)</td>
<td>≤8 16 ≥32</td>
<td>15 0 0</td>
<td>0.5 0.5 0.25 1.0 0.03 8.0 0.5 1.0 0.5 0.5 0.06 4.0 8.0 0.25 1.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(100%) (0%) (0%)</td>
<td>(100%) (0%) (0%)</td>
</tr>
<tr>
<td>Tetracycline2)</td>
<td>≤4 8 ≥16</td>
<td>10 5 0</td>
<td>8.0 0.25 0.015 0.25 4.0 8.0 2.0 0.03 8.0 0.03 8.0 0.015 0.06 8.0 4.0 4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(66.7%) (33.3%) (0%)</td>
<td>(66.7%) (33.3%) (0%)</td>
</tr>
<tr>
<td>Clindamycin2)</td>
<td>≤2 4 ≥8</td>
<td>11 4 0</td>
<td>0.5 4.0 4.0 2.0 4.0 0.5 1.0 4.0 2.0 1.0 0.25 0.25 0.25 1.0 0.25 1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(73.3%) (26.7%) (0%)</td>
<td>(73.3%) (26.7%) (0%)</td>
</tr>
<tr>
<td>Moxifloxacin2)</td>
<td>≤2 4 ≥8</td>
<td>6 6 3</td>
<td>0.5 4.0 8.0 4.0 8.0 0.25 4.0 0.25 0.25 4.0 4.0 4.0 4.0 4.0 4.0 2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(40.0%) (40.0%) (20.0%)</td>
<td>(40.0%) (40.0%) (20.0%)</td>
</tr>
</tbody>
</table>

MIC, minimum inhibitory concentration; S, sensitive; I, intermediate; R, resistant.
1) The breakpoints defined by European Committee for Antimicrobial Susceptibility Testing (EUCAST).
2) The breakpoints defined by Clinical and Laboratory Standards Institute (CLSI).