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Running title: Recent research in meat quality detection 9 

  A review on meat quality evaluation methods based 10 

on non-destructive computer vision and artificial 11 

intelligence technologies  12 

Abstract: Increasing meat demand in terms of both quality and quantity in conjunction with feeding 13 

a growing population has resulted in regulatory agencies imposing stringent guidelines on meat 14 

quality and safety.  Objective and accurate rapid non-destructive detection methods and evaluation 15 

techniques based on artificial intelligence have become the research hotspot in recent years and 16 

have been widely applied in the meat industry. Therefore, this review surveyed the key technologies 17 

of non-destructive detection for meat quality, mainly including ultrasonic technology, machine 18 

(computer) vision technology, near-infrared spectroscopy technology, hyperspectral technology, 19 

Raman spectra technology, and electronic nose/tongue. The technical characteristics and 20 

evaluation methods were compared and analyzed; the practical applications of non-destructive 21 

detection technologies in meat quality assessment were explored; and the current challenges and 22 

future research directions were discussed. The literature presented in this review clearly 23 

demonstrate that previous research on non-destructive technologies are of great significance to 24 

ensure consumers' urgent demand for high-quality meat by promoting automatic, real-time 25 

inspection and quality control in meat production. In the near future, with ever-growing application 26 

requirements and research developments, it is a trend to integrate such systems to provide effective 27 

solutions for various grain quality evaluation applications. 28 

Keywords: Meat quality; Non-destructive detection; Key technology; Grading assessment; 29 

Industrial application 30 

 31 

1. Introduction 32 

Meat is the main source of protein and has great physiological value for people. Meat (beef, 33 

poultry, pork, and lamb) consumption keeps increasing every year around the world (Smet and 34 

Vossen, 2016; Zhang et al., 2017). According to the Organization for Economic Co-operation and 35 

Development (OECD)’s 2017 report, the average meat consumption per person is expected to 36 

increase to 35.5 kg (78.3 lb) globally by 2024 (OECD, 2017). With meat consumption growing, 37 

quality is becoming more and more important to consumer’s purchase decision (Wei et al., 2019). 38 

And research shows that meat quality is the most important purchase parameter affecting a 39 

consumer’s decision (Kamruzzaman et al., 2016a; Barbon et al., 2017). 40 

Meat quality assessments have two major measurement methods, subjective and objective (Li 41 
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et al., 2018). Subjective methods for meat quality assessment usually depend on sensory evaluation, 42 

which involve visual and eating experiences. The disadvantage of subjective assessment methods is 43 

that they are highly dependent on particular experience of evaluators, poor repeatability, and can be 44 

difficult to quantify (Andersen et al., 2018; Cheng et al., 2017a). Objective evaluation methods have 45 

historically been laboratory tests evaluating the physical and chemical properties of and the 46 

microorganisms present in meat (Kamruzzaman et al., 2015). Which produces accurate results, but 47 

the meat product is damaged or destroyed, and the detection procedure is cumbersome. Inherently, 48 

objective evaluation method is time-consuming and high-cost, resulting in difficulty meeting the 49 

demand of automated processing for modern meat production companies (Chen et al., 2016). 50 

Countries around the world urgently need a fast, accurate, and non-destructive online detection 51 

technology for consistently evaluating meat to promote the healthy and stable development of food 52 

safety and quality (Qu et al., 2012). 53 

Artificial intelligence (AI) technology is one of the most popular topics and is becoming an 54 

essential part of industries all over the world. Many industries in our lives have been permeated by 55 

AI technology, including auto-pilot vehicles (Yan, 2017), medical science (Salman et al., 2017), 56 

agricultural science (Gan et al., 2011), and food engineering (Barbri et al., 2014). Relevant to this 57 

review, AI technology has become important in the application of non-destructive prediction of meat 58 

quality, providing indispensable technical support for online meat grading and evaluation (Cheng et 59 

al., 2017b; Davies, 2009). In food science, AI technology that combines sensors, processors 60 

(computers), and other components allow for non-destructive evaluation of products, which result 61 

in the original shape, state, and nature of the sample being maintained (Wang et al., 2017). This 62 

technology uses the mechanics, optics, acoustics, electricity, and other pertinent information of the 63 

measured object to evaluate the physical characteristics, chemical composition, structural 64 

characteristics, and other data (Su et al., 2017), so as to achieve non-destructive and accurate 65 

evaluation of food quality. 66 

In recent years, with the improvement of people's awareness of food safety and the 67 

advancement of computer technology, non-destructive evaluation technology has been applied more 68 

and more widely in the field of meat quality testing (Chen et al., 2013), including ultrasonic 69 

technology (Liu et al., 2016), machine vision technology (Sun et al., 2016), spectral technology 70 

(Muhammad et al., 2018), and sensor technology (Li et al., 2016). At present, scholars around the 71 

world have done a lot of in-depth research on the application of AI technology in meat quality testing, 72 

such as sensory quality evaluation (meat freshness, tenderness, color and texture) (Cheng et al., 73 

2018). The prediction of physical and chemical indicators of meat quality (meat pH, shear force, 74 

water retention, moisture content, protein) (Pang et al., 2014; Sun et al., 2014) and the analysis of 75 

meat varieties, metamorphism mechanisms, and adulteration identification (Feng et al., 2018) have 76 

also been researched fairly extensively. 77 

This review introduces the common AI technologies used for non-destructive evaluation of 78 

meat quality attributes in recent years including computer vision system (CVS), near-infrared (NIR) 79 
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spectroscopy, hyperspectral imaging (HSI), Raman spectrometry (RS), ultrasonic imaging, and 80 

electronic nose/tongue technologies. The principle characteristics and application status of AI 81 

technologies in meat quality testing, grading, and evaluation are explained. In addition, current 82 

challenges and future development directions are also discussed in this review, so as to create a 83 

comprehensive knowledge base including essential theoretical basis and technical references for AI 84 

technologies used to improve human food quality and safety.  85 

 86 

2. Non-destructive detection methods used with meat 87 

With the increasing concern and attention of consumers, businesses and government 88 

departments, food quality and safety have been continuously studied in depth for long-term by 89 

domestic and foreign food scientists, and the non-destructive detection technology for meat quality 90 

has achieved a lot stage achievement (Chen et al., 2013). Commonly used non-destructive detection 91 

methods for meat quality are mainly focused on CVS, NIR, HSI, RS, ultrasonic monitoring, and 92 

electronic nose/tongue detection technologies. 93 

2.1 Computer vision system 94 

Computer vision technology, also known as machine vision technology that obtains target 95 

image information through image sensors instead of human eyes, and applies computer technology 96 

to analyze and process bionic human brains to convert image into digital information, and then to 97 

identify, track, and detect target objects (Girolami et al., 2013). A common machine vision detection 98 

system is shown in Figure 1 (Ma et al., 2016), which mainly includes a computer, an industry camera, 99 

an illumination system, and an image processing software system (Taheri-Garavand et al., 2019b). 100 

Figure 1 A common machine vision detection system  101 

Due to the rapid advancement in computer technologies, the development of image processing 102 

technology and the machine vision based non-destructive detection systems have been widely used 103 

in extracting image-based features and feature recognition related to detecting meat quality. Sun et 104 

al. (2016; 2018) developed a CVS for objective measurement of pork loin quality. Color features 105 

(L*, a*, and b*) and marble patterns in the region of interest in an image of a meat cut were extracted. 106 

