1 ARTICLE

2	
3	Improving the Quality of Response Surface Analysis of an Experiment for Coffee-
4	Supplemented Milk Beverage: II. Heterogeneous Third-Order Models and Multi-
5	response Optimization
6	
7	Sungsue Rheem ^{1*} , Insoo Rheem ² , and Sejong Oh ^{3*}
8	
9	¹ Graduate School of Public Administration, Korea University, Sejong 30019, South Korea
10	² Department of Laboratory Medicine, Dankook University Hospital, Cheonan 31116,
11	South Korea
12	³ Division of Animal Science, Chonnam National University, Gwangju 61186, South Korea
13	
14	*Corresponding authors:
15	
16	Sungsue Rheem
17	Graduate School of Public Administration, Korea University, Sejong 30019, South Korea
18	E-mail: <u>rheem@korea.ac.kr</u>
19	Phone: +82-10-8725-7124
20	
21	Sejong Oh
22	Division of Animal Science, Chonnam National University, Gwangju 61186, South Korea
23	E-mail: soh@jnu.ac.kr
24	Phone: +82-62-530-2116
25	
26	

ABSTRACT

This research was motivated by our encounter with the situation where the quality of 28 29 response surface analysis of an experiment was so poor that seemingly unreliable modeling and optimization results were presented. Such a situation took place in a research to 30 optimize manufacturing conditions for improving storage stability of coffee-supplemented 31 milk beverage by using response surface methodology, where two responses are $Y_1 =$ 32 particle size and Y_2 = zeta-potential, two factors are F_1 = speed of primary homogenization 33 (rpm) and F_2 = concentration of emulsifier (%), and the optimization objective is to 34 simultaneously minimize Y_1 and maximize Y_2 . For response surface analysis, practically, 35 36 the second-order polynomial regression model is almost solely used. But, there exists the cases in which the second-order model fails to provide a good fit, to which remedies are 37 seldom known to researchers. Thus, as an alternative to a failed second-order model, we 38 present the heterogeneous third-order model, which can be used when the experimental 39 40 plan is a two-factor central composite design having -1, 0, and 1 as the coded levels of factors. And, for multi-response optimization, we suggest the modified desirability 41 42 function technique. Using these two methods, we have obtained response surface models with improved fits and multi-response optimization results with predictions better than 43 those in the previous research; our predicted minimum of Y_1 is 183.4, which is lower than 44 the previous observation, and our predicted maximum of Y_2 is 30.93, which is higher than 45 the previous observation. Our predicted optimum combination of conditions are found to 46 be $(F_1, F_2) = (5,000, 0.295)$, which is different from the previous combination. This 47 research is expected to help improve the quality of response surface analysis in 48 experimental sciences including food science of animal resources. 49

50

Keywords: Response surface methodology, central composite design, heterogeneous
third-order model, multi-response optimization, desirability

- 53
- 54
- 55
- 56

57 INTRODUCTION

58

Response surface methodology (RSM) is a set of statistical techniques for modeli 59 60 ng and optimizing responses through the design and analysis of experiments (Myers et al, 2009), which has been widely used in engineering, agriculture, life science, 61 microbiology and food sciences. A search by Google Scholar revealed that the number of 62 scientific articles whose titles mentioned 'response surface' was 157 in 2000 but it became 63 1,860 in 2018, which is an 11.8-fold increase during recent 18 years. This indicates that 64 RSM has been established as an important tool for modeling and optimization in 65 experimental sciences including food sciences of animal resources. 66

In RSM, the central composite designs (CCD, Box and Wilson, 1951) have been most frequently used as experimental plans, and the second-order polynomial regression models have been usually employed for data analysis. And, the response surface model can be said to be well fitted and reliable when it satisfies the following criteria: (1) the model is significant (the model p-value ≤ 0.05), (2) the lack of fit is non-significant (the lack-of-fit p-value > 0.05), (3) the R-square ≥ 0.9 (Giunta, 1997), and (4) the adjusted R-square \geq 0.8 (Myers et al, 2009).

