ARTICLE INFORMATION

<table>
<thead>
<tr>
<th>Article Type</th>
<th>Research article</th>
</tr>
</thead>
<tbody>
<tr>
<td>Article Title</td>
<td>Antioxidant activity of radish seed oil and the quality and storage characteristics of pork patties with added radish seed oil</td>
</tr>
<tr>
<td>Running Title (within 10 words)</td>
<td>Antioxidant activity of radish seed oil in Pork Patties</td>
</tr>
<tr>
<td>Author</td>
<td>Soyoung Jang¹**, Chaeri Kim¹**, Sanghun Park¹, Yunhwan Park¹, Gyutae Park¹, Sehyuk Oh¹, Nayoung Choi¹, Youngho Lim¹, Jusung Cho², Jungseok Choi²*</td>
</tr>
</tbody>
</table>
| Affiliation | 1) Department of Animal Science, Chungbuk National University, Republic of Korea
2) Department of Horticultural Science, Chungbuk National University, Republic of Korea |

Special remarks – if authors have additional information to inform the editorial office

ORCID (All authors must have ORCID)
https://orcid.org

| ORCID | 0009-0001-1146-2695 Soyoung Jang
| | 0009-0004-5493-3401 Chaeri Kim
| | 0000-0003-4804-0848 Sanghun Park
| | 0000-0002-2239-6697 Yunhwan Park
| | 0000-0003-1614-1097 Gyutae Park
| | 0000-0003-4105-2512 Sehyuk Oh
| | 0000-0002-4782-1098 Nayoung Choi
| | 0000-0002-0238-4736 Youngho Lim |

Conflicts of interest
List any present or potential conflict s of interest for all authors.
(This field may be published.)

The authors declare no potential conflict of interest.

Acknowledgements
State funding sources (grants, funding sources, equipment, and supplies). Include name and number of grant if available.
(This field may be published.)

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through the High Value-added Food Technology Development Project, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA)(321028-5).
This work was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2021RIS-001).

Author contributions
(This field may be published.)

Conceptualization: Jang SY
Data curation: Lim YH
Formal analysis: Choi NY
Methodology: Park SH
Software: Park YH
Validation: Oh SH
Investigation: Park GT
Writing - original draft: Jang SY, Kim CR
Writing - review & editing: Jang SY, Kim CR, Park SH, Park YH, Park GT, Oh SH, Choi NY, Lim YH

Ethics approval (IRB/IACUC)
(This field may be published.)

This article does not require IRB/IACUC approval because there are no human and animal participants.
CORRESPONDING AUTHOR CONTACT INFORMATION

<table>
<thead>
<tr>
<th>For the corresponding author (responsible for correspondence, proofreading, and reprints)</th>
<th>Fill in information in each box below</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name, middle initial, last name</td>
<td>Jungseok Choi</td>
</tr>
<tr>
<td>Email address – this is where your proofs will be sent</td>
<td>jchoi@chungbuk.ac.kr</td>
</tr>
<tr>
<td>Secondary Email address</td>
<td></td>
</tr>
<tr>
<td>Postal address</td>
<td>Department of Animal Science, Chungbuk National University, Cheonju, Chungcheongbuk-do Korea, 28644</td>
</tr>
<tr>
<td>Cell phone number</td>
<td>+82-01-3235-2127</td>
</tr>
<tr>
<td>Office phone number</td>
<td>+82-43-261-2551</td>
</tr>
<tr>
<td>Fax number</td>
<td>+82-43-261-2773</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>For the corresponding author (responsible for correspondence, proofreading, and reprints)</th>
<th>Fill in information in each box below</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name, middle initial, last name</td>
<td>Jusung Cho</td>
</tr>
<tr>
<td>Email address – this is where your proofs will be sent</td>
<td>jsc@chungbuk.ac.kr</td>
</tr>
<tr>
<td>Secondary Email address</td>
<td></td>
</tr>
<tr>
<td>Postal address</td>
<td>Department of Animal Science, Chungbuk National University, Cheonju, Chungcheongbuk-do Korea, 28644</td>
</tr>
<tr>
<td>Cell phone number</td>
<td>+82-01-4945-9239</td>
</tr>
<tr>
<td>Office phone number</td>
<td>+82-43-261-2529</td>
</tr>
<tr>
<td>Fax number</td>
<td>+82-43-271-0414</td>
</tr>
</tbody>
</table>
Abstract (within 250 words)

This study investigated the antioxidant activity of radish seed oil (RSO) and its effects on the quality and storage characteristics of pork patties. To assess the antioxidant capacity of RSO, this study analyzed fatty acid composition, peroxide value (PV), and DPPH radical scavenging activity. Pork patties were manufactured with the addition of RSO—0.4%, 0.8%, 1.6%, and 2.4%—and measured in terms of proximate composition, pH, water holding capacity (WHC), cooking loss (CL), color, texture profile analysis (TPA), and a sensory evaluation. Total microbial count (TMC), volatile basic nitrogen (VBN), thiobarbituric acid reactive substances (TBARS), and PV were measured at 1, 3, and 7 days of refrigerated storage. The DPPH radical scavenging activity of RSO was found to be 75.46%. In the cases of WHC and CL, there was no significant differences observed between RSO0.4%, RSO0.8%, and positive control (PC) \((p>0.05)\). Meanwhile, RSO2.4% showed significantly lower hardness, springiness, gumminess, and chewiness than PC \((p<0.05)\), and these values tended to decrease with the addition of increasing RSO.

