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Abstract 14 

A pig-specific real-time PCR assay based on the mitochondrial ND5 gene was developed 15 

to detect porcine material in food and other products. To optimize the performance of assay, 16 

seven commercial TaqMan master mixes and two real-time PCR platforms (Applied 17 

Biosystems StepOnePlus and Bio-rad CFX Connect) were used to evaluate the limit of 18 

detection (LOD) as well as the PCR efficiency and specificity. The LODs and PCR 19 

efficiencies for the seven master mixes on two platforms were 0.5–5 pg/reaction and 84.96%–20 

108.80%, respectively. Additionally, non-specific amplifications of DNA from other animal 21 

samples (human, dog, cow, and chicken) were observed for four master mixes. These results 22 

imply that the sensitivity and specificity of a real-time PCR assay may vary depending on 23 

master mix and platform used. The best combination of master mix and real-time PCR 24 

platform can accurately detect 0.5 pg porcine DNA, with a PCR efficiency of 100.49%. 25 

 26 
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Correctly identifying meat species in food products is very important for authenticating 31 

food, promoting food safety, and preventing food adulteration. Meat species identification is a 32 

critical issue because of the different forms of meat adulteration, including the replacement of 33 

expensive meat with cheaper meat, the presence of less meat than indicated on the product 34 

label, and the inclusion of meat in non-meat (vegetarian) products (Zia et al., 2020). 35 

Furthermore, accurate meat species identification is important for satisfying religious 36 

requirements for certain foods (e.g., Halal meat). Islamic law strictly forbids the consumption 37 

of some meat products, especially pork. Thus, there are authenticity problem and religious 38 

reason for protecting consumers by detecting pork in food products. 39 

Among the various analytical methods available for detecting meat species in foods, 40 

highly sensitive and specific DNA-based methods have been commonly applied (El Sheikha 41 

et al., 2017). Polymerase chain reaction (PCR)-based methods involving random amplified 42 

polymorphic DNA (Arslan et al., 2005; Mane et al., 2008), restriction fragment length 43 

polymorphisms (Hossain et al., 2016; Rahmati et al., 2016), DNA barcoding (Kane 44 

and Hellberg 2016; Naaum et al., 2018), and real-time PCR (Amaral et al., 2017; Mohamad et 45 

al., 2018) are frequently used because they enable rapid and precise detection of meat species. 46 

Among these options, real-time PCR with a species-specific primer and a TaqMan probe is 47 

the most suitable and widely used method for identifying meat species (Ali et al., 2012; Kim 48 

et al., 2016). Furthermore, there are numerous available commercial master mixes and 49 

platforms, with increasing interest in the TaqMan real-time PCR assay. 50 

Several previous studies investigated the effects of different master mixes and platforms 51 

on real-time PCR performance characteristics. For example, Sohni et al. (2008) evaluated five 52 

commercial real-time PCR reagents used for detecting Bacillus anthracis by comparing their 53 

PCR efficiencies and limits of detection (LODs). Stephens et al. (2010) compared five master 54 

mixes used for detecting the Ebola virus regarding their performance characteristics such as 55 



 

5 

 

sensitivity and PCR efficiency. Meanwhile, Buzard et al. (2012) conducted a multi-platform 56 

comparison of nine commercial master mixes used for detecting bioterrorism agents. 57 

Furthermore, Eischeid and Kasko (2015) compared the utility of four master mixes for 58 

identifying a shrimp allergen in a real-time PCR assay. All of these studies emphasized the 59 

importance of choosing a suitable master mix and platform, both of which can influence the 60 

sensitivity and efficiency of a PCR assay. However, there have been relatively few 61 

comparative studies regarding real-time PCR master mixes and platforms used for identifying 62 

meats, especially pork. Moreover, most of these studies did not test whether the PCR assay 63 

was specific for meat from a particular animal species. 64 

Therefore, the main objective of this study was to optimize a real-time PCR assay for 65 

detecting porcine material. Seven commercial master mixes were compared regarding specific 66 

performance criteria, including LOD, PCR efficiency, specificity, total cost, and time. The 67 

reliability of the data was confirmed with two real-time PCR platforms. 68 

 69 

Materials and methods 70 

 71 

Commercial master mixes 72 

The following seven commercial TaqMan master mixes were evaluated: TaqMan 73 

Universal PCR Master Mix (Applied Biosystems, Waltham, MA, USA), MG 2X qPCR 74 

MasterMix (TaqMan) with ROX (CancerROP, Seoul, Korea), Express qPCR Supermix 75 

Universal (Invitrogen, Waltham, MA, USA), PowerAmp Real-time PCR Master Mix II 76 

