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ABSTRACT 27 

This research was motivated by our encounter with the situation where the quality of 28 

response surface analysis of an experiment was so poor that seemingly unreliable modeling 29 

and optimization results were presented. Such a situation took place in a research to 30 

optimize manufacturing conditions for improving storage stability of coffee-supplemented 31 

milk beverage by using response surface methodology, where two responses are Y1 = 32 

particle size and Y2 = zeta-potential, two factors are F1 = speed of primary homogenization 33 

(rpm) and F2 = concentration of emulsifier (%), and the optimization objective is to 34 

simultaneously minimize Y1 and maximize Y2. For response surface analysis, practically, 35 

the second-order polynomial regression model is almost solely used. But, there exists the 36 

cases in which the second-order model fails to provide a good fit, to which remedies are 37 

seldom known to researchers. Thus, as an alternative to a failed second-order model, we 38 

present the heterogeneous third-order model, which can be used when the experimental 39 

plan is a two-factor central composite design having -1, 0, and 1 as the coded levels of 40 

factors. And, for multi-response optimization, we suggest the modified desirability 41 

function technique. Using these two methods, we have obtained response surface models 42 

with improved fits and multi-response optimization results with predictions better than 43 

those in the previous research; our predicted minimum of Y1 is 183.4, which is lower than 44 

the previous observation, and our predicted maximum of Y2 is 30.93, which is higher than 45 

the previous observation. Our predicted optimum combination of conditions are found to 46 

be (F1, F2) = (5,000, 0.295), which is different from the previous combination. This 47 

research is expected to help improve the quality of response surface analysis in 48 

experimental sciences including food science of animal resources. 49 

 50 

Keywords: Response surface methodology, central composite design, heterogeneous 51 

third-order model, multi-response optimization, desirability  52 
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INTRODUCTION 57 

 58 

Response surface methodology (RSM) is a set of statistical techniques for modeli59 

ng and optimizing responses through the design and analysis of experiments (Myers 60 

et al, 2009), which has been widely used in engineering, agriculture, life science, 61 

microbiology and food sciences. A search by Google Scholar revealed that the number of 62 

scientific articles whose titles mentioned ‘response surface’ was 157 in 2000 but it became 63 

1,860 in 2018, which is an 11.8-fold increase during recent 18 years. This indicates that 64 

RSM has been established as an important tool for modeling and optimization in 65 

experimental sciences including food sciences of animal resources. 66 

In RSM, the central composite designs (CCD, Box and Wilson, 1951) have been most 67 

frequently used as experimental plans, and the second-order polynomial regression models 68 

have been usually employed for data analysis. And, the response surface model can be said 69 

to be well fitted and reliable when it satisfies the following criteria: (1) the model is 70 

significant (the model p-value ≦ 0.05), (2) the lack of fit is non-significant (the lack-of-fit 71 

p-value > 0.05), (3) the R-square ≧ 0.9 (Giunta, 1997), and (4) the adjusted R-square ≧ 72 

0.8 (Myers et al, 2009).  73 

However, in reality, it is observed that, for some data, the analysis models, which are the 74 

second-order models in most cases, do not satisfy the above criteria. A remedy in this case 75 

is to use a third-order model that consists of linear, quadratic, cubic, and relevant 76 

interaction terms (Rheem and Rheem, 2012). For example, when there are two factors, 77 

letting X1 and X2 denote coded factors, the third-order model has the following terms: 78 

linear terms X1 and X2, quadratic terms X1
2 and X2

2, cubic terms X1
3 and X2

3, and the two-79 

factor interaction term X1X2. There exist the cases where this method improves the model. 80 

But, this method is applicable to a CCD that uses five values, which are denoted by –α, -1, 81 

0, 1, and α, as the levels of coded factors. 82 

When the experimental design is a CCD in which -1, 0, and 1 are the levels of coded 83 

factors, as in Tables 1, cubic terms cannot be added to the model, since (-1)3 = -1, (0)3 = 0, 84 

and (1)3 = 1, which makes the cubic terms equal to the linear terms. For example, in Table 85 



 

 

1B, we can see that X1=X1
3 and X2=X2

3, and thus the X1
3 and X2

3 terms cannot be chosen 86 

from among the candidates of additional model terms for augmenting the second-order 87 

model.. 88 

This problem can be solved by adding the terms of the interaction between the linear 89 

term of one factor and the quadratic term of another factor. For example, in Table 1B, 90 

