1	Volatile compounds for discrimination between beef, pork, and
2	their admixture using SPME-GC-MS and chemometrics analysis
3	
4	Zubayed Ahamed ¹ , Jin-Kyu Seo ¹ , Jeong-Uk Eom ¹ , Han-Sul Yang ^{1,2,*}
5	
6	¹ Division of Applied Life Science (BK21Four), Gyeongsang National University, 501 Jinju-
7	daero, Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
8	² Institute of Agriculture and Life Science Gyeongsang National University, 501 Jinju-daero,
9	Jinju-si, Gyeongsangnam-do, 52828, Republic of Korea
10	
11	
12	
13	Abbreviated running title: Analyzing volatiles in pure and adulterated cooked meat using SP
14	ME-GC-MS
15	
16	
17	E-mail address & ORCID
18	Zubayed Ahamed: zubayed.nft.just@gmail.com; https://orcid.org/0000-0002-9947-2299
19	Jin-Kyu Seo: tjwlsrb7942@gmail.com; https://orcid.org/0000-0001-5929-8284
20	Jeong-Uk Eom: djawjddnr7@naver.com; https://orcid.org/0000-0003-1856-7745
21	Han-Sul Yang: hsyang@gnu.ac.kr; https://orcid.org/0000-0001-6658-6364
22	
23	
24	
25	*Correspondence: hsyang@gnu.ac.kr; Tel.: +82-55-772-1948; Fax.: +82-55-772-1949
26	

27 Abstract

28 This study addresses the prevalent issue of meat species authentication and adulteration 29 through a chemometrics-based approach, crucial for upholding public health and ensuring a 30 fair marketplace. Volatile compounds were extracted and analyzed using headspace-solid-31 phase-microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). 32 Adulterated meat samples were effectively identified through principal component analysis 33 (PCA) and partial least square-discriminant analysis (PLS-DA). Through variable importance in projection (VIP) scores and a Random Forest test, 11 key compounds, including nonanal, 34 35 octanal, hexadecanal, benzaldehyde, 1-octanol, hexanoic acid, heptanoic acid, octanoic acid, 36 and 2-acetylpyrrole for beef, and hexanal and 1-octen-3-ol for pork, were robustly identified 37 as biomarkers. These compounds exhibited a discernible trend in adulterated samples based on 38 adulteration ratios, evident in a heatmap. Notably, lipid degradation compounds strongly 39 influenced meat discrimination. PCA and PLS-DA yielded significant sample separation, with 40 the first two components capturing 80% and 72.1% of total variance, respectively. This technique could be a reliable method for detecting meat adulteration in cooked meat. 41

42

43 Keywords: SPME-GC-MS, Adulteration, PLS-DA, PCA, Cooked meat

44 **1. Introduction**

45 Meat and its derivatives play a crucial role as a significant protein source and are 46 indispensable components of the human diet (Li et al., 2022). However, sometimes they have 47 been adulterated deliberately or accidentally with more than one species or undeclared 48 admixture (Ruiz Orduna et al., 2017). Adulterating beef with pork is a common fraudulent 49 practice driven by economic motives, as pork is generally cheaper than beef (Mannaa, 2020; 50 Yang et al., 2018). While this adulteration may not pose significant health risks, it can result in 51 economic losses and potentially endanger consumers with allergies to particular food items 52 (Ghovvati et al., 2009; Nurjuliana et al., 2011). Moreover, it has some ethical and religious 53 issues, as pork is strictly prohibited to Muslims (Nakyinsige et al., 2012). Hence, it is necessary 54 to authenticate meat species and detect this type of adulteration.

55 To mitigate the risk of adulteration, clear guidelines for authenticating meat must be 56 established by regulatory bodies with governing authority (Ruiz Orduna et al., 2017). 57 Furthermore, there is a need for sensitive and selective methodologies to identify and detect 58 such forms of adulteration. Numerous techniques employed previously have demonstrated high 59 effectiveness in detecting minute levels of adulteration. (Pavlidis et al., 2019). These 60 techniques include immunological and enzymatic techniques, DNA-based assay, various 61 spectrometry and chromatography-based methods, NMR-based techniques, and electronic nose 62 (Jakes et al., 2015; Lo and Shaw, 2018; Mandli et al., 2018; Nurjuliana et al., 2011; Pranata et 63 al., 2021). Nevertheless, nowadays, detecting meat adulteration in cooked meat using 64 headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) has gained popularity based on the volatile compounds as they are formed after 65 66 cooking and gives specific flavour characteristics of meat (Amalia et al., 2022; Pranata et al., 67 2021). The volatile compounds are generated during cooking via an intricate sequence of 68 chemical reactions, encompassing the Maillard reaction, lipid degradation, Strecker 69 degradation, and interactions between intermediate reaction products and degradation 70 byproducts (Aaslyng and Meinert, 2017). Volatilomics is regarded as a promising tool that can 71 be utilized for detecting food fraud, evaluating quality, and verifying authenticity.