(Kogene Biotech, Seoul, Korea), Luna Universal Probe qPCR Master Mix (New England 77 

Biolabs,Ipswich, MA, USA), QuantiNova Probe PCR Kit (Qiagen, Hilden, Germany), and 78 

Premix Ex Taq (Probe qPCR), ROX plus (Takara, Shiga, Japan). 79 

 80 
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Sample collections 81 

Four raw meat samples including pig (Sus scrofa domesticus), dog (Canis familiaris), 82 

chicken (Gallus gallus), and cow (Bos taurus) were purchased from local supermarkets in 83 

South Korea, and human cheek cells were obtained after rinsing the mouth with 1 mL 8% 84 

NaCl.  85 

Meat-processed foods including 4 types of pork-containing products (dumpling, ham, 86 

pork cutlet, and sausage), 3 types of beef-containing products (beef curry, beef stock, and 87 

meatballs), and 3 types of chicken-containing products (chicken teriyaki, chicken sausage, 88 

and chicken stock) were purchased from local markets in South Korea. 89 

 90 

DNA extraction 91 

Genomic DNA was extracted from 200 mg of finely ground samples. For all samples, 92 

DNA was extracted with the PowerPrep™ DNA Extraction from Food and Feed Kit (Kogene 93 

Biotech) according to the manufacturer’s instruction. The concentration and quality of 94 

extracted DNA were determined by Nanodrop 2000 spectrophotometer (Thermo Fisher 95 

Scientific, Waltham, MA, USA). The DNA concentration of all samples was adjusted to 50 96 

ng/µL and a 10-fold serial dilution series of porcine DNA was prepared to generate a real-time 97 

PCR standard curve.  98 

 99 

Primer and probe design 100 

The porcine-specific primer set [5′-CGCCTCACTCACATTAACCA-3′ (forward) and 5′- 101 

AAGGGGACTAGGCTGAGAGTG-3′ (reverse)] and TaqMan probe [5′-FAM- 102 

CACTGACTATTCTAACCATCCCAA-BHQ1-3′] were designed as follows. Various porcine 103 

DNA sequences from the National Center for Biotechnology Information GenBank database 104 

(http://www.ncbi.nlm.nih.gov/Genbank) were aligned with the ClustalW program 105 
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(http://www.ebi.ac.uk/clustalw/). The primer set was designed to specifically target the 106 

conserved region of the ND5 gene (NADH dehydrogenase subunit 5) from the porcine 107 

mitochondrial genome to produce a 141-bp amplicon. The TaqMan probe was tag with FAM 108 

and BHQ1 at the 5′ and 3′ ends, respectively. The primer set and probe were synthesized by 109 

Bioneer (Deajeon, Korea). 110 

 111 

Real-time PCR assay and data analysis 112 

The reaction mixture for the real-time PCR assay comprised 10 µL each master mix, 500 113 

nM primer set, 500 nM TaqMan probe, 1 µL DNA (10-fold serial dilution series), and distilled 114 

water for a final volume of 20 µL. The manufacturer’s recommended thermal cycling 115 

conditions used in this study are listed in Table 1. To determine the LODs and PCR 116 

efficiencies, all samples of the 10-fold serial dilution series were analyzed in triplicate on the 117 

same 96-well optical reaction plate (Applied Biosystems). The real-time PCR assay was 118 

completed using the StepOnePlus™ Real-Time PCR system (Applied Biosystems) and the 119 

CFX Connect™ Real-Time PCR System (Bio-Rad, Hercules, CA, USA). 120 

All data were analyzed with StepOnePlus™ Software (version 2.3) (Applied Biosystems) 121 

and CFX Manager™ Software (Bio-Rad). Moreover, these programs automatically generated 122 

the standard curve and determined the PCR efficiency, which was calculated as E = −1 + 123 

10(−1/slope). 124 

 125 

Results and Discussion 126 

 127 

Limit of detection (LOD) and PCR efficiency 128 

To compare the LODs and PCR efficiencies, 10-fold serial dilutions of porcine DNA 129 