In terms of storage characteristics, with an increase in the amount of RSO added, TMC, VBN, TBARS, and PV all decreased; among the treatment groups, RSO2.4% showed the lowest values. In conclusion, RSO exhibits antioxidant activity, but when added in large amounts, it negatively affects the quality characteristics of patties while positively impacting their storage properties, thus necessitating a balanced
consideration of both outcomes. Therefore, adding 1.6% RSO is considered to be
the most appropriate level for formulations to be used in practice.

Keywords: (3-5 keywords)
meat product, radish seed oil, antioxidant, quality characteristics, storage

characteristics

Introduction

The worldwide consumption of meat products has been gradually increasing with
population growth and rising average personal incomes (Godfray et al., 2018).
Accordingly, the meat processing industry has also rapidly increased in recent years,
and it is now expected to meet the needs of consumers interested in health (Jeong,
2016). Health functional food may vulnerable to a risk of microbial growth and fatty
acid spoilage because it does not initially contain compounds such as preservatives
or antioxidants. Microbial growth and fatty acid oxidation are thus considered to be
major problems that impair the storage properties of these ground meat products
(Shan et al., 2009). Therefore, when manufacturing processed meat products,
chemical food additives are added to improve storage properties. However, nitrite—
which is an additive that is mainly added to improve the functionality of processed
meat products—has been suggested to form N-nitroso compounds in the body, and
substances including nitrosamine can cause carcinogenicity (WHO, 2022). Although
the amount of such food additives is regulated by the Food Sanitation Act (KFDA,
2023), consumers prefer processed meat products using natural additives because of negative perceptions of chemical additives and concerns about the adverse effects of ingesting large amounts of such additives. This had led to active research examining the founding of new types of value using food byproducts.

Due to their antioxidant and antibacterial properties, essential oils and various plant extracts can serve as alternatives to chemical additives (Banon et al., 2007). Vegetable oil extracted from seeds has the advantage of containing a high proportion of mono- or polyunsaturated fatty acids and no cholesterol, and when added to meat, it can increase the proportion of monounsaturated fatty acids such as oleic acid (Bloukas et al., 1993). Among these vegetable oils, radish seed oil and canola oil have been traditionally used; cruciferous oils have yet to be popularized despite having similar properties (Ratanapariyanuch et al., 2013). Cruciferous species are reported to confer several health benefits, including antioxidant and antibacterial activity (Avato & Argentieri, 2015).

Radish (*Raphanus sativus* L.) is a vegetable belonging to the cruciferous species that is consumed worldwide, and it contains bioactive compounds that are beneficial to human health. Radish seeds have also been reported to reduce the level of tumors and to be effective in preventing diabetes (Banihani, 2017). Radish seed oil is composed of unsaturated fatty acids, which can reduce the cholesterol content of meat products. Moreover, radish seed oil includes compounds such as Tocopherol, Glucosinolate, and Sulforaphene, which have antioxidant and antibacterial activities which are beneficial to the human body (Zhao et al., 2017; Carlson et al., 1985).
Therefore, the current study investigated the antioxidant activity of radish seed oil by analyzing the quality and storage characteristics of pork patties prepared with various amounts of radish seed oil.

Materials and Methods

Radish seed oil extraction method

The radish seeds used in this study were provided by PPS Co. Ltd. For low-temperature cold pressing extraction, 200 g of seeds was extracted using a cold press machine (NF-80, Karaerler, Ankara, Turkey) set at 18 Hz and 49°C. During the oil extraction process, a thermometer was used to ensure that the temperature of the machine and oil did not exceed 49°C. The extracted oil was collected using a vacuum filtration pump and filter paper to remove impurities, resulting in the collection of pure oil. The oil extraction yield was measured to be 20.84%, while the oil moisture content was measured to be 1.12%.

Fatty acid composition analysis

The fatty acid composition was analyzed using the AOAC validated method, which involved methylation followed by gas chromatography. For fat hydrolysis, a sample of 25 μL was treated with 1.5 mL of 0.5 N NaOH-MeOH. Next, a mixture of 2 mL of 14% boron trifluoride methanol solution, 2 mL of 2,2,4-trimethyl pentane, and 5 mL of saturated NaCl was added, and this mixture was then kept at room temperature for 15 min for fatty acid derivatization. Once the layers had separated, the upper layer
was filtered through a 0.45 μM membrane filter (Millipore, Billerica, MA, USA) and used as the sample for fatty acid composition analysis. At this point, the sample was injected into a gas chromatography instrument (HP 6890N/5973N MSD, Agilent Technologies, Wilmington, DE, USA) equipped with a flame ionization detector (FID) for analysis of the fatty acid composition. The gas chromatography column used was HP-INNOWAX (60 m × 0.25 mm × 0.25 nm, Agilent, Santa Clara, CA, USA). The column was held at 120℃ for 5 min, after which the temperature was increased at a rate of 5℃ per min until reaching 240℃, where it was maintained for 20 min. The injection temperature was set at 250℃, while the detector temperature was set at 300℃. Nitrogen (N2) was used as the carrier gas. To determine the fatty acid composition, the peaks corresponding to fatty acids in the sample were identified through comparison with a standard (CRM18918, Sigma-Aldrich, St. Louis, MO, USA). The relative composition of each fatty acid was calculated as the ratio of the area sum of each fatty acid to the total area sum of all fatty acids.