Subsequently, an artificial intelligence prediction model (support vector machine (SVM)) was 107 

developed for determining pork color and marbling quality grades with a highest prediction 108 

accuracy of 92.5% and 75.0%, respectively. Liu et al. (2018b) investigated the ability of CVS to 109 

predict pork intramuscular fat percentage (IMF%) coupled with the development of stepwise 110 

regression and SVM models. Arsalane et al. (2018) applied an embedded machine vision system 111 

based on digital signal processing (DSP) to evaluate beef freshness. Results showed perfect 112 

prediction (classification and identification 100%) accuracies with new unknown samples using 113 

both principal component analysis (PCA) and SVM. 114 

In addition, some studies have been attempted for the application of CVS to monitor meat 115 

defects. Chmiel et al. (2012) evaluated the potential of CVS to detect DFD (dark, firm, and dry) 116 

beef. A significant relationship was found among L*, a*, and b* color components with pH, which 117 
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is an indicator to detect DFD beef. Chmiel and Słowiński (2016b) determined the effectiveness of 118 

a CVS in measuring meat color to detect meat defects of m. longissimus lumborum (LL) in industrial 119 

settings. They reported that the CVS showed a strong promise to detect PSE (pale, soft, exudative) 120 

and DFD and to classify meat into quality groups. 121 

Table 1 lists the typical applications of machine vision technologies as non-destructive 122 

detection methods for meat quality attributes during the recent years. These literatures have revealed 123 

that the current applications of CVS in meat quality inspection have been using the external features 124 

such as color or texture-based features extracted from the images acquired in visible region of the 125 

spectrum and combed with the stoichiometric methods for qualitative or quantitative analysis. 126 

However, the CVS method was found unable to express the characteristics of the internal 127 

components of the meat samples. The CVS is mainly used to detect external properties such as meat 128 

color, marbling pattern, tenderness, freshness, and fat content in one hand. On the other hand, CVS 129 

is unable to measure the internal characters such as moisture content, and protein content (Taheri-130 

Garavand et al., 2019b; Brosnan and Sun, 2004). 131 

Table 1  Typical applications of machine vision technologies  132 

2.2. Near-infrared spectroscopy technique 133 

Near-infrared spectroscopy (NIR) is an electromagnetic radiation wave with a wavelength 134 

range of 780-2526 nm between visible and mid-infrared light and referred as the first non-visible 135 

spectral region found in the absorption spectrum (Wang et al., 2015). And the spectral curves 136 

displayed by different chemicals in the near-infrared region are different (Cai et al., 2011; Wang, 137 

2012b). Therefore, the correlation between the original spectral data of the samples in the full 138 

wavelength range and the corresponding physical and chemical index values (function relationship) 139 

can be used to analyze (identify and quantify) the chemicals and their constituents (ElMasry et al., 140 

2011; Alexandrakis et al., 2012). As a result, it can be perceived that based on the basic principles 141 

of NIR spectroscopy and the NIR detection system as shown in Figure 2 (Xiong et al., 2015b), the 142 

degree of putrefaction in meat storage and the physical-chemical properties and parameters (such 143 

as moisture, protein, fat, water retention, gravy loss, etc.) during processing can be detected (Collell 144 

et al., 2011). 145 

Figure 2 Basic principles of NIR spectroscopy and the NIR detection system 146 

Deterioration, spoilage, and decreased freshness of meat are closely related to moisture, protein, 147 

and fat content. The NIR spectroscopy can objectively reflect these changes of organic components 148 

such as fat and protein in fresh meat (Jiang et al., 2017a). Liu et al. (2009) detected fat, protein, and 149 

water by visible and NIR (Vis-NIR) transmittance spectroscopy in chilled pork. They found that the 150 

performance of evaluation model was hopeful, and the correlation coefficients were 0.95 and 0.92 151 

for fat, 0.71 and 0.46 for protein, and 0.94 and 0.91 for water respectively. Liao et al. (2010) used 152 

Vis/NIR spectroscopy to predict quality attributes of fresh pork (content of intramuscular fat, protein 153 

and water, pH, and shear force values) on-line. Results showed that the prediction models yielded 154 
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high coefficient of determination (R2) of 0.757 or more for all traits except for the prediction of 155 

shear force values. Guy et al. (2011) assessed the feasibility of NIR spectroscopy for predicting 156 

lamb meat fatty acid composition and demonstrated the accuracy of the prediction models through 157 

analyzing and comparing the measured reflectance spectrum of Longissimus lumborum muscle. 158 

Tian et al. (2013a) studied the on-line detection and classification models of multi-quality 159 

parameters for fresh beef based on Vis/NIR reflectance spectroscopy. The prediction model showed 160 

a better performance with the correlation coefficient of 0.91 for beef tenderness, 0.89 for L*, 0.93 161 

for a*, 0.85 for cooking loss with a highest classification accuracy of 93.5% for beef tenderness.  162 

In recent years, scholars worldwide have conducted many studies on the freshness detection of 163 

fresh meat using Vis/NIR spectroscopy technique particularly to predict total volatile basic nitrogen 164 

(TVB-N) and microbes as indicators. Wang et al. (2015) applied Vis/NIR spectroscopy to 165 

quantitatively evaluate pork TVB-N. The correlation coefficient was 0.98, which demonstrated the 166 

huge potential for Vis/NIR spectroscopy application to analyze pork freshness. Cai et al. (2009) 167 

applied NIR (1100-2500 nm) spectroscopy to detect the TVB-N content in pork and used synergy 168 

interval partial least squares (siPLS) algorithm for building the calibration model of TVB-N content. 169 

Guo et al. (2014) used near-infrared hyperspectral imaging (NIR-HSI: 900-1700 nm) technology to 170 

detect the TVC on chilled mutton surface to indicate the degree of contamination and degradation 171 

of meat. The corresponding correlation coefficient and the root mean square error of prediction 172 

(RMSEP) were 0.99 and 0.25, respectively.  173 

Table 2 shows the extensive application of NIR spectroscopy in the field of rapid non-174 

destructive detection for meat quality in the past years. It can be seen that the current research on 175 

the detection of meat nutrient components based on NIR spectroscopy is relatively mature. Typically, 176 

the spectral data is a reflection of the internal chemical constituents in meat specimens, which is 177 

mostly used for meat identification, recognition and classification, while ignoring the influence of 178 

external attribute characteristics on meat quality changes (Zhu et al., 2019). The prediction accuracy 179 

of NIR technique for predicting sensory quality of meat is not high enough, which is in sharp 180 

contrast with machine vision technology (Dixit et al., 2017).  181 

Table 2 Application of NIR spectroscopy in the field 182 

In addition, a single indicator can only describe one aspect of the characteristics of meat quality 183 

changes, which is another limitation of this method (Wiedemair et al., 2018). Therefore, it is 184 

necessary to find an innovative and advanced technology that can simultaneously possess the 185 

technical feature of NIR spectroscopy and CVS technology, taking into account the characteristics 186 

of internal components and external attributes of meat samples (He et al., 2019), so that make the 187 

meat quality detection become more comprehensive, accurate, stable, and sustainable. 188 

2.3. Hyperspectral imaging technique 189 

Hyperspectral imaging (HSI) technology is a derivative spectral detection technique based on 190 

hyperspectral remote sensing imaging technology. The spectral band of HSI covers all continuous 191 

bands in ultraviolet, visible, near-infrared, mid-infrared, far-infrared, and thermal infrared regions. 192 
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HSI technology is an emerging and rapidly developing photoelectric detection fusion technology 193 