(0.0005–50 ng/µL) were analyzed in a real-time PCR assay involving seven master mixes and 130 
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two platforms (Table 2). All master mixes performed stably on both platforms, but the LODs 131 

of the master mixes ranged from 0.5 to 5 pg/reaction (rxn). Sensitive and reliable 132 

amplifications were observed for the Kogene Biotech, Invitrogen, Qiagen, and New England 133 

Biolabs master mixes, with an LOD of 0.5 pg/rxn on both platforms. In contrast, the LOD for 134 

the Applied Biosystems and CancerROP master mixes differed depending on the platform. 135 

Specifically, the LOD for the Applied Biosystems master mix was 10 times lower on the 136 

StepOnePlus platform (0.5 pg/rxn) than on the CFX Connect platform (5 pg/rxn). Conversely, 137 

the LOD of the CancerROP master mix was 10 times lower on the CFX Connect platform 138 

(0.5 pg/rxn) than on the StepOnePlus platform (5 pg/rxn). The Takara master mix was the 139 

least sensitive, with an LOD of 5 pg/rxn. The PCR efficiencies of the seven master mixes 140 

ranged from 84.96% to 108.80% depending on the master mixes and platforms (Fig. 1). The 141 

Kogene Biotech master mix on the CFX Connect platform performed best, with an efficiency 142 

of 100.49% (correlation coefficient, r2=9997). Meanwhile, the worst performance was 143 

observed for the Applied Biosystems master mix on the CFX Connect platform, with an 144 

efficiency of 84.96% (correlation coefficient, r2=9943).  145 

The data presented herein revealed that the sensitivity and efficiency of a real-time PCR 146 

assay varied depending on the master mix and platform used. The observed differences were 147 

due to the DNA polymerase and buffer in the master mix, both of which influence the 148 

amplification efficiency and ability to detect specific DNA sequences (Wolffs et al., 2004). 149 

Previous studies that evaluated the utility of DNA polymerases for amplifying DNA samples 150 

collected during forensic analyses compared nine DNA polymerases (AmpliTaq Gold, Bio-X-151 

Act Short, ExTaq Hot Start, KAPA2G Robust, OmniTaq, PicoMaxx High Fidelity, rTth, Taq, 152 

and Tth). The resulting LODs and PCR efficiencies differed depending on the DNA 153 

polymerase used (Hedman et al., 2009; Hedman et al., 2010). Other studies demonstrated that 154 

the master mix buffer components, such as Mg2+ and bovine serum albumin, influence DNA 155 
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polymerase activity (Bustin, 2004; Kreader, 1996). Therefore, the variability in the LODs and 156 

PCR efficiencies in the current study was because the seven tested master mixes comprise a 157 

different DNA polymerase–buffer system. Moreover, the suitability of a particular DNA 158 

polymerase–buffer system may depend on the DNA target.  159 

This comparative study of seven master mixes may be useful for the development of a 160 

very sensitive real-time PCR assay for detecting porcine material. A comparison with several 161 

previous real-time PCR-based studies of porcine detection indicated that the LOD (0.0005 162 

ng/rxn) of this study is lower than that (0.01 ng/rxn) of a previous study by Rodriguez et al. 163 

(2005), but is similar to the LOD (0.0001 ng/rxn) of a study by Kesmen et al. (2009), which 164 

involved the most sensitive real-time PCR system for detecting porcine material. Additionally, 165 

appropriate PCR efficiencies were reportedly between 90% and 110% (Adams, 2006). In this 166 

study, the PCR efficiencies of most of the master mix and platform combinations were 167 

between 84.96% and 108.80%. Moreover, the highest efficiency (100.49%) observed for the 168 

Kogene Biotech master mix on the CFX Connect platform was greater than the previously 169 

reported PCR efficiencies of 75.83% (Rodriguez et al., 2005), 91.57% (Sakai et al., 2011), 170 

and 103.98% (Kesmen et al., 2009).  171 

 172 

Specificity test 173 

The specificity of the seven master mixes was tested with 50 ng/µL DNA extracted from 174 

four animal species (human, dog, cow, and chicken), with porcine DNA used as a positive 175 

control. All samples were analyzed in triplicate along with a no-template control, and the 176 

results are presented in Table 3. The positive control was amplified in all seven master mixes, 177 

with CT values between 15.35 ± 0.37 and 18.69 ± 0.37. A lack of non-specific amplification 178 

was observed for the Applied Biosystems, Takara, and Kogene Biotech master mixes on both 179 

platforms. Meanwhile, non-specific amplifications were detected for the Invitrogen and New 180 
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England Biolabs master mixes, but only on the CFX Connect platform, while they were 181 

observed for the Qiagen and CancerROP master mixes on both platforms.  182 

An additional sequence alignment analysis of five animal species (pig, human, dog, cow, 183 

chicken) with the ClustalW program was used to verify the specificity of the primer sets and 184 

probes. The primer and probe sequences were completely complementary to the 185 

mitochondrial DNA of Sus scrofa domesticus (NC012096.1, AF486858.1, AF486866.1, 186 