Gas chromatography-mass spectrometry (GC-MS) is highly efficient in identifying unknown compounds present in any given sample. Different techniques are used for extracting volatile compounds including dynamic headspace extraction on Tenax TA, simultaneous steam distillation-solvent extraction (SDE), solvent-assisted flavor evaporation (SAFE), and HS- 76 SPME (Madruga et al., 2009). In this study, HS-SPME was selected due to its well-documented 77 efficacy in extracting volatile compounds from meat. It offers notable advantages including simplicity, solvent-free operation, reusability, and swift extraction time, as supported by 78 79 previous studies (Li et al., 2022; Pavlidies et al., 2019; Pranata et al., 2021). Gas 80 chromatography coupled with mass spectrometry emerged as an apt method for the 81 identification and quantification of volatile compounds within meat, as evidenced by the work 82 of Amalia et al. (2022). SPME-GC-MS is frequently reported as a powerful technique to 83 differentiate between meat species and detect meat adulteration with multivariate analysis or 84 machine learning techniques (Dahimi et al., 2014; Pavlidis et al., 2019; Pranata et al., 2021).

The study's objective reported here was to detect adulteration in cooked meat and detection of pork in mixed beef and pork meat. With the volatile data obtained from GC-MS, a multivariate statistical model was developed for the authenticity of meat species and the identification of discriminating volatile compounds for each type of meat.

- 89
- 90

91 **2. Materials and methods**

92 **2.1. Sampling**

93 Ten Hanwoo cattle with a market weight ranging from 425 to 455 kilograms were 94 randomly chosen from a slaughter plant located in Jinju-Si, Gyeongsangnam-do, Republic of 95 Korea. The fresh beef round was dissected from each carcass 48 h postmortem. A total of 10 pigs (castrated boar; Landrace $\mathcal{A} \times \text{Yorkshire} \cong \mathbb{A} \times \text{Duroc} \mathcal{A}$, market weight 69~74 kg) were 96 97 randomly selected at a slaughter plant. Fresh pork round was dissected each carcass 48 h 98 postmortem. Upon arrival at the laboratory, all subcutaneous and intermuscular fat, along with 99 any visible connective tissue, were promptly removed from the fresh muscles. The muscles 100 were subsequently sliced into small segments and thoroughly pulverized to create a uniform 101 paste using a grinder. A total of four different groups of samples were made, two of them were 102 pure (only beef & only pork) and two were adulterated. The adulterated mixed samples were 103 prepared in two different ratios (80% beef and 20% pork; 60% beef and 40% pork). Next, 100 104 grams were measured from each group for cooking purposes. The study utilized a total of 20 105 distinct animals, resulting in the analysis of 40 samples, with each sample having three 106 replicates.

108 2.2. Method of cooking

109 The ground meat samples were cooked by pan-roasting on an electric hot plate set to temperatures over 150°C for 5 minutes. Before cooking, the surface temperature of the hot plate 110 111 was calibrated using a laser infrared thermometer. The ground meat was consistently stirred 112 and blended using a steel spatula throughout the cooking process. The temperature was 113 consistently maintained between 150 and 170 degrees Celsius, with continuous monitoring 114 facilitated by a laser infrared thermometer (Bluebird, Model: BO-350). Following the cooking 115 process, the sample was allowed to cool to room temperature before being vacuum-sealed and 116 stored in a freezer at -80°C until analysis.