(Li et al., 2018; Xiong et al., 2015b) that combined the spectral detection technology with digital 194 

computer vision technology (two-dimensional imaging technology) and facilitated the integration 195 

of the spectral resolution and image resolution. Spectral information reflects the internal properties 196 

(mainly constituents) of the samples, and image information reflects the external features. When 197 

acquiring sample composition index retains its original physical and chemical properties, achieving 198 

rapid, accurate, and non-destructive detection of the samples (He and Sun, 2015; Liu et al., 2018a). 199 

HSI techniques can be divided into visible/near-infrared hyperspectral imaging techniques (Vis-200 

NIR-HSI: 400-1000 nm) and near-infrared hyperspectral imaging techniques (NIR-HSI: 900-1700 201 

nm) according to the covered wavelength range of the electromagnetic spectrum. Compared to NIR, 202 

hyperspectral imaging techniques integrates near-infrared spectroscopy and high-resolution 203 

imaging technology, which can acquire both spectral and image information in real time and 204 

simultaneously. 205 

Figure 3 Hyperspectral image is a three-dimensional data cube 206 

The technical principle of hyperspectral imaging is to use the traditional integrated hardware 207 

and software platform of two-dimensional imaging and spectroscopy to obtain both spatial and 208 

spectral information of each pixel of the object. Then, conduct qualitative and quantitative analysis 209 

on the obtained data through stoichiometry, so as to reflect the comprehensive properties and 210 

characteristics of the object to be measured (Cheng et al., 2015; Liu et al., 2017). HSI is a three-211 

dimensional data cube in which spectral images composed of spectral data in hundreds of 212 

consecutive bands are arranged in a spectral order, called a hypercube or a spectral cube (x, y, λ), as 213 

shown in Figure 3, where (x, y) is x, y coordinate value of the pixel in two-dimensional image, and 214 

the third dimension is the wavelength λ coordinate value, which representing the one-dimensional 215 

spectral dimension. Seeing from the one-dimensional dimension (λ), the HSI is a two-dimensional 216 

(x, y) image (Fig. 3a), and from the two-dimensional (x, y), the HSI is a strip of spectral lines (Fig. 217 

3b) (Cheng et al., 2017a; Piqueras et al., 2012). Therefore, the two-dimensional image information 218 

of a certain wavelength point of the sample from the hyperspectral data cube can be extracted, and 219 

the absorbance value of a certain point or a certain region of the sample at each wavelength point 220 

can also be extracted, that is the spectral information at each point of the samples (Elmasry et al., 221 

2012; Abasia et al., 2018).  222 

Generally, HSI technique combines the advantages of spectral analysis and image processing 223 

technology, and can rapidly and non-destructively extract the chemical composition, physical 224 

properties, and other related indicators of samples. Liu et al. (2014) investigated the utility of HSI 225 

techniques (400-1000 nm) for predicting the color and pH of salted porcine meat. The model 226 

predicted L*, a*, and pH values with coefficients of determination of 0.72, 0.73, and 0.86, 227 

respectively, using small. Kamruzzaman et al. (2011; 2012) explored the potential of NIR-HSI in 228 

combination with multivariate analysis for the prediction of some quality attributes of lamb meat. 229 

The PLSR models performed well for predicting pH, color, and drip loss with the R2 of 0.65, 0.91 230 
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and 0.77, respectively. Furthermore, HSI technique is widely used in the field of food quality and 231 

safety, non-destructive testing, and has great potential for development of applications in the 232 

detection and classification of meat quality. Barbin et al. (2013) developed a push-broom NIR_HSI 233 

(900-1700 nm) to determine the TVC and psychrotrophic plate count (PPC) in chilled pork during 234 

storage, and best regressions were obtained with R2 of 0.86 and 0.89 for TVC and PPC, respectively. 235 

Kamruzzaman et al. (2016b) investigated a hyperspectral real-time imaging system in the spectral 236 

range of 400-1000 nm to monitor the changes of moisture content in red meat (beef, lamb, and pork). 237 

Xiong et al. (2015a) evaluated the potential HSI technology to predict hydroxyproline content in 238 

chicken meat. Their models yielded acceptable results with R2 0.87 in the prediction phase. 239 

Table 3 lists the typical applications and achievements of HSI technology as non-destructive 240 

detection methods for meat quality determination in recent years. It was observed that the research 241 

based on HSI technology as the non-destructive detection methods for meat quality determination 242 

mainly includes: evaluation of safety indicators such as surface contamination and TVC; evaluation 243 

of sensory quality such as freshness, color and pH; detection of nutrient content such as meat 244 

moisture, protein and fat; as well as the real-time monitoring of processing train and classification 245 

of meat quality. Overall, HSI technology is recognized to be one of the fastest growing and most 246 

widely used techniques for non-destructive testing of meat quality and safety in recent years. 247 

Table 3 Lists the typical applications and achievements of HSI technology 248 

2.4. Raman spectra technique 249 

Raman spectroscopy is a spectral analysis technique developed based on Raman scattering 250 

effect. It is generated by the change of polarizability, caused by the vibration of sample molecules, 251 

and can provide the vibration or rotation information of molecules (Li et al., 2019). Each functional 252 

group molecule in the meat has its own unique Raman spectral signal, which is mutually 253 

complementary with the infrared spectrum in the analysis of the molecular structure (Chen et al., 254 

2012; Liu et al., 2015b). Therefore, representative information in the Raman spectrum of meat can 255 

be extracted with the method of chemometrics, the relationship between the molecular structure and 256 

various radical groups in meat can be qualitatively analyzed, and then meat quality can be detected 257 

and evaluated. 258 

In recent years, Raman spectroscopy has been increasingly applied in meat quality. Fowler et 259 

al. (2014) used a handheld Raman probe to predict the shear force (SF) of fresh lamb, the correlation 260 

between tenderness and Raman data was established based on PLSR method, and the SF prediction 261 

model was found to have good accuracy. Bauer et al. (2016) applied a portable 671 nm Raman 262 

monitoring system to assess beef tenderness. SF measurements were performed and the results 263 

showed that tough and tender samples could be discriminated with 70-88% and 59-80% accuracy, 264 

respectively. Wang et al. (2012c) developed a Raman spectroscopic method to evaluate and predict 265 

the sensory attributes (tenderness, juiciness, and chewiness) of fresh, uncooked pork loins. The 266 

SVM method were able to differentiate and classify the pork loins into quality grades (“good” and 267 

“bad” in terms of tenderness and chewiness) with a prediction accuracy of > 83 % in comparison to 268 
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sensory panel results. 269 

In addition, semi-quantitative analysis can be performed according to the proportional 270 

relationship between the peak intensity of Raman spectrum and the concentration of measured 271 

substance. Han et al. (2014b) investigated the effect of NaCl concentration on the functional 272 

characteristics of pork myofibrillar protein (PMP) heat-induced gelation by textural analysis and 273 

Raman spectroscopy. Results indicated obvious changes of hardness and Raman spectroscopy of 274 

the PMP gel occurred with the increasing NaCl level. Xu et al. (2011) also appraised the use of 275 

Raman spectroscopy to study structural changes, textural properties and their relationships in PMP, 276 

combined with texture profile analysis (TPA) and PCA. With scholars' deepening research on 277 