DPPH radical scavenging activity

The radical scavenging activity was measured using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. For the DPPH test, a small amount of DPPH solution was dissolved in ethyl acetate and adjusted to an absorbance of 0.700 ± 0.020 at 520 nm. The DPPH solution was then diluted with ethyl acetate. Next, 40 mg of the oil sample was weighed in a test tube, to which 160 μL of ethyl acetate and 5.8 mL of DPPH• free radical solution were added. The sample was then vortexed for 20 s.
After incubation in a dark room for 30 min, the absorbance of ethyl acetate was measured at 520 nm.

Peroxide value (PV)

To begin, 1.0g of the sample was placed in a triangular flask. Then, 10mL of chloroform was added to dissolve the sample completely, after which 15mL of acetic acid was added for mixing. A saturated KI solution was prepared by dissolving potassium iodide (99%) and distilled water in a 7:3 ratio. Next, 1mL of the saturated KI solution was added to the flask, which was then sealed and vigorously shaken for about 1 min, followed by incubation at room temperature for 10 min in a dark room. After that, 30mL of distilled water was added, and the mixture was homogenized again. At this point, 1mL of 1% starch indicator solution was added, and the mixture was titrated with 0.01N Na$_2$S$_2$O$_3$ standard solution until it turned colorless. A blank test was also conducted in parallel with the actual experiment.

Preparation of pork patties

Pork patties with RSO (RSO) added were prepared as described in Table.1. There are six treatments in total: PC (Tocopherol 0.1% + Sodium Nitrite 0.01%), NC, RSO4 (RSO 0.4%), RSO8 (RSO 0.8%), RSO16 (RSO 1.6%), and RSO24 (RSO 2.4%). The ground pork and materials were mixed for 5 min, then divided into 100g each and molded into a 10 cm diameter and a 1 mm thickness using a patty molding machine. The prepared patty was aged for one day through refrigeration for 24 h before being used as a sample for the experiment. After aging for one day after manufacturing, proximate composition, pH, water holding capacity, cooking loss, color, texture
profile analysis, and sensory evaluation were conducted. Total Microbial Count (TMC), Volatile Basic Nitrogen (VBN), Thiobarbituric Acid Reactive Substances (TBARS) and PV were measured while they were frozen for the storage period (1, 3, and 7 days). All experiments were performed in triplicate.

Proximate composition

Proximate component analysis was performed according to the Association of Official Analytical Chemists (AOAC, 2012) method. Moisture was analyzed using the atmospheric pressure drying method at 105°C, protein was analyzed using the Kjeldahl method, crude fat was analyzed using the Folch extraction method, and ash was analyzed using the direct ashing method.

pH

After taking 5 g of the sample, the mixture with 50 mL of distilled water was homogenized with a Stomacher for 30 s. Then, after immersing the electrode in the sample solution so that it was submerged, the value was derived by reading the value displayed on the pH meter.

Water holding capacity (WHC)

0.5g of ground meat was placed in the upper filter tube of a centrifuge tube. The weight was measured, and then the filter tube was heated in an 80°C water bath for 20 min. After that, the filter tube was placed in the lower part of the centrifuge tube and centrifuged at 2000 rpm for 10 min. The filter tube was then removed, and the weight was measured again.
Water holding capacity (%) = \(\frac{\text{Total moisture} - \text{Free moisture}}{\text{Total moisture}} \times 100 \)

Free moisture = \(\frac{\text{(sample weight before centrifugation)} - \text{sample weight after centrifugation) x 100}}{\text{(sample weight x fat coefficient)}} \)

Cooking loss (CL)

The cooking loss of the meat was determined by cutting the sample into cubic shapes that were approximately 50g. The sample was then heated in a 70°C water bath for 30 min. The percentage of cooking loss was calculated by subtracting the weight after cooking from the weight before cooking, dividing it by the weight before cooking, and multiplying by 100.

Cooking Loss (%) = \(\frac{\text{Weight before cooking} - \text{Weight after cooking}}{\text{Weight before cooking}} \times 100 \)

Color

The color measurements were carried out using a color meter or spectrophotometer (CM-26d, Minolta, Japan) according to the specifications set by the International Commission on Illumination (CIE). The measurements included the values for lightness (CIE L'), redness (CIE a'), and yellowness (CIE b'). The average values were recorded to represent the color characteristics of the meat. Color was measured after cooking the pork patties.

Texture profile analysis (TPA)

The texture profile analysis was conducted using a rheometer (Model Compac-100, SUN SCIENTIFIC Co., LTD. USA). The measurements included hardness,
springiness, cohesiveness, chewiness, and gumminess. The load cell was set at 10 kg, while the cross-head speed was set at 200 mm/min. TPA was measured after cooking the pork patties.

Total Microbial Count (TMC)

A sample of 10 g is taken and mixed with 90 mL of 0.1% peptone solution in a stomacher. The mixture is homogenized at 200 rpm for 30 s. After that, the sample is serially diluted and inoculated onto Plate Count Agar (PCA) plates, which are then incubated at 36°C for 48 h. After 48 h, the microbial count is determined using a colony counter. The total microbial count is expressed in Log CFU/g.

Volatile Basic Nitrogen (VBN)

A sample of 10 g is mixed with 90 mL of distilled water. The mixture is then homogenized at 10,000 rpm using a homogenizer, before being filtered using a Whatman No. 2 filter. At this point, 3 mL of the filtrate is transferred to the outer chamber of a Conway unit, and 1 mL of 0.01 N boric acid and two to three drops of an indicator are added to the inner chamber. The unit is sealed, and 1 mL of 50% K_2CO_3 is quickly injected into the outer chamber. After sealing the unit with a clip, it is incubated at 36°C for 2 h. The boric acid solution in the inner chamber is then titrated with 0.02 N H_2SO_4. The VBN value is expressed as mg percent 100 g of sample.