X1
2X2 and X1X2

2 are such interaction terms. The model that contains such interaction terms 91 

can be named a heterogeneous third-order model, since the sum of the exponents in each 92 

of such interaction terms is three. Thus, a remedy in this case is to augment the second-93 

order model to the heterogeneous third-order model by adding the X1
2X2 and X1X2

2 terms, 94 

which are chosen from among the candidates of additional model terms in Table 1B, to the 95 

second-order model.  96 

A dataset, which is obtained through the screening of the data in Ahn et al (2017), will 97 

be re-analyzed for the illustration of the remedy suggested in this research note. Since Ahn 98 

et al (2017) has two responses and a purpose of it is the multi-response optimization of 99 

them, this research note, which is a continuation of Rheem and Oh (2019), will model both 100 

responses by using heterogeneous third-order models, and optimize them simultaneously 101 

by employing the desirability function technique.  102 

 103 

104 



 

 

MATERIALS AND METHODS 105 

 106 

Dataset to be re-analyzed. Data analysis should include data screening, which is 107 

necessary for accurate modeling. The original data to be used for re-analysis is the data 108 

described in Ahn et al. (2017), in which they tried to optimize manufacturing conditions 109 

for improving storage stability of coffee-supplemented milk beverage by using response 110 

surface methodology. Through data screening, one outlier was deleted from their data 111 

(Rheem and Oh, 2019). The response variables, Y1 and Y2, and the factors in this 112 

experiment are described in Table 1A. The dataset from which an outlier is eliminated is 113 

given in Table 1B. Here, the experimental design is a CCD for two factors with the coded 114 

levels of -1, 0, and 1. Using this data, we will fit to the data second-order models and 115 

heterogeneous third-order models. 116 

 117 

Statistical analysis. Data were analyzed by the use of SAS software. SAS/STAT (2013) 118 

was employed for the statistical modeling of data. Graphs were produced by SAS/GRAPH 119 

(2013). 120 

 121 

  122 



 

 

RESULTS AND DISCUSSION 123 

 124 

 125 

Fitting the second-order model to the data. First, for each of Y1 and Y2, the second-126 

order polynomial regression model containing 2 linear, 2 quadratic, and 1 interaction terms 127 

was fitted to the data by using RSREG procedure of SAS/STAT. 128 

For both Y1 and Y2, the second-order models are unsatisfactory. For Y1, the model is 129 

non-significant (p=0.5962 > 0.05), the lack of fit is significant (p=0.0131 < 0.05), the R-130 

square = 0.40 < 0.9, and the adjusted R-square = -0.11 < 0.8. Also, for Y2, the model is 131 

non-significant (p=0.2924 > 0.05), the lack of fit is significant (p=0.0203 < 0.05), and the 132 

R-square = 0.57 < 0.9, and the adjusted R-square = 0.21 < 0.8. None of the four criteria are 133 

met for both Y1 and Y2. Thus, we will augment the analysis models for their improvement. 134 

 135 

Fitting the heterogeneous third-order model to the data. For each of Y1 and Y2, since 136 

the second-order model has a poor fit for the data, next we will fit to the data a 137 

heterogeneous third-order model that consists of the X1, X2, X1
2, X2

2, X1X2, X1
2X2, and 138 

X1X2
2 terms, by adding the X1

2X2 and X1X2
2 terms to the second-order model, in the 139 

anticipation of a possible improvement in modeling. 140 

For both Y1 and Y2, the heterogeneous third-order models are satisfactory. For Y1, the 141 

model is significant (p=0.0243 < 0.05), the lack of fit is non-significant (p=0.1276 > 0.05), 142 

the R-square = 0.94 > 0.9, and the adjusted R-square = 0.84 = 0.8. Also, for Y2, the model 143 

is significant (p=0.0371 < 0.05), the lack of fit is non-significant (p=0.0820 > 0.05), and the 144 

R-square = 0.93 > 0.9, and the adjusted R-square = 0.80 ≧ 0.8. All of the four criteria are 145 

satisfied for both Y1 and Y2. 146 



 

 

 Thus, we accept these models as our final models. Letting Ŷ1 and Ŷ2 denote the 147 

predicted values of Y1, and Y2, we specify our heterogeneous third-order models as 148 