AY574046.1, DQ518915.2, EU117375.1, KJ746666.1, and KC469587.1), but not to the 187 

sequences from other species, specifically Homo sapiens (GU170821.1), Canis familiaris 188 

(AY729880.1), Bos taurus (GU947021.1), and Gallus gallus (KM096864.1). A conventional 189 

PCR was applied to confirm the specificity of the primer set developed in this study. The 190 

electrophoretic separation of amplicon revealed a lack of non-specific products, confirming 191 

that the primer set developed in this study is specific for porcine material (data not shown). 192 

However, non-specific amplifications were observed for the real-time PCR assay depending 193 

on the master mix and platform. A recent study revealed that non-specific amplifications 194 

during real-time PCR assays may occur after 27 cycles depending on the master mix and 195 

thermal cycling conditions, which is earlier than the reported threshold of 34 cycles (Ruiz-196 

Villalba et al., 2017). In the current study, non-specific amplifications occurred with CT values 197 

ranging from 32.75 to 34.91, which are consistent with the data from an earlier study. 198 

However, the reason why certain master mixes result in non-specific amplifications remains 199 

unknown. 200 

 201 

Application of the real-time PCR assay for detecting porcine material   202 

Following a comparison of seven master mixes and platforms based on the LOD, PCR 203 

efficiency, and specificity, we selected PowerAmp Real-time PCR Master Mix II and the CFX 204 

Connect platform as the best combination for detecting porcine DNA. Pork is one of the most 205 
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widely used meats in processed meat products. The presence of pork in processed foods may 206 

cause allergic reactions in some sensitive people, and it may be used for food adulteration 207 

(Tanabe et al., 2007; Soares et al., 2010). Furthermore, it is banned in halal foods.  208 

The real-time PCR assay developed in this study was used to determine the presence or 209 

absence of porcine material in various processed foods. The analysis of 10 commercial 210 

processed meat products showed positive reactions for all pork-containing products 211 

(dumpling, ham, pork cutlet, and sausage) and negative reactions for all beef-containing 212 

products (beef curry, beef stock, and meatballs) and chicken-containing products (chicken 213 

teriyaki, chicken sausage, and chicken stock) (Table 4). This result was consistent with the 214 

ingredients listed on the label of the commercial products. Therefore, the porcine-specific 215 

real-time PCR assay could be used for the identification and detection of hidden allergens and 216 

food adulterants in processed foods and the analysis of halal foods.  217 

 218 

Comparison of costs and times 219 

The seven master mixes included in this study were compared in terms of their costs and 220 

times required for the real-time PCR (Table 5). The cost per reaction of the seven master 221 

mixes ranged from US$ 0.33 to 1.26. The most and least expensive master mixes were from 222 

Invitrogen and CancerROP, respectively. On the basis of the manufacturer’s recommended 223 

protocols, the total real-time PCR run-times ranged from 10.75 to 57.50 min, with the longest 224 

and shortest run-times associated with the CancerROP and Qiagen master mixes, respectively. 225 

 226 

Conclusions  227 

Seven commercial master mixes were evaluated to optimize the real-time PCR assay 228 

conditions for detecting porcine materials. Additionally, LODs, PCR efficiency, and 229 

specificity, as well as the total times and costs of each master mix were analyzed using two 230 
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real-time PCR platforms. Consequently, a sensitive (LOD of 0.5 to 5 pg/rxn) and efficient 231 

(84.96% to 108.80%) real-time PCR-based porcine detection system was developed. 232 

However, the LODs and PCR efficiencies varied depending on the master mixes and 233 

platforms. Moreover, a specificity test involving four animal species unrelated to pig revealed 234 

that non-specific amplifications were not observed on both platforms for only three master 235 

mixes from Applied Biosystems, Kogene Biotech, and Takara. These results prove that real-236 

time PCR assays can be influenced by the master mixes and platform. The analysis of 237 

commercial processed meat products using the porcine-specific real-time PCR assay showed 238 

results that were consistent with the ingredients listed on the label. The result of this 239 

comparative study may be useful for optimizing porcine detection system based on a real-time 240 