Thiobarbituric Acid Reactive Substances (TBARS)

A sample of 10 g is mixed with 15 mL of cold 10% perchloric acid and 25 mL of 3rd-distilled water in a homogenizer. Next, the mixture is homogenized at 10,000 rpm for 10 s. The homogenate is then filtered using Whatman No. 2 filter paper. At this point,
5mL of 0.02M thiobarbituric acid (TBARS) solution is added to 5mL of the filtrate, and they are thoroughly mixed. After the mixture is allowed it to stand for 16 h in a cold room, the absorbance at 529nm is measured using a spectrophotometer. A blank using 3rd-distilled water is also measured. The TBARS value is expressed in terms of TBARS values, specifically as mg malonaldehyde per kg of sample. The standard curve used for calculation is $y = 0.1975x - 0.0011$ ($r = 0.999$), where y represents the absorbance and x represents the TBARS concentration.

Sensory evaluation

The researchers conducted a sensory evaluation to assess the overall preference of the product. The following attributes were measured using a nine-point scale: color, flavor, smell, juiciness, texture, and overall preference. For color, a score of 1 indicated a lighter shade, while a score of 9 indicated a darker shade. For flavor, a score of 1 represented poor taste, while a score of 9 represented excellent taste. For smell, a score of 1 indicated an unpleasant odor, while a score of 9 indicated a pleasant odor. For juiciness, a score of 1 represented dryness, while a score of 9 represented high juiciness. For texture, a score of 1 indicated softness, while a score of 9 indicated firmness. Lastly for overall preference, a score of 1 represented a negative acceptability, while a score of 9 represented a positive acceptability. This study was approved by the institutional review board (IRB) at Chungbuk National University (IRB approval number: CBNU-202302-HR-0016).

Statistical analysis
All experiments were measured in triplicate. Statistical analysis was performed using the GLM (General Linear Model) method run in the SAS 9.4 program (SAS Institute, Cary, NC, USA). Mean comparisons within traits groups were conducted using one-way ANOVA followed Duncan's Multiple Range Test ($p<0.05$).

Results & Discussion

Fatty acid composition

Table 2 presents the fatty acid composition of RSO. The identified fatty acids in RSO are classified into groups such as saturated, monounsaturated, and polyunsaturated fatty acids. Of the total fatty acid content, saturated fatty acids account for 9.53%, monounsaturated fatty acids account for 67.10%, and polyunsaturated fatty acids account for 23.38%. It is evident that RSO has a higher content of unsaturated fatty acids than saturated fatty acids. The major fatty acids present include oleic acid, linoleic acid, linolenic acid, and erucic acid. They respectively constitute 46.13%, 13.16%, 10.22%, and 20.75% of the total fatty acids. This fatty acid composition is similar to that of RSO as reported by Kazlauskienė (2021) and Uluata (2012). Linoleic acid and linolenic acid have been reported to reduce the incidence of cancer and cardiovascular diseases (Parker et al., 2003). However, RSO contains erucic acid, which is a naturally occurring toxic substance that includes the accumulation of triacylglycerol in the heart as a result of insufficient oxidation (Waheed, A et al., 2019). Large amounts of erucic acid are also present in radish seed oil, but research suggests that by carefully considering the variety of
radish seed oil and the beneficial components present, the intake of erucic acid can
be reduced when used for consumption (Wendlinger et al., 2014). It is therefore
recommended that the variety of radish seeds should be carefully considered to
minimize the intake of toxic substances.

Antioxidant test and oxidative stability test of radish seed oil

The PV and DPPH measurements of RSO are as listed in Table 3. Measuring
hydroperoxides, which are the primary oxidation products of oil, is an important
aspect of evaluating the oxidative status and quality of the oil. PV is commonly
measured to assess the degree of lipid oxidation, with higher values indicating higher
levels of oxidative rancidity in vegetable oils (Kyari, 2008). The PV of RSO was
measured at 2.75±0.15 meq/kg, which is within the Codex standard value of 10
meq/kg.

The DPPH assay is used to measure the free radical scavenging ability of
antioxidants, and it is useful for assessing the antioxidant activity of food (Marinova &
Batchvarov, 2011). DPPH is a stable free radical, and its proton is reduced by the
electron-donating ability of substances with antioxidant activity, thus allowing for
estimation of the sample's antioxidant capacity (Katsube et al., 2004). The DPPH
value of RSO was measured at 75.46±3.7%. Compared to grape seed oil and
sesame oil, both of which are known for their high antioxidant activity with radical
scavenging abilities of 43.50% and 63.88%, respectively (Kim et al., 2019), the
DPPH value of RSO is relatively high. The relatively high antioxidant activity of RSO
is believed to be due to the high contents of vitamin E and unsaturated fatty acids present in cold-pressed extracted seed oil.