Raman spectroscopy, the application of Raman spectroscopy in meat processing and production is 278 

also gradually increasing. Zhang et al. (2015b) applied Raman spectroscopy to investigate the effects 279 

of high-pressure (100-500 MPa) on chemical forces and water holding capacity (WHC) of heat-280 

induced myofibrillar protein (MP) gel. Pedersen et al. (2003) revealed a high correlation between 281 

the WHC of meat and the Raman spectrum using PLSR. They found that region 1800-1900cm-1 282 

contains the best predictive information that responded to WHC of the porcine meat. Scheier et al. 283 

(2014) performed a mobile Raman system to measure and predict important meat quality traits under 284 

real-life conditions of an abattoir using pig's semimembranosus muscles. The traits of pH values, 285 

CIE L*a*b*, drip loss, and SF after 24 and 72 h were measured as reference and correlated with the 286 

Raman spectra using PLSR. Fowler et al. (2015a) conducted the complementary studies to evaluate 287 

the potential for a Raman spectroscopic device to predict the quality traits of fresh lamb m. 288 

semimembranosus after ageing and freezing/thawing. 289 

Also, the chemical structure of functional group molecules can be detected using Raman 290 

spectroscopy, and thus identifies meat quality. Boyaci et al. (2014) applied Raman spectroscopy and 291 

chemometric method (PCA) to rapidly differentiate the origin of the meat based on their extracted 292 

fat samples. Collected Raman data were analyzed with a four-stage PCA method, and seven meat 293 

species (cattle, sheep, pig, fish, poultry, goat, and buffalo) were successfully differentiated from 294 

each other according to their origin. Zając et al. (2014) proposed a new method based on FT-Raman 295 

measurements to determine the content of horse meat in its mixture with beef. The reasonable results 296 

showed good fitting between the spectroscopic parameters and chemical content of the studied 297 

samples, and analytical equations between these parameters have been proposed. 298 

Recently, the application of Raman spectroscopy in the field of meat detection is more and 299 

more extensive and comprehensive. Table 4 lists the research on the detection of meat quality using 300 

Raman spectroscopy in the past 5 years. It can be seen that exploring quality change law in meat 301 

processing and evaluating meat safety mechanism are still the focus and direction of Raman 302 

spectroscopy in meat science research and industrial production applications. 303 

Table 4 Lists the research on the detection of meat quality 304 

2.5. Ultrasonic imaging technique 305 

Ultrasonic can be divided into two types in practical applications, namely power ultrasonic 306 
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waves and detection ultrasonic waves. The ultrasonic generated by power ultrasonic is of low-307 

frequency and high-energy, which is usually used in food processing, such as food sterilization, 308 

thawing, drying, filtration, and homogenization. The ultrasonic produced by detection ultrasonic is 309 

of high-frequency and low-energy and commonly used to analyze and detect food quality (Wang et 310 

al., 2019). Ultrasonic techniques for detecting meat quality is based on the analysis of changes in 311 

acoustic characteristic parameters for predicting meat composition, muscle thickness, fat thickness, 312 

etc. Rapid and non-destructive detection and grading evaluation for meat quality are achieved 313 

without changing the internal traits of meat (Soria and Villamiel, 2010; Zhang et al., 2018). 314 

Benedito et al. (2001) evaluated the changes in ultrasonic velocity to detect the composition of 315 

meat mixture. Fat, moisture, and protein can be determined by measuring the ultrasonic velocity in 316 

the mixtures using a semi-empirical equation. Li (2013) used ultrasonic imaging technique to 317 

identify the fat content of pork loin by analyzing B-mode ultrasound images. The SVM classifier 318 

combined with BPANN algorithm was designed to detect and classify the fat content with a 319 

classification accuracy of 94.9%. Fukuda et al. (2013) developed an image recognition method using 320 

a neural network to accurately estimate the beef marbling standard (BMS) number of live cattle 321 

using ultrasound echo imaging, and the results confirmed that the correlation coefficient between 322 

the actual and the estimated values was 0.70 (p < 0.01). Prados et al. (2015) researched the feasibility 323 

of using low-intensity ultrasound (US) technology to predict the salt content in brined Biceps 324 

femoris (BF) and Longissimus dorsi (LD) pork muscles. Results obtained significant linear 325 

relationships between the US velocity and both factors (R2 > 0.77). Ayuso et al. (2013) assessed the 326 

use of ultrasound measurements in live animals to predict carcass composition, ham, foreleg weights, 327 

and lean meat yields of Iberian pigs. All the results showed high correlation coefficient (R2 = 0.84) 328 

between measured and predicted attributes. 329 

The research on ultrasonic detection technology applied in the field of non-destructive testing 330 

for meat quality started earlier. It was mainly used to detect the content of moisture, fat, protein, and 331 

other components of meat as well as online detection and classification for pork carcasses. There 332 

have been some ultrasonic carcass grading systems for commercial applications abroad such as the 333 

UltraFom 300 and AutoFom in Denmark and CVT-2 in the United States (Fortin et al., 2004). 334 

However, ultrasonic detection is susceptible to the irregularities of the tested meat, the uneven 335 

distribution of fat and lean meat, the measurement site, the ultrasonic frequency, etc., will cause 336 

large measurement errors (Jiang et al., 2017b). In recent years, ultrasonic technology has been 337 

mainly applied in food processing, which is reflected in the sterilization, pickling, tenderization, 338 

thawing, freezing, etc. of meat, as well as the use of ultrasonic assisted extraction of components in 339 

food, improvement of meat quality, etc. (Fu et al., 2017; Ojha et al., 2017; Pérez et al., 2018; Suo et 340 

al., 2018; Zhang et al., 2019; Zou et al., 2018). 341 

 342 

2.6. Electronic nose/tongue sensor technique 343 

Odor has always been an important indicator to judge the meat grade when consumers perceive 344 
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the meat quality with their senses. During meat storage, with the decrease of freshness, the proteins, 345 

fats, and carbohydrates will be decomposed successively under the action of enzymes and bacteria, 346 

and thus, the smell of spoiled meat will become more and more intense (Kizil et al., 2015). 347 

Coincidentally, electronic nose is a kind of gas-sensitive sensor that is sensitive to various chemical 348 

substances and simulates the olfactory function of human nose, also known as artificial olfaction. It 349 

is an intelligent system that can sense and identify volatile gases, used to conduct odor detection 350 

and deterioration degree evaluation (Jia et al., 2018).  351 

Many scholars at home and abroad have used the electronic nose technology to detect the 352 

change of meat odor, so as to judge the freshness of meat, and predict the shelf life of storage. Xiao 353 

and Xie (2010) and Li et al. (2016) both used electronic nose (E-nose) technology to detect changes 354 

in volatile components of chilled pork at different storage temperatures and periods, so as to assess 355 

the freshness of chilled pork. PCA method and discriminate factorial analysis (DFA) was used to 356 

analyze the E-nose signals by combining the changes of physical chemistry index such as TVC and 357 

TVB-N. Wang et al. (2012a) used an E-nose together with SVM to predict the TVC in chilled pork. 358 

The correlation between E-nose signal responses and bacterial numbers was established using the 359 