PCR assay. 241 

 242 
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Figure legend 380 
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Fig. 1 Standard curves for seven master mixes (a–g) tested on the StepOnePlus and CFX 382 

Connect platforms. The real-time PCR assay was completed in triplicate using 10-fold serial 383 

dilutions of porcine DNA. Error bars are not shown because the symbol is larger than the 384 

error bar. 385 

 386 
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Table 1. Summary of the seven commercial master mixes evaluated in this study 

 

 

 

 

 

 

Manufacturer Master mix Manufacturer’s recommended thermal cycling conditions 

Applied Biosystems TaqMan Universal PCR Master Mix 50℃ for 2 min, 95℃ for 10 min, and 35 cycles of 95℃ for 15 s and 60℃ for 1 min 

CancerROP MG 2X qPCR MasterMix (TaqMan) with ROX 95℃ for 5 min and 35 cycles of 95℃ for 30 s and 60℃ for 1 min 

Invitrogen Express qPCR Supermix Universal 50℃ for 2 min, 95℃ for 2 min, and 35 cycles of 95℃ for 15 s and 60℃ for 1 min 

Kogene Biotech PowerAmp Real-time PCR Master Mix II 50℃ for 2min, 95℃ for 10 min, and 35 cycles of 95℃ for 15 s and 60℃ for 1 min 

New England Biolabs Luna Universal Probe qPCR Master Mix 95℃ for 60 s and 35 cycles of 95℃ for 15 s and 60℃ for 30 s 

Qiagen QuantiNova Probe PCR Kit 95℃ for 2 min and 35 cycles of 95℃ for 5 s and 60℃ for 10 s 

Takara Premix Ex Taq (Probe qPCR), ROX plus 95℃ for 20 s and 35 cycles of 95℃ for 1 s and 60℃ for 20 s 
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Table 2. Comparison of the sensitivity of seven commercial master mixes for detecting porcine DNA by real-time PCR 

Manufacturer Platform 
CT values for different concentrations of porcine DNA (ng/µL) 

5 × 101 5 × 100 5 × 10-1 5 × 10-2 5 × 10-3 5 × 10-4 

Applied Biosystems 
StepOnePlus 17.77 ± 0.53 20.60 ± 0.47 23.97 ± 0.46 28.44 ± 0.93 31.00 ± 0.08 34.79 ± 0.33 

CFX Connect 17.38 ± 0.23 20.01 ± 0.18 24.65 ± 0.04 27.92 ± 0.32 32.15 ± 0.04 ND 

CancerROP 
StepOnePlus 18.54 ± 0.09 20.56 ± 0.12 25.44 ± 0.47 29.18 ± 0.48 32.09 ± 0.72 ND 

CFX Connect 15.72 ± 0.44 18.23 ± 0.64 22.54 ± 0.52 26.52 ± 0.02 29.91 ± 0.17 33.41 ± 0.52 

Invitrogen 
StepOnePlus 17.01 ± 0.16 19.79 ± 0.34 23.71 ± 0.21 26.91 ± 0.22 30.86 ± 0.30 33.78 ± 0.21 

CFX Connect 17.60 ± 0.34 21.05 ± 0.02 24.57 ± 0.13 28.45 ± 0.13 31.40 ± 0.04 34.75 ± 0.13 

Kogene Biotech 
StepOnePlus 15.35 ± 0.37 18.59 ± 0.35 21.96 ± 0.64 25.13 ± 0.15 28.92 ± 0.05 32.01 ± 0.08 

CFX Connect 17.40 ± 0.45 20.55 ± 0.42 23.97 ± 0.41 27.20 ± 0.03 30.75 ± 0.12 33.81 ± 0.43 

New England Biolabs 
StepOnePlus 17.27 ± 0.04 19.82 ± 0.24 24.39 ± 0.09 27.85 ± 0.05 31.16 ± 0.19 34.38 ± 1.03 

CFX Connect 17.61 ± 0.11 19.11 ± 0.69 22.38 ± 0.34 25.89 ± 0.48 29.65 ± 0.54 32.56 ± 0.16 