 149 

Ŷ1 = b0 + b1 X1 + b2 X2 + b11 X1
2 + b22 X2

2 + b12 X1 X2  150 

+ b112 X1
2 X2 + b122 X1 X2

2  151 

and 152 

Ŷ2 = c0 + c1 X1 + c2 X2 + c11 X1
2 + c22 X2

2 + c12 X1 X2  153 

+ c112 X1
2 X2 + c122 X1 X2

2  154 

 155 

where the coefficients b1, b2, …, b122 and c1, c2, …, c122 are given in Table 2A and Table 156 

2B. 157 

 158 

 159 

Drawing the 3D plots of the response surface. Each of the three-dimensional (3D) 160 

response surface plot was drawn with the vertical axis representing the predicted response 161 

and two horizontal axes indicating the two explanatory factors. Plots A and B in Figure 1 162 

are the 3D response surface plots for the effects of the two actual factors on the two 163 

predicted responses. 164 

 165 

Multi-response optimization of two responses. In Ahn et al (2017), the optimization 166 

objective was to minimize Y1 (particle size) and maximize Y2 (zeta-potential) 167 

simultaneously. For this multi-response optimization, we modified the desirability function 168 

technique of Derringer and Suich (1980). In this modified technique, first, we define the 169 

desirability function for the minimization of Y1 as 170 

 171 

D1 = [Maximum(Ŷ1) - Ŷ1)] / [Maximum(Ŷ1) – Minimum(Ŷ1)], 172 

 173 

and define the desirability function for the maximization of Y1 as 174 

 175 

D2 = [Ŷ2 - Minimum(Ŷ2)] / [Maximum(Ŷ2) – Minimum(Ŷ2)]. 176 



 

 

Here, for Ŷ1, when Ŷ1 is minimized, D1 becomes 1; otherwise 0 ≦ D1 < 1, and for Ŷ2, 177 

when Ŷ2 is maximized, D2 becomes 1; otherwise 0 ≦ D2 < 1. Now, we define CD, which 178 

means the composite desirability, as 179 

 180 

CD = (D1 D2)
 (1/2)

 181 

 182 

which is the geometric mean of D1 and D2. Then, we find the combination of the values of 183 

X1 and X2 that maximizes CD. This combination is the optimum point of (X1, X2). Now, by 184 

converting this optimum point to the combination of the levels of the actual factors, we 185 

achieve the multi-response optimization of minimizing Y1 and maximizing Y2 186 

simultaneously. 187 

For the minimization and maximization of Y1 and Y2 and the maximization of CD, we 188 

performed the searches on a grid (Oh et el, 1995). First, we obtained Minimum (Ŷ1) = 189 

170.8131135, Maximum (Ŷ1)=221.6698750, Minimum (Ŷ2)=24.7334750, and Maximum 190 

(Ŷ2)=35.2957228, and using these values, we implemented our modified desirability 191 

function technique that maximizes the composite desirability defined above. Plot C in 192 

Figure 1 shows the 3D surface plot of the composite desirability function for our multi-193 

response optimization. Table 2C presents the results of our multi-response optimization. 194 

In Ahn et al (2017), at their optimum point, their Y1 value was 190.1 and their Y2 value 195 

was -25.94 0.06, whereas, at our predicted optimum point, the predicted Y1 was 183.4 196 

and the predicted Y2 was 30.93. We can see that our predicted minimum of Y1 is smaller 197 

than their observed Y1, and our predicted maximum of Y2 is greater than their observed Y2. 198 

Their optimum conditions for their multi-response optimization were F1 = speed of 199 

primary homogenization (rpm) = 5,000 and F2 = concentration of emulsifier (%) = 0.2071, 200 

whereas our optimum conditions are F1 = 5,000 and F2 = 0.295. We can see that our 201 

predicted combination of optimum factor levels is different from theirs. A validation 202 

experiment will be needed to verify the result of multi-response optimization obtained by 203 

the method proposed in this article.  204 

 205 

CONCLUSION 206 



 

 