SVM combined with PLS. Jia et al. (2011) discussed the feasibility of meat adulteration recognition 360 

based on E-nose that used to analyze yak meat, beef, and pork, and the results indicated that E-nose 361 

could recognize yak meat, beef, and pork, and could recognize yak meat and beef samples at 362 

different growing locations. 363 

At the same time, as the meat is spoiled, this condition changes the conductivity, and electronic 364 

tongue (E-tongue) which is an electronic circuit used to measure this conductivity (Wang et al., 365 

2016). The E-tongue is an intelligent detection system composed of a taste sensor array and a pattern 366 

recognition system that can imitate the function of human taste system. In the application of meat 367 

quality detection, E-tongue sensor acquires the signal of the taste substance, and the computer uses 368 

the pattern recognition algorithm to analyze and identify the meat composition and metamorphic 369 

degree, as well as distinguish different meats (Tian et al., 2013b). Wang et al. (2012d) used the 370 

multi-frequency pulse E-tongue system to discriminate chicken meat quality. Results suggested that 371 

significantly different E-tongue sensor signals were observed for raw breast and leg samples from 372 

the same chicken breed. Similarly, Gil et al. (2011) also used E-tongues to describe the correlation 373 

found between potentiometric measurements and the variation in certain physicochemical, 374 

microbial, and biochemical parameters measured on a whole piece of pork loin stored in a 375 

refrigerator. Ultimately, they found a remarkable correlation between pH, so-called K-index, and 376 

the potentiometric data. 377 

Generally, it was observed that the E-nose/E-tongue sensing technology mainly achieves the 378 

evaluation of meat freshness, the identification of meat varieties and quality, and the judgement of 379 

spoilage level and storage time based on the smell or taste. The test requirement of collection 380 

environment is relatively high, and the detection index is relatively simple and single, which cannot 381 

satisfy the requirement of multi-index comprehensive evaluation for meat quality (Han et al., 2014a). 382 



 

13 

 

 383 

2.7. Other meat quality detection techniques 384 

With the rapid development of artificial intelligence in the field of meat quality detection and 385 

in addition to the above-mentioned commonly used non-destructive testing technology, following 386 

non-destructive detection techniques for meat quality have emerged: 387 

Nuclear magnetic resonance spectroscopy (NMR) is based on the principle of energy exchange 388 

between a magnetic nucleus and a radio frequency magnetic field to detect the structure of various 389 

organic or inorganic compounds. The technology has been widely used in medicine and achieved 390 

great success (Damez and Clerjon, 2013), afterwards, some scholars have applied it to the detection 391 

of internal ingredients in food. Shaarani et al. (2006) demonstrated the usage of a combination of 392 

bulk NMR and magnetic resonance imaging (MRI) measurements of the T2-values of water protons 393 

to determine the heat-induced changes in the structure and moisture content of fresh chicken meat. 394 

Graham et al. (2010) combined the data generated by NMR spectroscopy with chemometrics to 395 

determine the changes in polar metabolite concentrations in beef longissimus dorsi stored for 396 

different periods postmortem. Findings demonstrated the potential of this novel approach of using 397 

high resolution NMR spectrometry to be used as a suitable method for profiling meat samples. Liu 398 

et al. (2013) investigated the influence of age on the chemical composition of duck meat using the 399 

1H NMR spectroscopy. Their results contribute to be used to help assess the quality of duck meat as 400 

a food. Xiao et al. (2019) characterized the effect of the process (washing, boiling 1 h with salt, deep 401 

frying, and boiling 2 h) on the water-soluble low molecular weight (WLOM) compound profiles of 402 

products using proton NMR spectroscopy, and the fatty acid composition of products was analyzed 403 

using gas chromatography-mass spectrometry. However, in terms of food science, NMR is mainly 404 

used for the analysis and detection of water, protein, fat, carbohydrate, and some trace elements, 405 

through analyzing the changes of chemical substances in meat to explore the change mechanism 406 

and causes of flavor, color, and tenderness (Yang et al., 2012). 407 

 408 

Bioimpedance is a basic physical parameter of biological tissue, mainly reflects the complex 409 

dielectric properties of biological tissues, organs, cells or whole biological organisms. The 410 

measuring principle of this technique is to input tiny alternating current (or voltage) on the surface 411 

of the test object through electrodes, then obtaining the physiological or pathological information 412 

based on the changes in dielectric properties in terms of potential difference (Peng et al., 2011). 413 

Fang et al. (2008) investigated the variations and mutual relationships between bio-impedance 414 

values, pH value, and water loss rate of bovine muscles near freezing point. The results revealed 415 

that the correlation between bio-impedance and pH, and water loss rate are significant (P ≥ 0.05). 416 

Yang et al. (2013) used bioelectrical impedance spectroscopy to measure moisture content in porcine 417 

meat, and forty-four pieces of porcine longissimus dorsi muscle (LDM) were evaluated with a four-418 

terminal electrode in a portable bioimpedance spectroscopy system. Xie et al. (2016) established a 419 

method for rapidly detecting the freshness of chilled pork based on bioimpedance technology. The 420 
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TVB-N content, impedance, and phase angle of 20 samples were measured and evaluated for their 421 

bioimpedance characteristics. Li et al. (2014) studied electric impedance magnitude and phase 422 

properties of unfrozen and frozen-thawed chicken breasts subjected to different thawing times to 423 

explore the impedance detection ability for frozen–thawed meat. Radial basis function (RBF) neural 424 

network was used to extract the impedance and amplitude information. It is observed that, in recent 425 

years, bioimpedance analysis has been widely used to predict the pH value, fat content, water 426 

activity, etc., as well as to determine the freshness and maturity of meat. 427 

 428 

X-rays have the characteristics of penetrating power, diffractive action, and excitation 429 

fluorescence. This is done by capturing the difference of attenuation degree occurring after the 430 

interacting with atoms of different substances. When X-ray penetrating, the transmission images 431 

and tomographic images of samples can be obtained for further analysis of internal structure (Karoui 432 

and Blecker, 2011), so as to enable virtual segmentation of the carcass for grading. Nassy (2015) 433 

studied X-ray tomography to measure and evaluate porcine carcass composition and quality traits. 434 

The proportion of three main tissues, fat, lean, and bones were determined by X-ray computed 435 

tomography (CT), and then the carcass was well graded according to the thickness of the fat and 436 

lean. Tao and Ibarra (2000) proposed a new method to compensate for x-ray absorption variations 437 

to detect the bone fragments in poultry meat with uneven thickness. Experimental results 438 

demonstrated that the proposed imaging method eliminated the false patterns and enhanced the 439 

sensitivity of X-ray in bone fragment detection. Chen et al. (2017) analyzed the physical 440 

characteristics of Sanhuang chicken carcass based on CT image technique (X-ray scanning 441 

technique), and the experiment results showed that the relative position of the heart, lung, muscle, 442 

stomach, and kidney could be clearly determined based on the horizontal and vertical cross-sectional 443 

CT images of the carcass. Liu et al. (2015a) studied the value of application in predicting the 444 

intramuscular fat (IMF) content and other nutrition in sheep carcass with dual-energy X-rays, and 445 

the results proved the necessary basis for the application of dual-energy X-ray in the prediction and 446 

evaluation of meat quality. In addition, Furnols et al. (2009) used CT technique coupled with PLS 447 

regression to estimate the lean meat percentage (LMP) in pig carcass, indicated that for CT scanning 448 

data achieved a good prediction of the LMP of the whole carcass. 449 

 450 

3. Applications 451 

In recent years, with the increasing attention and continuous development of artificial 452 

intelligence, additionally, the growing demand for high-quality and safe meat paired with increasing 453 

population, various non-destructive detection technologies have become more and more widely 454 

used in the field of meat quality testing (Chen et al., 2013). Throughout the existing research 455 

achievements on non-destructive detection for meat quality (Table 1-Table 4), the studies on meat 456 

quality mainly focuses on the four categories of beef (Wei et al., 2019), pork (Sun et al., 2018), lamb 457 