Qiagen 
StepOnePlus 17.19 ± 0.23 20.05 ± 0.27 24.09 ± 0.57 27.23 ± 0.93 31.02 ± 0.69 33.67 ± 0.35 

CFX Connect 17.08 ± 0.26 20.81 ± 0.06 22.81 ± 0.13 26.62 ± 0.32 30.36 ± 0.45 33.36 ± 0.17 

Takara 
StepOnePlus 18.69 ± 0.37 22.00 ± 0.45 26.47 ± 0.18 29.91 ± 0.69 33.28 ± 0.21 ND 

CFX Connect 16.68 ± 0.18 19.65 ± 0.25 22.77 ± 0.34 26.24 ± 0.23 29.02 ± 0.21 ND 

Average CT values (mean ± standard deviation) for 50, 5, 0.5, 0.05, 0.005, and 0.0005 ng/ µL porcine DNA analyzed in triplicate 

ND, not detected 
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Table 3. Comparison of the specificity of the seven commercial master mixes for detecting porcine DNA by real-time PCR 

Manufacturer Platform 
CT valuesab of animal species 

Pig Human Dog Cow Chicken 

Applied Biosystems 
StepOnePlus 17.77 ± 0.53 ND ND ND ND 

CFX Connect 17.38 ± 0.23 ND ND ND ND 

CancerROP 
StepOnePlus 18.54 ± 0.09 33.21 ± 0.54 ND 34.28(2/3) ND 

CFX Connect 15.72 ± 0.44 34.11(2/3) ND ND ND 

Invitrogen 
StepOnePlus 17.01 ± 0.16 ND ND ND ND 

CFX Connect 17.60 ± 0.34 ND ND 34.28(2/3) ND 

Kogene Biotech 
StepOnePlus 15.35 ± 0.37 ND ND ND ND 

CFX Connect 17.40 ± 0.45 ND ND ND ND 

New England Biolabs 
StepOnePlus 17.27 ± 0.04 ND ND ND ND 

CFX Connect 17.61 ± 0.11 33.56 ± 0.83 ND 34.91(2/3) ND 

Qiagen 
StepOnePlus 17.19 ± 0.23 33.96(2/3) ND ND ND 

CFX Connect 17.08 ± 0.26 34.34(2/3) 32.75 ± 0.73 33.92 ± 0.33 ND 

Takara 
StepOnePlus 18.69 ± 0.37 ND ND ND ND 

CFX Connect 16.68 ± 0.18 ND ND ND ND 

aAverage CT values (mean ± standard deviation) for 50 ng/µL DNA samples of five species analyzed in triplicate 

bNumbers in parentheses indicates the number of times the CT value was determined in three measurements, the average CT value is presented 

ND, not detected
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Table 4. Porcine-specific real-time PCR assaya of commercial processed meat products 

Processed meat products Labeled meat ingredients CT valuesb 

Dumpling Pork 21.71 ± 0.73 

Ham Pork 19.87 ± 0.64 

Pork cutlet Pork 20.06 ± 0.42 

Sausage Pork 18.62 ± 0.23 

Beef curry Beef ND 

Beef stock Beef ND 

Meatballs Beef ND 

Chicken teriyaki Chicken ND  

Chicken sausage  Chicken ND 

Chicken stock Chicken ND 

aPowerAmp Real-time PCR Master Mix II and the CFX connect platform were used for porcine-specific real-

time PCR assay 

bAverage CT values (mean ± standard deviation) for 50 ng/µL DNA samples of 10 processed meat products 

analyzed in triplicate 

ND, not detected 
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Table 5. Comparison of the time and cost associated with the seven commercial master mixes included in this study 

Manufacturer Master mix Cost/reaction (US$)a Total time (min)b 

Applied Biosystems TaqMan Universal PCR Master Mix 1.13 38.25 

CancerROP MG 2X qPCR MasterMix (TaqMan) with ROX 0.33 57.50 

Invitrogen Express qPCR Supermix Universal 1.26 47.75 

Kogene Biotech PowerAmp Real-time PCR Master Mix II 0.59 55.75 

New England Biolabs Luna Universal Probe qPCR Master Mix 0.47 27.25 

Qiagen QuantiNova Probe PCR Kit 0.85 10.75 

Takara Premix Ex Taq (Probe qPCR), ROX plus 0.49 12.58 

aCalculated based on the cost for each commercial master mix in spring 2020 

bSumming of the cycling times in the manufacturer’s protocol 

 