However, in reality, it is observed that, for some data, the analysis models, which are the 74 second-order models in most cases, do not satisfy the above criteria. A remedy in this case 75 is to use a third-order model that consists of linear, quadratic, cubic, and relevant 76 77 interaction terms (Rheem and Rheem, 2012). For example, when there are two factors, letting X_1 and X_2 denote coded factors, the third-order model has the following terms: 78 linear terms X_1 and X_2 , quadratic terms X_1^2 and X_2^2 , cubic terms X_1^3 and X_2^3 , and the two-79 factor interaction term X_1X_2 . There exist the cases where this method improves the model. 80 But, this method is applicable to a CCD that uses five values, which are denoted by $-\alpha$, -1, 81 0, 1, and α , as the levels of coded factors. 82

When the experimental design is a CCD in which -1, 0, and 1 are the levels of coded factors, as in Tables 1, cubic terms cannot be added to the model, since $(-1)^3 = -1$, $(0)^3 = 0$, and $(1)^3 = 1$, which makes the cubic terms equal to the linear terms. For example, in Table 1B, we can see that $X_1=X_1^3$ and $X_2=X_2^3$, and thus the X_1^3 and X_2^3 terms cannot be chosen from among the candidates of additional model terms for augmenting the second-order model..

This problem can be solved by adding the terms of the interaction between the linear 89 term of one factor and the quadratic term of another factor. For example, in Table 1B, 90 $X_1^2X_2$ and $X_1X_2^2$ are such interaction terms. The model that contains such interaction terms 91 can be named a *heterogeneous third-order model*, since the sum of the exponents in each 92 93 of such interaction terms is three. Thus, a remedy in this case is to augment the secondorder model to the heterogeneous third-order model by adding the $X_1^2 X_2$ and $X_1 X_2^2$ terms, 94 which are chosen from among the candidates of additional model terms in Table 1B, to the 95 96 second-order model.

A dataset, which is obtained through the screening of the data in Ahn et al (2017), will be re-analyzed for the illustration of the remedy suggested in this research note. Since Ahn et al (2017) has two responses and a purpose of it is the multi-response optimization of them, this research note, which is a continuation of Rheem and Oh (2019), will model both responses by using heterogeneous third-order models, and optimize them simultaneously by employing the desirability function technique.

103

MATERIALS AND METHODS 105

106

 \triangleright

Dataset to be re-analyzed. Data analysis should include data screening, which is 107 108 necessary for accurate modeling. The original data to be used for re-analysis is the data described in Ahn et al. (2017), in which they tried to optimize manufacturing conditions 109 for improving storage stability of coffee-supplemented milk beverage by using response 110 surface methodology. Through data screening, one outlier was deleted from their data 111 (Rheem and Oh, 2019). The response variables, Y1 and Y2, and the factors in this 112 experiment are described in Table 1A. The dataset from which an outlier is eliminated is 113 given in Table 1B. Here, the experimental design is a CCD for two factors with the coded 114 115 levels of -1, 0, and 1. Using this data, we will fit to the data second-order models and 116 heterogeneous third-order models.

117

Statistical analysis. Data were analyzed by the use of SAS software. SAS/STAT (2013) 118 119 was employed for the statistical modeling of data. Graphs were produced by SAS/GRAPH 120 (2013).

125

Fitting the second-order model to the data. First, for each of Y_1 and Y_2 , the secondorder polynomial regression model containing 2 linear, 2 quadratic, and 1 interaction terms was fitted to the data by using RSREG procedure of SAS/STAT.

For both Y_1 and Y_2 , the second-order models are unsatisfactory. For Y_1 , the model is non-significant (p=0.5962 > 0.05), the lack of fit is significant (p=0.0131 < 0.05), the Rsquare = 0.40 < 0.9, and the adjusted R-square = -0.11 < 0.8. Also, for Y_2 , the model is non-significant (p=0.2924 > 0.05), the lack of fit is significant (p=0.0203 < 0.05), and the R-square = 0.57 < 0.9, and the adjusted R-square = 0.21 < 0.8. None of the four criteria are met for both Y_1 and Y_2 . Thus, we will augment the analysis models for their improvement.

135

Fitting the heterogeneous third-order model to the data. For each of Y_1 and Y_2 , since the second-order model has a poor fit for the data, next we will fit to the data a heterogeneous third-order model that consists of the X_1 , X_2 , X_1^2 , X_2^2 , X_1X_2 , $X_1^2X_2$, and $X_1X_2^2$ terms, by adding the $X_1^2X_2$ and $X_1X_2^2$ terms to the second-order model, in the anticipation of a possible improvement in modeling.

For both Y₁ and Y₂, the heterogeneous third-order models are satisfactory. For Y₁, the model is significant (p=0.0243 < 0.05), the lack of fit is non-significant (p=0.1276 > 0.05), the R-square = 0.94 > 0.9, and the adjusted R-square = 0.84 = 0.8. Also, for Y₂, the model is significant (p=0.0371 < 0.05), the lack of fit is non-significant (p=0.0820 > 0.05), and the R-square = 0.93 > 0.9, and the adjusted R-square = $0.80 \ge 0.8$. All of the four criteria are

146 satisfied for both Y_1 and Y_2 .