Proximate compositions

Table 4 presents the results of measuring the proximate composition of pork patties prepared with varying amounts of RSO. There was no significant difference in moisture content between PC and RSO4 \((\rho>0.05) \), while moisture content showed a decreasing trend with increasing levels of tocopherol and RSO added. Regarding protein content, PC and RSO24 showed similar values \((\rho>0.05) \). Overall, the addition of RSO resulted in an increase in fat content, which led to relative decreases in both moisture and protein content. Ash content did not show significant differences among all treatment groups \((\rho>0.05) \).

pH, WHC and CL

Table 5 presents the results of measuring the pH, water-holding capacity (WHC), and cooking loss (CL) of pork patties manufactured with varying levels of radish seed oil addition. There were no significant differences in pH between PC, NC, and RSO4 \((\rho>0.05) \). The pH of the RSO used in this experiment was 4.58, thus indicating slight acidity. Therefore, as the level of added RSO increased, there was a tendency for pH to decrease.

Regarding water-holding capacity (WHC), there were no significant differences between PC, NC, RSO4 and RSO8 \((\rho>0.05) \); however, there was a decreasing trend with increasing levels of added RSO \((\rho>0.05) \). WHC shows a minimum value around the isoelectric point of myosin and actomyosin, which is around pH 5.2-5.4. When pH
either increases above or decreases below this point, the meat's water-holding
capacity increases (Zayas & Zayas, 1997). It can therefore be inferred that the
decline in pH influenced the decrease in WHC.

There were no significant differences in cooking loss between PC, NC, RSO4 and
RSO8 (p > 0.05), but cooking loss was significantly lower in RSO16 and RSO24
(p < 0.05). These results are consistent with the findings of Dzudie et al. (2004), who
reported that vegetable fat has lower water-holding capacity and higher cooking loss
than animal fat. Similarly, Paneras et al. (1994) and Lopez et al. (2011) found that
cooking loss increases when vegetable fat is added during the production of meat
products. The addition of plant fibers such as rice bran fiber, locust bean gum, and
xanthan gum has been reported to help preserve cooking loss when replacing pork
fat with vegetable fat (Luruena-Martinex et al., 2004). Therefore, when
manufacturing pork patties, the addition of plant fiber can enhance cohesion with
vegetable oil, maintain WHC, and improve emulsion stability to compensate for
cooking losses.

Color

Table 6 lists the results of measuring the color of uncooked pork patties
manufactured with varying levels of radish seed oil addition. In terms of lightness
(L’), the treatment groups with added RSO showed significantly higher values
compared to PC (p > 0.05). For redness (a’), there were no significant differences
between NC, RSO4, RSO8, and RSO16, but PC showed significantly lower values
(p < 0.05). The lower values of lightness (L’) and redness (a’) in PC can be attributed
to the addition of dark-colored tocopherol. For yellowness (b^*), RSO4 showed significantly lower values ($p<0.05$) than other samples; on the other hand, there were no significant differences in yellowness between PC and the other treatment groups ($p>0.05$). Yellowness (b^*) tended to increase slightly with increasing levels of added RSO, as RSO contains carotenoids, which are natural pigments that contribute to the yellow color (Zhao et al., 2017). Therefore, RSO can be used as an additive to increase the yellowness (b^*) of meat products.

TPA

Table 7 presents the results of measuring the TPA of pork patties manufactured with varying levels of RSO added. In terms of hardness, there was no significant difference between PC and RSO16 ($p>0.05$), but RSO24 showed a lower value than PC ($p<0.05$). Regarding cohesiveness, no significant difference was observed between PC and the treatment group ($p>0.05$). For springiness, there was no significant difference between PC and RSO8 or RSO16 ($p>0.05$), but RSO24 showed a lower value than PC ($p<0.05$). In terms of gumminess, there was no significant difference between PC and RSO16 ($p>0.05$), but RSO24 showed a lower value ($p<0.05$). There was no significant difference in chewiness between PC and RSO16 ($p>0.05$). These findings are consistent with the results reported by Park et al. (2005) and Matulis et al. (1995), who observed a significant decrease in the chewiness of beef patties with the addition of vegetable oil. These results are also consistent with the results reported by Monteiro et al. (2017), who found that the texture characteristics of pork sausages with canola oil added were lower than those
of the control group. As a result, it can be concluded that adding plant-based oil to pork patties without any pre-treatment leads to high cooking loss and negatively affects the tissue characteristics. Overall, RSO16 appears to show the best texture profile, as it does not exhibit any significant differences compared to PC. Additionally, hydrophilic binders such as carrageenan have been reported to aid in the emulsification of plant-based and meat products (Choi et al., 2019). Therefore, we suggest using a hydrophilic binder when utilizing vegetable oil to improve the texture of meat products.

TMC

The results of measuring the total microbial count (TMC) of pork patties manufactured with varying levels of RSO added on each storage day are shown in Fig 1. An increasing level of RSO on each storage day was shown to be associated with a tendency of decreasing TMC. Among the 7-day samples, NC exhibited the highest value, while the RSO24 showed the lowest values ($p<0.05$). Radish seeds contain health-promoting compounds such as sulforaphene and glucosinolates, which are found in cruciferous vegetables (Gutiérrez and Perez, 2004). Sulforaphene is a bioactive compound with anticancer effects that induces cell apoptosis and which has a similar chemical structure to sulforaphane isolated from broccoli seeds (Lim et al., 2020). Glucosinolates are organic compounds that are known for their powerful antimicrobial and anticancer properties. According to Mendiratta et al. (2013), adding radish to lamb nuggets resulted in lower microbial counts compared to the control group. This finding is consistent with a report by Lay et al. (2005) that
suggests that domestic radish seeds possess strong antimicrobial properties. RSO has been shown to be effective as a natural antimicrobial agent in food products.