(Zheng et al., 2019), and poultry (chicken) (Jiang et al., 2017a), including the evaluation of sensory 458 
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characteristics, detection of nutrient components, identification of physical-chemical properties, 459 

discrimination of processing quality (quantitative analysis) and judgement of safety quality 460 

(qualitative analysis) (Taheri-Garavand et al., 2019b). 461 

Sensory quality directly affects consumer's desire to purchase, which reflects the commodity 462 

value of meat. It is generally evaluated from the aspects of meat color, marbling, freshness, 463 

tenderness, flavor, and juiciness. Among them, the meat flavor is closely related to the nutrients 464 

such as amino and fatty acids, and the juiciness is closely related to the fat and moisture content in 465 

meat. Sun et al. (2016) utilized a CVS to predict pork color attributes. A CVS developed for meat 466 

marbling classification resulted in accuracy values of 81.59 % for bovine and 76.14 % for swine. 467 

Wei et al. (2019) proposed a method for detecting beef freshness based on multi-spectral diffuse 468 

reflectance technique coupled with a LS-SVM for establishing a freshness prediction model, which 469 

yielded a correlation coefficient greater than 0.85. Bauer et al. (2016) evaluated a portable 671 nm 470 

Raman system to assess the tenderness of aged bovine gluteus medius muscles, and established a 471 

prediction model for beef tenderness by PLSR method that obtained 88% accuracy. Zhang et al. 472 

(2019) studied the effect of ultrasound technology on the tenderness of goose breast meat. Zhao et 473 

al. (2018) developed a rapid analytical technique to predict beef flavor using RS and to investigate 474 

correlations between sensory attributes of young dairy bull beef using chemometric method. 475 

Nutritional components reflect the edible value of meat, which mainly refers to the monitoring 476 

and analysis of meat moisture, protein, fat, vitamins, and minerals. Peng et al. (2018) designed and 477 

developed an on-line detection and grading system for pork moisture based on NIR spectroscopy 478 

modeled with the PLSR technique for predicting and grading of pork moisture. Liu et al. (2009) 479 

determined the fat, protein, and water in chilled pork using Vis-NIR transmittance spectroscopy 480 

coupled with PLS model. This result showed that the Vis-NIR method could measure the fat and 481 

water contents in chilled pork well, however, not found suitable for protein. Liu et al. (2018b) 482 

investigated the ability of CVS to predict pork intramuscular fat percentage (IMF %). The accuracy 483 

rates for regression models were 0.63 for stepwise and 0.75 for SVM. For better predicting 484 

intramuscular fat contents in pork muscles using hyperspectral imaging, Ma et al. (2018) employed 485 

a novel correlation-optimized warping (COW) technique with the first derivative on the full spectra 486 

and the feature wavelengths selected by successive projections algorithm. 487 

Physical-chemical properties are the inherent characteristics of meat. Therefore, the non-488 

destructive detection technology is primarily applied for the prediction and evaluation of the 489 

microbial, pH, TVC, and TVB-N content of meat (He and Sun, 2015). Barbin et al. (2013) exploited 490 

another push-broom NIR-HSI (900-1700 nm) to study the undesirable microbial growths (TVC and 491 

PPC) caused by temperature fluctuation during chilled pork storage. Results were encouraging and 492 

showed the promise of hyperspectral technology for detecting bacterial spoilage in pork. Nache et 493 

al. (2016) presented a new approach to predict the pH values as quality indicator to assess porcine 494 

meat quality by combining Raman spectroscopy with the ACO metaheuristics. Yang et al. (2017a) 495 

investigated the feasibility of an HSI technique to determine the (TVC) of cooked beef during 496 
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storage for evaluating the freshness state. The developed LS-SVM classification models yielded a 497 

high overall classification accuracy of 97.14%. Li et al. (2016) used E-nose to predict the TVC and 498 

TVB-N in pork and assessed the freshness of chilled pork during refrigerated storage under different 499 

packaging methods. Cheng et al. (2016) measured the biogenic amine index (BAI) in pork based on 500 

HSI data combined with stoichiometric analysis to evaluate meat freshness and quality. The PLSR 501 

technique showed an excellent prediction with a R2 of 0.96. 502 

Processing quality is an important reference for evaluating the meat processability. The 503 

commonly used indicator for characterizing meat processing is hydraulic power, also referred as 504 

drip loss or water retention, which is used to evaluate the ability of meat muscle tissue to retain 505 

water. ElMasry et al. (2011) carried out the post-mortem non-destructive prediction of WHC in fresh 506 

beef using NIR-HSI. The modeling of spectral data of beef samples to its real WHC estimated by 507 

drip loss method resulted in a R2 of 0.89. An image processing algorithm was then developed to 508 

transfer the predicting model to each pixel in the image for visualizing drip loss in all portions of 509 

the meat sample. Barbin et al. (2015) tested the NIR reflectance as a potential technique for 510 

predicting the WHC of chicken breast (Pectoralis major). Spectra in the wavelengths between 400 511 

and 2500 nm were analyzed using the PCA method and quality attributes were predicted using the 512 

PLSR. Results showed that the WHC was the most challenging attribute to determine with R2 of 513 

0.70 and SECV of 2.40%. 514 

Safety quality is an important content of meat safety testing including the identification of meat 515 

varieties and origin, the recognition of components adulteration, and the qualification of corruption 516 

degree or shelf life. Chmiel and Słowiński (2016b) determined the effectiveness of a CVS to detect 517 

meat defects of m. longissimus lumborum (LL) in industrial settings. It was found that it is possible 518 

to employ the CVS to detect PSE (pale, soft, exudative) and DFD (dark, firm, dry) and to classify 519 

meat into quality groups. Geronimo et al. (2019) studied to identify and classify chicken with 520 

wooden breast (WB) using a CVS and spectral information from the NIR region by linear and 521 

nonlinear algorithms. A 91.8% of chicken breasts were correctly classified as WB or Normal (N), 522 

and NIR spectral information showed an accuracy of 97.5%. Ropodi et al. (2017) investigated the 523 

potential of multispectral imaging coupled with data analysis methods for the detection of minced 524 

beef adulteration with horsemeat, as well as to explore model performance during storage in 525 

refrigerated conditions, and the results showed that all pure and freshly-ground samples were 526 

classified correctly. Zheng et al. (2019) described a rapid and non-destructive method based on Vis-527 

NIR-HSI system (400-1000 nm) for detecting adulteration with duck meat in minced lamb. The 528 

results indicated that the PLSR model with selected wavelengths achieved better results than others 529 

with a R2 0.98. Xiao and Xie (2010) used E-nose technology to determine the freshness and shelf 530 

life of chilled pork. Studies had shown that the shelf life of chilled pork stored at temperatures of 531 

283K and 277K was 2 d and 5 d, respectively. 532 

 533 

4 Challenges and trends 534 
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It can be seen that with the popularization and development of artificial intelligence technology, 535 

through the unremitting efforts and pursuit of food scientists at home and abroad, non-destructive 536 

testing technology has achieved relatively desired research achievements in meat quality testing. 537 