117

118 **2.3. Analysis of the volatile compounds**

119 **2.3.1. HS-SPME**

120 The sample preparation followed a method with slight modification (Ahamed et al., 2023). 121 Each cooked sample, precisely 2.5 grams, was combined with 5 mL of a 25% NaCl solution. 122 This mixture underwent thorough homogenization for one minute using a homogenizer. 123 Subsequently, the prepared samples were transferred into 20 mL glass vials (Supelco). An 124 internal standard of 1 µl of 0.4 mg/mL 2-methyl-3-heptanone dissolved in hexane was added. 125 The vials were tightly sealed using mininert valves. For extraction of volatile compounds, the 126 DVB/CAR/PDMS- 50/30 µm (PAL Smart SPME Fiber) fiber was utilized. The vial containing 127 the sample was initially heated for 15 minutes at 60°C as an incubation period. Following this, 128 the SPME fiber was exposed to the headspace of the vial for an additional 30 minutes under 129 the same temperature conditions with continuous shaking. Upon completion of the absorption 130 process, the SPME fiber was desorbed in the injection port of the GC-MS instrument for 6 131 minutes. Prior to usage, the fiber was conditioned at 270°C for 30 minutes. Additionally, before 132 each analysis, the fiber underwent exposure to the injection port of the GC for another 10 133 minutes to clean it.

134

135 2.3.2. Operating conditions of the GC-MS

GC/MS analyses were performed utilizing an Agilent 7890B gas chromatograph coupled
with an Agilent 5973C quadrupole mass spectrometer (Agilent Technologies, Santa Clara,
California, USA). An autosampler (PAL, Agilent) was also employed in the analysis process.
Helium (99.99%) was employed as the carrier gas, maintaining a steady flow at a rate of 1
mL/min. The injection port was fitted with a liner (0.75 mm i.d, Agilent) specifically designed

141 for SPME analysis, and maintained at a temperature of 250°C. An HP-INNOWax capillary 142 column (60 m \times 0.32 mm, 0.25 μ m film thickness, Agilent) was utilized for compound 143 separation. Initially, the oven temperature was set at 40°C and held for 3 minutes. Subsequently, 144 there was a gradual temperature increase at a rate of 4°C/min up to 120°C, followed by another 145 increase at a rate of 8°C/min up to 220°C. A rapid increase to 250°C was then applied at a rate 146 of 20°C/min and maintained for 5 minutes. The interface temperature was set to 280°C. The 147 mass spectrometer operated in electron ionization mode, with the electron energy set to 70 148 electron volts (eV) and a scanning range spanning 50 to 450 mass-to-charge ratio (m/z). The 149 ion source and quadrupole temperatures were established at 230°C and 150°C, respectively. 150 During injection, a pulsed splitless mode was employed throughout the experiment.

151

152 **2.3.3. Pretreatment and identification of the volatile compounds**

153 All volatile compounds were identified by comparing their mass spectra with the built-in 154 NIST v.14 mass spectral library (NIST/EPA/NIH Mass Spectral Library with Search Program), 155 with a minimum mass match quality of 80% considered for each compound. Additionally, compounds were verified using the linear retention index (LRI) from the PubChem library and 156 157 NIST Chemistry Webbook. To ensure the reliability of retention times and tentative 158 identifications, authentic samples of several detected compounds were analyzed. The LRI was 159 determined using a homologous series of even-numbered n-alkanes ranging from C6 to C40 160 (Polyscience, Illinois, USA), under identical chromatographic conditions as those applied to 161 the samples. The calculation of LRI was performed using an equation described in a prior study 162 (Pranata et al., 2021).

Before further processing, a data pre-treatment step was performed to convert raw data into a cleaner format. This process involved employing Chemostation software to automate tasks such as peak alignment, annotation, and integration of the target ion peak area.

166

167 **2.3.4. Relative quantification of the volatile compounds**

168 The relative concentration of each compound was assessed by calculating the peak areas. 169 The concentration was computed following the method outlined in Ahamed et al. (2023), with 170 slight adjustments, employing the subsequent formula and denoted as micrograms per kilogram 171 $(\mu g/kg)$.