147 Thus, we accept these models as our final models. Letting \hat{Y}_1 and \hat{Y}_2 denote the 148 predicted values of Y_1 , and Y_2 , we specify our heterogeneous third-order models as

149

150
$$\widehat{Y}_1 = b_0 + b_1 X_1 + b_2 X_2 + b_{11} X_1^2 + b_{22} X_2^2 + b_{12} X_1 X_2$$

151
$$+ b_{112} X_1^2 X_2 + b_{122} X_1 X_2^2$$

152 and

153

$$\widehat{Y}_2 = c_0 + c_1 X_1 + c_2 X_2 + c_{11} X_1^2 + c_{22} X_2^2 + c_{12} X_1 X_2$$
154

$$+ c_{112} X_1^2 X_2 + c_{122} X_1 X_2^2$$

155

where the coefficients b_1 , b_2 , ..., b_{122} and c_1 , c_2 , ..., c_{122} are given in Table 2A and Table 2B.

158

159

160 **Drawing the 3D plots of the response surface.** Each of the three-dimensional (3D) 161 response surface plot was drawn with the vertical axis representing the predicted response 162 and two horizontal axes indicating the two explanatory factors. Plots A and B in Figure 1 163 are the 3D response surface plots for the effects of the two actual factors on the two 164 predicted responses.

165

166 **Multi-response optimization of two responses.** In Ahn et al (2017), the optimization 167 objective was to minimize Y_1 (particle size) and maximize Y_2 (zeta-potential) 168 simultaneously. For this multi-response optimization, we modified the desirability function 169 technique of Derringer and Suich (1980). In this modified technique, first, we define the 170 desirability function for the minimization of Y_1 as

171

172
$$D_1 = [Maximum(\widehat{Y}_1) - \widehat{Y}_1)] / [Maximum(\widehat{Y}_1) - Minimum(\widehat{Y}_1)],$$

173

and define the desirability function for the maximization of Y_1 as

175

176 $D_2 = [\widehat{Y}_2 - Minimum(\widehat{Y}_2)] / [Maximum(\widehat{Y}_2) - Minimum(\widehat{Y}_2)].$

Here, for \hat{Y}_1 , when \hat{Y}_1 is minimized, D_1 becomes 1; otherwise $0 \leq D_1 < 1$, and for \hat{Y}_2 , when \hat{Y}_2 is maximized, D_2 becomes 1; otherwise $0 \leq D_2 < 1$. Now, we define CD, which means the composite desirability, as

180

181 $CD = (D_1 D_2)^{(1/2)}$

182

which is the geometric mean of D_1 and D_2 . Then, we find the combination of the values of X₁ and X₂ that maximizes CD. This combination is the optimum point of (X₁, X₂). Now, by converting this optimum point to the combination of the levels of the actual factors, we achieve the multi-response optimization of minimizing Y₁ and maximizing Y₂ simultaneously.

For the minimization and maximization of Y_1 and Y_2 and the maximization of CD, we performed the searches on a grid (Oh et el, 1995). First, we obtained Minimum (\hat{Y}_1) = 170.8131135, Maximum (\hat{Y}_1)=221.6698750, Minimum (\hat{Y}_2)=24.7334750, and Maximum (\hat{Y}_2)=35.2957228, and using these values, we implemented our modified desirability function technique that maximizes the composite desirability defined above. Plot C in Figure 1 shows the 3D surface plot of the composite desirability function for our multiresponse optimization. Table 2C presents the results of our multi-response optimization.

In Ahn et al (2017), at their optimum point, their Y₁ value was 190.1 and their Y₂ value 195 196 was -25.94 \pm 0.06, whereas, at our predicted optimum point, the predicted Y₁ was 183.4 and the predicted Y_2 was 30.93. We can see that our predicted minimum of Y_1 is smaller 197 than their observed Y_1 , and our predicted maximum of Y_2 is greater than their observed Y_2 . 198 199 Their optimum conditions for their multi-response optimization were F_1 = speed of primary homogenization (rpm) = 5,000 and F_2 = concentration of emulsifier (%) = 0.2071, 200 whereas our optimum conditions are $F_1 = 5,000$ and $F_2 = 0.295$. We can see that our 201 predicted combination of optimum factor levels is different from theirs. A validation 202 203 experiment will be needed to verify the result of multi-response optimization obtained by 204 the method proposed in this article.