However, most of the testing techniques adopt a single detection method for some specific detection 538 

index with acceptable predicting results, which cannot obtain multiple information to 539 

comprehensively evaluate the samples (Xiong et al., 2017).  540 

Yet, meat quality is affected by many external factors, its contamination and deterioration are 541 

complex change process, which are the result of joint action between its internal components and 542 

external attributes. A single limited indicator can only describe one of the characteristics of quality 543 

changes limiting to achieve a comprehensive evaluation of meat quality as a whole, and the test 544 

results ultimately lack comprehensiveness, applicability and accuracy. Therefore, it is necessary to 545 

synthesize multiple detection methods and indicators, and utilize fusion of data information to study 546 

the comprehensive evaluation method for meat quality (Rosa et al., 2017). Geronimo et al. (2019) 547 

combined both CVS and NIR spectroscopy to identify and classify chicken freshness, respectively, 548 

and performed physical and technical characterization. Huang et al. (2014) attempted to use multi-549 

source information fusion technology to further improve the accuracy of non-destructive testing, 550 

and effectively integrated NIRS, CVS, and E-nose techniques to evaluate pork freshness. Compared 551 

with single technique, integrating three techniques has its own superiority in improving the accuracy 552 

and stability of the freshness prediction performance significantly. Lu et al. (2011) have studied the 553 

complementary technologies of mid-infrared and Raman spectroscopy to rapidly differentiate and 554 

quantify the bacteria and microorganisms in meat with determinations taking less than an hour. 555 

Pérez-Palacios et al. (2014) combined magnetic resonance imaging (MRI) and CVS to forecast 556 

quality traits of Iberian hams by using non-destructive analysis and data mining methods. 557 

The fusion of multi-source information will certainly bring great difficulties and challenges to 558 

data processing and analysis. Additionally, a large number of redundant images and added data 559 

information will call for higher requirements on the hardware performance of detection system. 560 

Therefore, it warrants the necessity to extract the useful information for inspection indicators as few 561 

and accurate as possible. Moreover, non-destructive testing is mostly indirect measurement that uses 562 

the stoichiometric method to establish relationship models between detection data and quality 563 

indicators through a certain number of test samples. The accuracy and reliability of the prediction 564 

models depend on effective modeling methods and original samples. Therefore, on the basis of 565 

ensuring the hardware performance (such as computing performance, camera resolution, and 566 

sharpness, etc.) of the detection system, it is urgent to optimize the statistical analysis methods to 567 

reduce unnecessary and irrelevant data information (Chen et al., 2013). Therefore, to speed up the 568 

system operation process, it is critical to establish more reasonable and improved regression 569 

algorithm models (PLSR, SVM, ANN, etc.) and machine learning for further mining data 570 

information to facilitate improvement of the prediction accuracy, efficiency, and overall 571 

performance (adaptability and robustness) of the meat quality detection system. 572 
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Furthermore, most of the current non-destructive testing methods for meat quality remain at 573 

the experimental research stage, although it has been proved that the detection system can meet 574 

certain testing speed and precision. However, working performance of non-destructive technologies 575 

and their effects have not been verified in the real-world meat processing production line. Therefore, 576 

while strengthening the research intensity on detection methods, prediction models, and system 577 

equipment, it is critically necessary to validate the performance of the testing equipment in the actual 578 

production process and thus, to promote the demonstration application of detection system for meat 579 

quality and intelligent development of meat processing industry. An appropriate automatic 580 

commercial inspection system for meat quality testing can only be realized when a feedback on the 581 

performance of non-destructive technologies in industrial settings (real-time meat processing 582 

production line) are available.  583 

 584 

5 Conclusions 585 

In the event of continuously increasing people's demand for high-quality meat coupled with 586 

development of artificial intelligence including non-destructive testing technologies have been more 587 

and more widely applied in meat quality detection. Machine vision, near-infrared spectroscopy, 588 

hyperspectral, Raman spectroscopy, electronic nose/tongue, and ultrasonic imaging technologies 589 

have shown their respective unique technical characteristics when exposed to meat. Overtime, these 590 

technologies have achieved gratifying research achievements for the detection, evaluation and 591 

grading of sensory quality, nutritional quality, physical-chemical quality, processing and safe quality 592 

on the meat (beef, pork, lamb, poultry, and aquatic). 593 

Nonetheless, machine vision technology is useful to obtain the appearance characteristics of 594 

meat such as color, surface morphology, etc., but, it is difficult to acquire the internal quality of meat 595 

using CVS. In contrast, NIR can detect the changes in internal composition of meat, but incapable 596 

of recognizing the external information such as meat color and odor. Unlike CVS and NIR, E-nose 597 

technology is mainly used to monitor the volatile gases released from meat and cannot determine 598 

the appearance color and internal composition changes of meat. The HSI technology integrates the 599 

advantages of both CVS and NIR methods, which facilitates predicting both internal characteristic 600 

information of the samples along with detecting the external basic spatial information. However, 601 

most of the studies only make use of the single spectral information or image information in 602 

hyperspectral data for modeling purpose. The characteristics of ‘combination of spectrum and image’ 603 

of the hyperspectral imaging technology are not fully utilized yet in conducting quantitative analysis 604 

and qualitative discrimination on comprehensive determination of meat quality parameters. 605 

Therefore, multiple non-destructive testing technologies are organically integrated fully to 606 

obtain the multivariate data information of integrated sample that combined with the optimized and 607 

improved chemometric methods. Additionally, the digital image processing technology paired with 608 

artificial intelligence learning algorithms were used to construct quantitative prediction models and 609 

qualitative discrimination methods for meat quality. Furthermore, performing the comprehensive 610 
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and entire evaluation of fresh meat from sensory characteristics, internal constituents and external 611 

factors, and applying the developed high-performance quality detection systems to actual meat 612 

processing production lines are all still the research focuses and development trends in meat quality 613 

nondestructive testing, so as to strictly ensure the quality and safety of commercial market meat.  614 

So, this review provided a comprehensive summary of the current challenges and future 615 

research directions for meat quality detection tools based on the analysis, critical reviews, and 616 

synthesizing the findings of the recent articles on non-destructive technologies. 617 
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Tab.1 Recent studies on meat quality detection using computer vision system 1020 

   Performance References 

   Accuracy of 92.5%, 75.0% (Sun et al., 2018) 

   Correlation coefficient of  

 

0.98734 

(Taheri et al., 2019) 

   Correlation coefficient of 

0.926 

(Tappi et al., 2017) 

   Accuracy of 81.7% (Chmiel et al., 2016a, b) 

   Error of 7.8% (Mortensen et al., 2016) 

Note: Support vector machine (SVM), genetic algorithm (GA), artificial neuronal network (ANN), analyses of 1021 

variance (ANOVA), least significant difference (LSD), and multivariate linear regression (MLR). 1022 

 1023 

Tab.2 Recent studies on meat quality detection using near-infrared spectroscopy 1024 

Category Measured 

attribute 

Analytical 

method 

Performance References 

Chicken Identification and 

classification 

(Moisture, lipid 

contents, protein 

contents, water 

holding capacity, 

and shear force) 

SVM Accuracy of 

91.8% 

(Geronimo et al., 2019) 

Pork Freshness BP-AdaBoost Correlation 

coefficient of 

0.8325 

(Huang et al., 2015) 