VBN

The results of measuring the volatile basic nitrogen (VBN) of pork patties manufactured with varying levels of RSO added on each storage day are shown in Fig 2. On day 1 of storage, PC exhibited the lowest value ($p<0.05$), and there was no significant difference observed among the NC and treatment groups ($p>0.05$). However, at day 3 and day 7, RSO16 and RSO24 showed significantly lower values than NC ($p<0.05$). There was also a tendency for a slight decrease in VBN values as the level of RSO increased. VBN content increases during storage due to the breakdown of proteins into amino acids through bacterial action, thus indicating that there is a close relationship between VBN content and bacterial proliferation (Kruk et al., 2011). Therefore, the inhibition of protein spoilage by RSO is attributed to the tocopherol compounds present in RSO, which inhibit bacterial growth. However, domestic food hygiene regulations mandate that the VBN content be kept below 20 mg% for raw and packaged meat (KFDA, 2009). It is therefore inferred that the shelf life of pork patties with RSO addition is within 7 days.

TBARS and PV

The results of measuring the thiobarbituric acid reactive substances TBARS and PV of pork patties manufactured with varying levels of RSO added on each storage day are shown in Fig. 3 and Fig. 4. In the case of TBARS, at day 1 and day 3, RSO24 showed values that were significantly lower than those in any of the other treatment
groups, while at day 7, PC, RSO16, and RSO24 exhibited the lowest values ($p<0.05$).

For PV, there was no significant difference observed between PC and RSO24 on days 1 and 7 ($p>0.05$). Both TBARS and PV showed a tendency of decreasing with an increasing level of RSO. This is consistent with the study by Kazlauskienė (2021), which reported that RSO has strong antioxidant activity. Plant-based oils contain large amounts of phenolic compounds. RSO contains approximately 599.15 mg/kg of tocopherol (Uluata & Ozdemir, 2012). Tocopherol, also known as vitamin E, is a natural antioxidant that has phenolic hydroxyl groups that are capable of scavenging free radicals. It has the ability to bind to proteins and macromolecules and exhibits antioxidant activity (Manessis, 2020). The U.S. Food and Drug Administration (FDA) has included tocopherol in its list of Generally Recognized as Safe (GRAS) substances after evaluating its safety. Therefore, adding RSO to meat products is expected to inhibit fat oxidation and effectively act as an antioxidant.

Sensory evaluation

Table 8 presents the results of the sensory evaluation of pork patties prepared with different levels of RSO. In terms of color, PC showed significantly lower values ($p<0.05$). This is consistent with the lower lightness (L^*) observed in PC, which can be attributed to the addition of dark-colored tocopherol. For flavor, the treatment groups with RSO added showed significantly higher values compared to the control group ($p>0.05$). In terms of smell, RSO4 and RSO8 showed significantly higher values compared to the control group ($p>0.05$). These results are consistent with the
findings of Muguerza et al. (2002), who observed higher ratings for flavor and smell in low-fat sausages that had been supplemented with olive oil. In juiciness, treatment groups with RSO added were significantly lower than PC ($p<0.05$). There was also a tendency of decreasing juiciness as the amount of RSO added increased. This can be attributed to the decreasing moisture content and increasing cooking loss with increasing levels of added RSO. Texture showed no significant difference among all treatment groups ($p>0.05$). In terms of overall preference, the treatment groups showed significantly higher values compared to the control group ($p<0.05$), and RSO16 with 1.6% RSO showed the highest preference. Overall, the addition of RSO was found to enhance the taste and aroma of the patties, thus having a positive impact on overall preference.

Conclusion

In this study, we confirmed the antioxidant activity of radish seed oil (RSO) and analyzed its effects on the quality and storage characteristics of pork patties. The fatty acid composition of RSO showed a high content of unsaturated fatty acids, with 9.53% saturated fatty acids, 67.10% monounsaturated fatty acids, and 23.38% polyunsaturated fatty acids. The peroxide value of RSO was 2.75 meq/kg, which did not exceed the Codex standard value, and its DPPH radical scavenging activity was 75.46%, thus indicating antioxidant activity. The addition of RSO to pork patties resulted in decreases in both moisture and protein content, while the fat content increased. As the amount of RSO added increased, the WHC tended to decrease, while CL showed an increasing trend. In terms of TPA, hardness, springiness,
gumminess, and chewiness, the patties with RSO24 showed lower values compared to the positive control. With increasing RSO addition, TMC, VBN, TBARS, and PV values decreased, while RSO24 exhibited the most positive storage characteristics. The sensory evaluation results indicated that RSO16 showed the highest overall preference. In conclusion, adding a large amount of RSO may negatively affect the quality characteristics of patties, but it appears to have a positive impact on their storage properties. Ultimately, a 1.6% addition of RSO does not compromise the quality characteristics of the patties while improving their storage properties.

References

Jeong JY. 2016. Alternative curing technology in meat products. 축산식품과학과 산업 5:77-84.

Moonyoungsa, Seoul, Korea.

Effect of cooking on the chemical composition of low-salt, low-fat wakame/olive oil added beef patties with special reference to fatty acid content. Meat Science 89:27-34.

Plant-derived natural antioxidants in meat and meat products. Antioxidants 9:1215.

Sensory characteristics of frankfurters as affected by fat, salt, and ph. Journal of Food Science 60:42-47.