172 Relative concentrations = {
$$\left(\frac{Peak \ area \ ratio\left(\frac{volatile}{IS}\right) \times conc.of \ internal \ standard}{2.5 \ g \ (sample \ weight)}\right)$$
} × 1000

174 **2.3.5. Statistical analysis and data pretreatment**

175 All data analyses were carried out using SAS 9.4 software (SAS Institute Inc., Cary, NC, USA). 176 For multivariate data analysis, Metaboanalyst 5.0 (www.metaboanalyst.ca), was utilized. The 177 data was first converted into a CSV file, followed by log transformation and Pareto-scaling for 178 normalization. Peaks with more than 50% missing values were excluded from the analysis. 179 PCA and PLS-DA models were employed as unsupervised and supervised methods, 180 respectively, to distinguish between meat types based on the relative concentration of each 181 compound. Additionally, a Random Forest test was conducted to identify the model's most 182 significant compounds and assess its predictive capability. Cross-validation and response 183 permutation tests were utilized to evaluate and validate the models. Data was presented as mean 184 \pm standard error (SE), and statistical significance was determined at P < 0.05 using Duncan's 185 multiple range test.

186

187 **3. Results and discussion**

188 **3.1. Volatile compounds identification**

189 Forty-five volatile compounds were identified from the meat samples, and they were 190 categorized into different chemical groups, namely aldehydes (16), alcohols (8), pyrazines (6), 191 acids (5), hydrocarbons (8) and miscellaneous (2), of which aldehydes were the most abundant 192 in all samples. All of these volatile flavour compounds formed from the precursor of meat, 193 namely, free amino acids, peptides, free sugars, vitamins, sugar phosphate, and low molecular 194 weight water-soluble compounds (Koutsidis et al., 2008). Previous studies on cooked meat 195 volatiles found a similar result that aldehydes and alcohols were the most abundant compounds 196 (Beldarrain et al., 2022; Wei et al., 2022). Six to ten carbon-containing aldehydes were the 197 most common and present in higher quantities (Moran et al., 2022). Table 1 shows the 198 qualitative and quantitative analysis results of the volatile compounds. The aldehydes, alcohols, 199 and some acids are the most abundant flavour families in cooked meat (Shi et al., 2019; Vilar 200 et al., 2022). Many of the volatile compounds identified have been previously discussed in a 201 review by Sohail et al. (2022) or validated in recent studies conducted by Amalia et al. (2022) 202 and Pranata et al. (2021). The majority of these compounds are derived from processes such as 203 the Maillard reaction, lipid degradation, and the interaction between compounds produced 204 during these reactions, all of which occur during cooking (Pranata et al., 2021). Alcohols,

primarily originating from lipid degradation, such as 1-octen-3-ol, 2-ethyl-1-hexanol, and 1octanol, are prominent among the compounds identified in cooked beef and pork (Bueno et al.,
207 2019).

208 This 1-octen-3-ol was found as a key compound responsible for pork flavour and found at 209 a very high concentration in previous studies (Pavlidis et al., 2019; Pranta et al., 2021; Wu et 210 al., 2022). In our study, among all the alcohols found in pork, 1-octen-3-ol was present at a 211 higher concentration. Other alcohols include 1-heptanol, 2-octen-1-ol (E), 1-dodecanol, 2-212 phenyl-2-propanol, and 4-methyl phenol. Among these compounds, 2-phenyl-2-propanol was 213 not found in previous studies. However, the possible reason for the occurrence of this 214 compound is from the amino acid breakdown, particularly from phenylalanine, during meat 215 cooking at high temperatures (Scognamiglio et al., 2012). Hexanal, octanal, and nonanal were 216 the most common and elevated compounds found in all the samples (Beldarrain et al., 2022). 217 The major aldehydes and alcohols were mainly derived from the auto-oxidation or degradation 218 of unsaturated fatty acids, for instance, linolenic, linoleic, and oleic acids which are very 219 abundant in beef and pork (Al-Dalali et al., 2022). The pyrazines are responsible for the roast 220 flavour of the meat, and methyl group pyrazines are most common in cooked meat (Sohail et 221 al., 2022). They are formed by the Maillard browning reaction. The 3-ethyl-2,5-dimethyl 222 pyrazine is the most frequently occurring in cooked meat and strongly influences roast flavour 223 (Sohail et al., 2022). This study identified five short-chain fatty acids: hexanoic acid, heptanoic 224 acid, octanoic acid, nonanoic acid, and decanoic acid. This fatty acid strongly impacts the 225 flavour and aroma of cooked meat and may come from the diet or microbial fermentation in 226 the digestive system (Li et al., 2021a). These fatty acids were reported in a previous study 227 (Zhao et al., 2017). Eight individual hydrocarbons were identified, which poorly contribute to 228 the cooked meat flavour (Wu et al., 2022). Hydrocarbons are mainly derived from pasture-229 based diets and decarboxylation of higher fatty acids (Beldarrain et al., 2022). Among the 230 hydrocarbons, 2-pentyl furan was a significant hydrocarbon and played an important role in 231 overall pork flavour (Wang et al., 2016). The compound 1-Formylpyrrolidine was not reported 232 in any other previous research and may form from the reaction of lysine and arginine with 233 reducing sugars like glucose and fructose during meat cooking (Li et al., 2023). Overall, the 234 volatile compounds in cooked meat are mainly derived from amino and fatty acid metabolism. 235 Many compounds were found to differ significantly in their abundance between beef and pork 236 and some compounds did not have significant differences between beef and mixed group but 237 were significantly different with pork. As in the mixed sample, the beef percentage was higher,