Chicken Water-holding 

capacity 

PCA and PLSR Correlation 

coefficient of 

0.91 

(Barbin et al., 2015) 

Mutton Discriminating the 

adulteration 

SVM Accuracy of 

90.38-99.07% 

(Zhang et al., 2015a) 

Pork Moisture PLSR Correlation 

coefficient of 

0.906 

(Peng et al., 2018) 

Chicken breast Protein LDA and PLSR Accuracy of 99.5-

100% 

(Wold et al., 2017) 

Fish Microbial spoilage PLSR and LS-

SVM 

Correlation 

coefficient of 

0.93 

(Cheng et al., 2015a) 

Rhubarb Identification PLS-DA, SIMCA, 

SVM and ANN 

Accuracy of 

94.12% 

(Sun et al., 2017) 

Beef Adulteration AF Correlation 

coefficient of 

0.91 

(Chen et al., 2018) 

Beef, chicken 

and lard 

Authentication and 

classification 

SVM Accuracy of 

98.33% 

(Alfar et al., 2016) 

Turkey meat Identification PLS-DA Correlation 

coefficient >0.884 

(Alamprese et al., 2016) 

Note: BP-AdaBoost, namely back propagation artificial neural network (BP-ANN) and adaptive boosting 1025 

(AdaBoost), linear discriminant analysis (LDA), partial least squares-discriminant analysis (PLS-DA), soft 1026 

independent modeling of class analogies (SIMCA), least square support vector machines (LS-SVM), and artificial 1027 

fish swarm algorithm (AF). 1028 
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 1030 

Tab.3 Recent studies on meat quality detection using hyperspectral imaging (HSI) technique 1031 

Category Measured 

attribute 

Analytical method Performance References 

Chicken meat Texture ACO-BPANN and 

PCA-BPANN 

Correlation 

coefficient of 

0.754 

(Khulal et al., 2016) 

Prawn TVB-N 

(freshness) 

PLSR, LS-SVM and 

BP-NN 

Correlation 

coefficient of 

0.9547 

(Dai et al., 2016) 

Beef Total viable 

count (TVC) of 

bacteria 

(freshness) 

PLS and LS-SVM Accuracy of 

97.14% 

(Yang et al., 2017a) 

Pork meat Protein and 

TVB-N content 

PLSR and LS-SVM Correlation 

coefficient of 

0.861 

(Yang et al., 2017b) 

Fish Freshness PCA and BP-ANN Accuracy of 

94.17% 

(Huang et al., 2016) 

Pork muscles Intramuscular 

fat contents 

SVM, SG, SNV, MSC 

and PLSR 

Correlation 

coefficient of 

0.9635 

(Ma et al., 2018) 

Frozen pork Myofibrils cold 

structural 

deformation 

degrees 

PLSR and SPA Correlation 

coefficient of 

0.896 

(Cheng et al., 2018) 

Lamb, beef, and 

pork 

Adulteration SVM and CNN Accuracy of 

94.4% 

(Al-Sarayreh et al., 

2018) 

Beef Adulteration PLSR and SVM Accuracy of 

95.31% 

(Ropodi et al., 2017) 

Fish (grass carp) Textural 

changes 

(Warner-

Bratzler shear 

force, hardness, 

gumminess and 

chewiness) 

PLSR Correlation 

coefficient of 

0.7982- 

Correlation 

coefficient of 

0.8774 

(Ma et al., 2017a) 

Lamb meat Adulteration SPA and SG Correlation 

coefficient 

above 0.99 

(Zheng et al., 2019) 

Pork Intramuscular 

fat content 

MLR Correlation 

coefficient of 

0.96 

(Huang et al., 2017) 

Pork longissimus 

dorsi muscles 

Moisture 

content (MC) 

PLSR Correlation 

coefficient of 

0.9489 

(Ma et al., 2017b) 

Grass carp 

(Ctenopharyngodon 

idella) 

Moisture 

content 

PLSR Correlation 

coefficient of 

0.9416 

(Qu et al., 2017) 

Lamb muscle Discrimination PCA, LMS, MLP-SCG, 

SVM, SMO and LR 

Accuracy of 

96.67% 

(Sanz et al., 2016) 

Beef Adulteration PLSR, SVM, ELM, 

CARS and GA 

Correlation 

coefficient of 

0.97 

(Zhao et al., 2019) 

Note: Principle component analysis (PCA), ant colony optimization (ACO), savitzky golay (SG)-smoothing, 1032 

standard normal variate (SNV), multiplicative scatter correction (MSC) and partial least squares regression (PLSR), 1033 

successive projections algorithm (SPA), convolution neural networks (CNN), artificial fish swarm algorithm (AF), 1034 

linear least mean squares (LMS), multilayer perceptron with scaled conjugate gradient (MLP-SCG), sequential 1035 

minimal optimization (SMO), logistic regression (LR), extreme learning machine (ELM), and competitive adaptive 1036 

reweighted sampling (CARS).  1037 
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 1038 

Tab.4 Recent studies on meat quality detection using Raman spectra technique 1039 

Category Measured attribute Raman 

frequency 

range 

Analytical 

method 

Performanc

e 

References 

Grass carp 

surimi 

Changes of protein 

structure and amino 

acid residue 

microenvironment 

2900 cm-1 / Effective (Gao et al., 2018) 

Bull beef Sensory characteristics 

(flavour) 

1300-2800 cm-1 PLSR Correlation 

coefficient 

of 0.80-0.96 

(Zhao et al., 2018) 

Beef tallow, 

pork lard, 

chicken fat, 

duck oil 

Adulteration 

(unsaturated fatty acids 

and total fatty acids) 

700-1800 cm-1 Correlated 

linear 

Correlation 

coefficient 

of 0.96674 

and 0.97148 

(Lee et al., 2018) 

Chicken Sodium chloride or 

sodium bicarbonate 

1659 ± 0.58 cm-1 

to 

1661 ± 0.58 cm-1 

one-way 

ANOVA 

/ (Zhu et al., 2018) 

Bovine Tenderness (shear 

force) 

800-1550 cm-1 PLSR Accuracy of 

70-88% 

(Bauer et al., 2016) 

Lamb Intramuscular fat 

content and major fatty 

acid groups 

500-1800 cm-1 PLSR and 

linear 

regression 

Correlation 

coefficient 

of 0.93 

(Fowler et al., 

2015b) 

Bovine serum 

albumin 

Orientation of 

Norfloxacin 

300-1800 cm-1 / / (Lian et al., 2019) 

Cooked meat Endpoint temperature 1800-2000 cm-1 PLS-DA and 

PCA 

Accuracy of 

97.87% 

(Berhe et al., 2015) 

Beef lions Eating quality traits 

(juiciness and 

tenderness) 

671 nm PLSR / (Fowler et al., 

2018) 

Porcine meat pH 323-2105 cm-1 ACO Correlation 

coefficient 

of 0.90 

(Nache et al., 2016) 

 1040 

 1041 
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Figure legends 1043 

 1044 

Fig. 1. Components of a meat computer vision system 1045 

Fig. 2. Components of a meat spectral detection system 1046 

Fig. 3. Hypercube information diagram of hyperspectral image for meat detection  1047 
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Fig. 1. Components of a meat computer vision system 1051 
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 1053 
Fig. 2. Components of a meat spectral detection system 1054 
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 1056 

Fig. 3. Hypercube information diagram of hyperspectral image for meat detection 1057 
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