Table 1. Formulation of pork patties with various ratio of radish seed oil

<table>
<thead>
<tr>
<th>Ingredients (%)</th>
<th>Radish seed oil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 (PC)</td>
</tr>
<tr>
<td>Main Meat</td>
<td>90</td>
</tr>
<tr>
<td>Ice</td>
<td>10</td>
</tr>
<tr>
<td>Additives Salt</td>
<td>1.5</td>
</tr>
<tr>
<td>Tocopherol</td>
<td>0.1</td>
</tr>
<tr>
<td>Sodium nitrite</td>
<td>0.01</td>
</tr>
</tbody>
</table>

PC (positive control), pork patty with tocopherol and sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.
Table 2. Fatty acids composition of radish seed oil

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Radish seed oil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0 (Myristic acid)</td>
<td>0.09±0.00</td>
</tr>
<tr>
<td>C16:0 (Palmitic acid)</td>
<td>5.39±0.01</td>
</tr>
<tr>
<td>C16:1 (Palmitoleic acid)</td>
<td>0.22±0.00</td>
</tr>
<tr>
<td>C18:0 (Stearic acid)</td>
<td>2.04±0.00</td>
</tr>
<tr>
<td>C18:1 (Oleic acid, ω-9)</td>
<td>46.13±0.02</td>
</tr>
<tr>
<td>C18:2 (Linoleic acid, ω-6)</td>
<td>13.16±0.00</td>
</tr>
<tr>
<td>C18:3 (Linolenic acid, ω-3)</td>
<td>10.22±0.00</td>
</tr>
<tr>
<td>C20:0 (Arachidic acid)</td>
<td>1.13±0.00</td>
</tr>
<tr>
<td>C22:0 (Behenic acid)</td>
<td>0.89±0.00</td>
</tr>
<tr>
<td>C22:1 (Erucic acid, ω-9)</td>
<td>20.75±0.01</td>
</tr>
<tr>
<td>ΣSaturated</td>
<td>9.53±0.01</td>
</tr>
<tr>
<td>ΣMonounsaturated</td>
<td>67.10±0.01</td>
</tr>
<tr>
<td>ΣPolyunsaturated</td>
<td>23.38±0.00</td>
</tr>
<tr>
<td>Traits</td>
<td>PV (meq/kg)</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Radish seed oil</td>
<td>2.75±0.15</td>
</tr>
</tbody>
</table>
Table 4. Proximate compositions of pork patties formulated with various amounts of radish seed oil

<table>
<thead>
<tr>
<th>Traits (%)</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC</td>
</tr>
<tr>
<td>Moisture</td>
<td>72.95±0.01<sup>b</sup></td>
</tr>
<tr>
<td>Protein</td>
<td>15.69±0.92<sup>b</sup></td>
</tr>
<tr>
<td>Fat</td>
<td>10.43±0.94<sup>b</sup></td>
</tr>
<tr>
<td>Ash</td>
<td>0.94±0.05</td>
</tr>
</tbody>
</table>

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8%; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

^{a–d} Least square means with different letters within the same row are significantly different (p<0.05).
Table 5. pH, water holding capacity (WHC) and cooking loss (CL) of pork patties formulated with various levels of radish seed oil

<table>
<thead>
<tr>
<th>Traits</th>
<th>PC</th>
<th>NC</th>
<th>RSO4</th>
<th>RSO8</th>
<th>RSO16</th>
<th>RSO24</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>6.15±0.02<sup>a</sup></td>
<td>6.14±0.02<sup>ab</sup></td>
<td>6.12±0.02<sup>ab</sup></td>
<td>6.11±0.02<sup>b</sup></td>
<td>6.11±0.01<sup>b</sup></td>
<td>6.06±0.03<sup>c</sup></td>
</tr>
<tr>
<td>WHC (%)</td>
<td>64.76±0.68<sup>a</sup></td>
<td>63.66±1.32<sup>ab</sup></td>
<td>63.10±0.88<sup>ab</sup></td>
<td>63.02±0.44<sup>ab</sup></td>
<td>62.88±0.54<sup>b</sup></td>
<td>62.25±1.39<sup>b</sup></td>
</tr>
<tr>
<td>CL (%)</td>
<td>19.84±1.02<sup>c</sup></td>
<td>21.93±0.93<sup>bc</sup></td>
<td>19.93±1.58<sup>c</sup></td>
<td>20.01±1.47<sup>c</sup></td>
<td>23.32±1.49<sup>ab</sup></td>
<td>25.06±1.56<sup>a</sup></td>
</tr>
</tbody>
</table>

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8%; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

Least square means with different letters within the same row are significantly different (p<0.05).
Table 6. Color of pork patties formulated with various levels of radish seed oil

<table>
<thead>
<tr>
<th>Traits</th>
<th>PC</th>
<th>NC</th>
<th>RSO4</th>
<th>RSO8</th>
<th>RSO16</th>
<th>RSO24</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE L*</td>
<td>48.08±1.00<sup>c</sup></td>
<td>55.20±0.97<sup>b</sup></td>
<td>57.41±0.68<sup>a</sup></td>
<td>56.12±0.45<sup>b</sup></td>
<td>57.90±0.39<sup>a</sup></td>
<td>57.56±0.41<sup>a</sup></td>
</tr>
<tr>
<td>CIE a*</td>
<td>4.57±0.31<sup>c</sup></td>
<td>8.34±0.59<sup>a</sup></td>
<td>8.10±0.54<sup>ab</sup></td>
<td>7.57±0.19<sup>ab</sup></td>
<td>7.52±0.39<sup>ab</sup></td>
<td>7.46±0.44<sup>b</sup></td>
</tr>
<tr>
<td>CIE b*</td>
<td>13.43±0.29<sup>ab</sup></td>
<td>15.73±0.72<sup>a</sup></td>
<td>14.15±0.64<sup>c</sup></td>
<td>14.86±0.06<sup>b</sup></td>
<td>15.03±0.18<sup>ab</sup></td>
<td>15.27±0.23<sup>ab</sup></td>
</tr>
</tbody>
</table>