 207 

This article suggests the use of the heterogeneous third-order model for better modeling 208 

and a modified desirability function technique for multi-response optimization. The 209 

heterogeneous third-order model can be used when (1) the experimental design is a two-210 

factor central composite design having -1, 0, and 1 as the coded levels of factors, and (2) a 211 

second-order model fails to provide a good fit for the data. How to construct the 212 

heterogeneous third-order model is to use X1, X2, X1
2, X2

2, X1X2, X1
2X2, and X1X2

2 as 213 

model terms. A modified desirability function technique first defines a desirability function 214 

for each response according to each optimization objective, and then finds out the 215 

combination of factor levels that maximizes the geometric mean of the values from 216 

desirability functions for multiple responses. An illustrative new analysis of the data from a 217 

previous research has produced statistical models with better fits and optimization results 218 

with better predictions. This suggestion is expected to help enhance the quality of response 219 

surface analyses of the experiments in food science of animal resources. 220 
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Table 1. Response variables, actual and coded factors, experimental design, and response 268 

data 269 

A. Response variables, actual and coded factors, and the levels of the factors 270 

Response 

variables  

= Y1, Y2 

Actual factor 
Coded 

factor 

Actual factor level corresponding to 

the coded factor level of 

-1 0 1 

Y1 = 

Particle 

size 

 

Y2 = Zeta-

potential 

F1 = Speed of 

primary 

homogenization 

(rpm) 

X1 5,000 10,000 15,000 

F2 = 

Concentration 

of emulsifier 

(%)                                                     

X2 0.1 0.2 0.3 

  271 

B. Experimental design and response data with candidates of additional model terms 272 

Experimental design in coded levels and response data 
Candidates of additional model terms 

for augmenting the 2nd-order model 

Standard 

order 

Design 

point 
X1 X2 Y1 Y2 X1

3 X2
3 X1

2X2 X1X2
2 

1 1 -1 -1 179.900 27.5000 -1 -1 -1 -1 

2 2 -1 1 178.267 29.9667 -1 1 1 -1 

3 3 1 -1 179.533 24.3000 1 -1 -1 1 

4 4 1 1 219.767 32.5666 1 1 1 1 

5 5 -1 0 217.867 36.1000 -1 0 0 0 

6 6 1 0 178.367 28.2667 1 0 0 0 

7 7 0 -1 185.333 29.1000 0 -1 0 0 

8 8 0 1 182.167 28.2000 0 1 0 0 

9 9 0 0 186.433 30.8300 0 0 0 0 

10 9 0 0 181.933 29.0667 0 0 0 0 

11 9 0 0 175.633 29.6000 0 0 0 0 

12 9 0 0 180.333 29.1000 0 0 0 0 

 273 
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Table 2. Results of modeling and optimization 275 

A. Coefficient estimates in the heterogeneous 3rd-order model on Y1  

Term 
Parameter 

estimate 

Standard 

 error 
t-value p-value 

Intercept b0=182.99 2.76 66.24 <0.0001 

X1 b1=-19.75 4.28 -4.62 0.0099 

X2 b2=-1.58 4.28 -0.37 0.7302 

X1
2 b11=-11.33 3.71 3.06 0.0378 

X2
2 b22=-3.04 3.71 -0.82 0.4579 

X1X2 b12=10.47 3.03 3.46 0.0258 

X1
2X2 b112=11.23 5.24 2.14 0.0987 

X1X2
2 b122=30.03 5.24 5.73 0.0046 

 

B. Coefficient estimates in the heterogeneous 3rd-order model on Y2  

Term 
Parameter 

estimate 

Standard 

 error 
t-value p-value 

Intercept c0=30.08 0.58 51.52 <0.0001 

X1 c1=-3.92 0.90 -4.33 0.0124 

X2 c2=-0.45 0.90 -0.50 0.6450 

X1
2 c11=1.23 0.78 1.57 0.1904 

X2
2 c22=-2.30 0.78 -2.94 0.0426 

X1X2 c12=1.45 0.64 2.27 0.0860 

X1
2X2 c112=3.13 1.11 2.83 0.0474 

X1X2
2 c122=3.77 1.11 3.40 0.0273 

 276 

C. Results of multi-response optimization 277 

X1 X2 F1 = Speed of 

primary 

homogenization 

(rpm) 

F2 = 

Concentration 

of emulsifier 

(%) 

Predicted 

Minimum 

of Y1 = 

Particle 

size 

Predicted 

Maximum 

of Y2 = 

Zeta-

potential 

D1 D2 CD =  

Composite 

Desirability 

-1 0.95 5,000 0.295 183.4 30.93 0.752 0.587 0.664 
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 280 

Plot A. 3D surface plot of the predicted response Y1 281 

 282 

Plot B. 3D surface plot of the predicted response Y2 283 

 284 

Plot C. 3D surface plot of the composite desirability function 285 

Fig. 1. 3D surface plots of predicted responses and the composite desirability function 286 