205

206 CONCLUSION

This article suggests the use of the heterogeneous third-order model for better modeling 208 and a modified desirability function technique for multi-response optimization. The 209 heterogeneous third-order model can be used when (1) the experimental design is a two-210 211 factor central composite design having -1, 0, and 1 as the coded levels of factors, and (2) a second-order model fails to provide a good fit for the data. How to construct the 212 heterogeneous third-order model is to use X_1 , X_2 , X_1^2 , X_2^2 , X_1X_2 , $X_1^2X_2$, and $X_1X_2^2$ as 213 model terms. A modified desirability function technique first defines a desirability function 214 for each response according to each optimization objective, and then finds out the 215 216 combination of factor levels that maximizes the geometric mean of the values from desirability functions for multiple responses. An illustrative new analysis of the data from a 217 previous research has produced statistical models with better fits and optimization results 218 with better predictions. This suggestion is expected to help enhance the quality of response 219 surface analyses of the experiments in food science of animal resources. 220

221

222 ACKNOWLEFGMENTS

This work was financially supported by the Graduate School of Public Administration at Korea University in 2018. And also this work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Minister of Education, Science, and Technology (NRF-2016R1A2B4007519).

228

229 **REFERENCES**

Ahn, S; Park, J; Kim, J; Oh, D; Kim, M; Chung, D; Jhoo, J; and Kim, G. (2017).
Optimization of Manufacturing Conditions for Improving Storage Stability of Coffee-

- Supplemented Milk Beverage Using Response Surface Methodology. *Korean Journal for Food Science of Animal Resources*. 37(1): 87-97.
- 234
- Box, G. E. P. and Wilson, K. B. (1951), On the Experimental Attainment of Optimum
 Conditions, *Journal of the Royal Statistical Society, Series B*, 13: 1–45.
- 237
- Derringer, D. and Suich, R. (1980), "Simultaneous Optimization of Several Response
 Variables," *Journal of Quality Technology*, Vol. 12, pp. 214-219.
- 240
- Giunta, A. A. (1997). "Aircraft multidisciplinary design optimization using design of
 experiments theory and response surface modeling methods." Ph.D. thesis, Virginia
 Polytechnic Institute and State University.
- 244
- Myers, R. H., Montgomery, D. C., and Anderson-Cook, C. M. (2009). *Response Surface Methodology: Process and Product Optimization Using Designed Experiments*. 3rd edition,
 John Wiley & Sons.
- 248
- Oh, S., Rheem, S., Sim, J., Kim, S. and Baek, Y. (1995). Optimizing conditions for the
 growth of *Lactobacillus casei* YIT 9018 in tryptone-glucose medium by using response
 surface methodology. *Applied Environmental Microbiology*, 61(11): 3809-3814.
- 252
- Rheem, S and Oh, S. (2019). Improving the Quality of Response Surface Analysis of an
 Experiment for Coffee-Supplemented Milk Beverage: I. Data Screening at the Center Point
 and Maximum Possible R-Square. *Korean Journal for Food Science of Animal Resources*.
 39(1): 653-659.
- 257
- Rheem, I. and Rheem, S. (2012). Response Surface Analysis in the Presence of the Lack of
 Fit of the Second-Order Polynomial Regression Model. *Journal of the Korean Data Analysis Society*, 14(6): 2995–3002. (in Korean)
- 261

- SAS Institute Inc. (2013). SAS/STAT user's guide, release 6.04. SAS Institute, Inc., Cary,
 NC, USA.
- 264
- 265 SAS Institute Inc. (2013). SAS/GRAPH user's guide, release 6.04. SAS Institute, Inc.,
- 266 Cary, NC, USA.
- 267

- Table 1. Response variables, actual and coded factors, experimental design, and response
- 269 data
 - Actual factor level corresponding to Response Coded the coded factor level of variables Actual factor factor $= Y_1, Y_2$ 0 -1 1 F_1 = Speed of primary \mathbf{Y}_1 = \mathbf{X}_1 5,000 10,000 15,000 homogenization Particle (rpm) size F_2 = $Y_2 = Zeta$ -Concentration 0.1 0.2 0.3 X_2 potential of emulsifier (%)
- 270 A. Response variables, actual and coded factors, and the levels of the factors