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

*^a Least square means with different letters within the same row are significantly different (p<0.05).
Table 7. TPA of pork patties formulated with various levels of radish seed oil

<table>
<thead>
<tr>
<th>Traits</th>
<th>PC</th>
<th>NC</th>
<th>RSO4</th>
<th>RSO8</th>
<th>RSO16</th>
<th>RSO24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness (kg)</td>
<td>2.06±0.02b</td>
<td>2.51±0.03a</td>
<td>2.44±0.03a</td>
<td>2.39±0.04a</td>
<td>2.06±0.09b</td>
<td>1.78±0.08c</td>
</tr>
<tr>
<td>Cohesiveness (%)</td>
<td>0.87±0.01b</td>
<td>0.91±0.03a</td>
<td>0.87±0.01b</td>
<td>0.87±0.02ab</td>
<td>0.87±0.01ab</td>
<td>0.86±0.02b</td>
</tr>
<tr>
<td>Springiness (%)</td>
<td>0.63±0.01b</td>
<td>0.61±0.01bc</td>
<td>0.71±0.03a</td>
<td>0.63±0.02b</td>
<td>0.62±0.01bc</td>
<td>0.58±0.01c</td>
</tr>
<tr>
<td>Gumminess (kg)</td>
<td>1.78±0.04c</td>
<td>2.28±0.05a</td>
<td>2.12±0.04b</td>
<td>2.08±0.02b</td>
<td>1.80±0.07c</td>
<td>1.54±0.07d</td>
</tr>
<tr>
<td>Chewiness (kg)</td>
<td>1.13±0.04c</td>
<td>1.39±0.05b</td>
<td>1.50±0.08a</td>
<td>1.32±0.03b</td>
<td>1.11±0.04c</td>
<td>0.90±0.03d</td>
</tr>
</tbody>
</table>

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

Least square means with different letters within the same row are significantly different (p<0.05).
Table 8. Sensory evaluation of pork patties formulated with various levels of radish seed oil

<table>
<thead>
<tr>
<th>Traits</th>
<th>PC</th>
<th>NC</th>
<th>RSO4</th>
<th>RSO8</th>
<th>RSO16</th>
<th>RSO24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>3.60±0.55bc</td>
<td>5.20±1.10a</td>
<td>5.60±1.14a</td>
<td>5.80±0.84a</td>
<td>5.60±1.10a</td>
<td>5.20±1.10a</td>
</tr>
<tr>
<td>Flavor</td>
<td>3.00±1.00c</td>
<td>4.20±0.84bc</td>
<td>6.40±1.95a</td>
<td>6.60±1.52a</td>
<td>6.60±1.52a</td>
<td>6.00±1.22b</td>
</tr>
<tr>
<td>Smell</td>
<td>2.60±0.89c</td>
<td>2.80±1.64c</td>
<td>5.20±1.30ab</td>
<td>5.60±1.82a</td>
<td>3.40±1.14bc</td>
<td>3.40±1.14bc</td>
</tr>
<tr>
<td>Juiciness</td>
<td>6.90±1.00a</td>
<td>6.40±0.55ab</td>
<td>5.60±0.55b</td>
<td>4.20±0.89c</td>
<td>4.20±0.50c</td>
<td>3.70±0.55c</td>
</tr>
<tr>
<td>Texture</td>
<td>5.60±1.34</td>
<td>5.00±1.00</td>
<td>5.20±0.84</td>
<td>5.00±0.71</td>
<td>4.80±0.84</td>
<td>4.80±0.71</td>
</tr>
<tr>
<td>Overall preference</td>
<td>4.60±0.89b</td>
<td>4.60±0.55b</td>
<td>6.60±1.34a</td>
<td>6.60±1.14a</td>
<td>6.80±0.84a</td>
<td>6.00±0.71a</td>
</tr>
</tbody>
</table>

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

Least square means with different letters within the same row are significantly different (p<0.05).
Fig 1. Total microbial count (TMC, Log CFU/g) of pork patties formulated with various levels of radish seed oil

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

a-d Least square means with different letters within the same day are significantly different ($p<0.05$).
Fig 2. Volatile basic nitrogen (VBN, mg%) of pork patties formulated with various levels of radish seed oil

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

a-c Least square means with different letters within the same day are significantly different (p<0.05).
Fig 3. Thiobarbituric Acid Reactive Substances (TBARS, mg MDA/kg) of pork patties formulated with various levels of radish seed oil

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

* Least square means with different letters within the same day are significantly different (p<0.05).
Fig 4. Peroxide value (PV, meq/kg) of pork patties formulated with various levels of radish seed oil

PC (positive control), pork patty with 0.1% tocopherol and 0.01% sodium nitrite; NC (negative control), pork patty without RSO; RSO4, pork patty with 0.4% RSO; RSO8, pork patty with 0.8% RSO; RSO16, pork patty with 1.6% RSO; RSO24, pork patty with 2.4% RSO.

 Least square means with different letters within the same day are significantly different ($p<0.05$).