B. Experimental design and response data with candidates of additional model terms

Experimental design in coded levels and response data					Candidates of additional model terms for augmenting the 2nd-order model				
Standard order	Design point	\mathbf{X}_1	X_2	Y1	Y ₂	X1 ³	X_2^3	$X_{1}^{2}X_{2}$	$X_{1}X_{2}^{2}$
1	1	-1	-1	179.900	27.5000	-1	-1	-1	-1
2	2	-1	1	178.267	29.9667	-1	1	1	-1
3	3	1	-1	179.533	24.3000	1	-1	-1	1
4	4	1	1	219.767	32.5666	1	1	1	1
5	5	-1	0	217.867	36.1000	-1	0	0	0
6	6	1	0	178.367	28.2667	1	0	0	0
7	7	0	-1	185.333	29.1000	0	-1	0	0
8	8	0	1	182.167	28.2000	0	1	0	0
9	9	0	0	186.433	30.8300	0	0	0	0
10	9	0	0	181.933	29.0667	0	0	0	0
11	9	0	0	175.633	29.6000	0	0	0	0
12	9	0	0	180.333	29.1000	0	0	0	0

273

275 Table 2. Results of modeling and optimization

	nt estimates in th	le neterogeneo	us siù order n	
Term	Parameter estimate	Standard error	t-value	p-value
Intercept	b ₀ =182.99	2.76	66.24	< 0.0001
X_1	b ₁ =-19.75	4.28	-4.62	0.0099
X ₂	b ₂ =-1.58	4.28	-0.37	0.7302
X_{1}^{2}	b ₁₁ =-11.33	3.71	3.06	0.0378
X_2^2	b ₂₂ =-3.04	3.71	-0.82	0.4579
X_1X_2	b ₁₂ =10.47	3.03	3.46	0.0258
$X_1^2 X_2$	b ₁₁₂ =11.23	5.24	2.14	0.0987
$X_1 X_2^2$	b ₁₂₂ =30.03	5.24	5.73	0.0046

A. Coefficient estimates in the heterogeneous 3rd-order model on Y₁

B. Coefficient estimates in the heterogeneous 3rd-order model on Y_2

Term	Parameter estimate	Standard error	t-value	p-value
Intercept	$c_0 = 30.08$	0.58	51.52	< 0.0001
X_1	c ₁ =-3.92	0.90	-4.33	0.0124
X_2	c ₂ =-0.45	0.90	-0.50	0.6450
X_{1}^{2}	c ₁₁ =1.23	0.78	1.57	0.1904
X_2^2	c ₂₂ =-2.30	0.78	-2.94	0.0426
X_1X_2	$c_{12}=1.45$	0.64	2.27	0.0860
$X_1^2 X_2$	c ₁₁₂ =3.13	1.11	2.83	0.0474
$X_1 X_2^2$	c ₁₂₂ =3.77	1.11	3.40	0.0273

C. Results of multi-response optimization

-			and a second a second second	· · · · · · · · · · · · · · · · · · ·					
	\mathbf{X}_1	X_2	F_1 = Speed of	F ₂ =	Predicted	Predicted	D_1	D_2	CD =
			primary	Concentration	Minimum	Maximum			Composite
			homogenization	of emulsifier	of $Y_1 =$	of $Y_2 =$			Desirability
			(rpm)	(%)	Particle	Zeta-			
	_				size	potential			
	-1	0.95	5,000	0.295	183.4	30.93	0.752	0.587	0.664

278

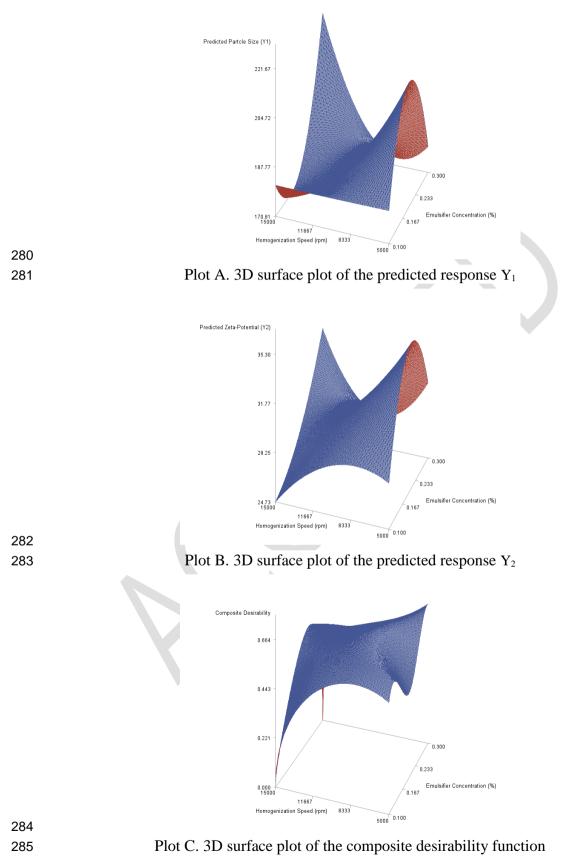


Fig. 1. 3D surface plots of predicted responses and the composite desirability function