which may be the possible reason for this. One study with raw meat also reaches a similar kind
of conclusion (Pavlidis et al., 2019). In the PCA score plot, the mixed samples were clustered
very close to the pure beef samples. For instance, some aldehydes like, heptanal, octanal, and
nonanal do not have significant differences between the three meat groups other than pork.
Some compounds were not found in more than fifty percent of the samples analyzed and were
considered as not detected. Overall, mostly aldehydes, alcohols, and acids make the differences
between the meat groups.

- 245
- 246

6 **3.2. Principal component analysis (PCA)**

247 PCA was utilized as an unsupervised data analysis method to reduce the dimensionality of the data, visualize sample relationships, and identify differences and groupings among the 248 249 samples based on the volatile compounds (Pavlidis et al., 2019). The first PC1 explains 48.9%, 250 and the PC2 explains 31.1% of the variation of the data, with a cumulative contribution of 80%, 251 and reflects most of the information on the overall characteristics of the samples. Fig. 1 shows 252 the PCA score plot, and it is demonstrated that all four groups were clearly distinguished where 253 beef and pork are situated in the two terminals, and the mixed samples lie between them. 254 Moreover, the positions of the samples reflect the percentage of the adulteration. For instance, 255 mixed samples of (60:40) were more closely clustered near the pork compared to (80:20). Even 256 though there was a little overlap between the pure beef and two mixed samples, pure pork was 257 completely clustered separately. The possible reason may be the higher percentage of beef in 258 the mixed samples and almost similar volatile compounds in both types of meat, which differ 259 only in their relative concentration (Bleicher et al., 2022; Vilar et al., 2022). As the PCA was 260 run unsupervised, the scatter plots displaying sample outputs primarily depicted their relative 261 positioning to one another. These positions can predominantly be influenced by experimental 262 fluctuations, such as system noise and instrumental drift (Zhang et al., 2020). The PLS-DA 263 model was implemented to overcome these issues and further construct a better model for 264 discrimination.

265

266 **3.3. Partial least squares-discriminant analysis (PLD-DA)**

PLS-DA is a versatile algorithm capable of both predictive and descriptive modeling, as well as characterizing differences between samples, serving as a valuable feature selector and classifier (Pranata et al., 2021). It facilitates linking metabolite information with different meat classes (Trivedi et al., 2016). Pure pork and beef samples were segregated on opposite sides of
the PLS-DA score plot, with mixed samples positioned between them, leaning more towards
the beef samples when the beef percentage was higher in the mixed sample. The PLS-DA score
plot exhibited distinct clustering among pure beef, pork, and mixed samples, as depicted in Fig.
2.

275 Model validation was done with 1000 random permutations to identify the model's 276 prediction accuracy and to assess the reliability of the model, as sometimes the model can suffer 277 from overfitting problems from the training dataset (Song et al., 2021). The p-value obtained 278 from the permutation test was 0.001, which indicates the model's validity (Eriksson et al., 2008; 279 Amalia et al., 2022). Moreover, cross-validation was conducted to evaluate the reproducibility and predictive capability of the model. The R^2 (model fitness) and Q^2 (predictive performance) 280 281 values were determined to be 0.78 and 0.80, respectively, indicating a well-fitted model. The 282 first three principal components account for approximately 76.3% of the dataset's variance, 283 with the first component (PC1) explaining 60% of the dataset's variance and providing optimal 284 groupings. PLS-DA analysis not only distinguishes between known categories and predicts 285 unfamiliar samples but also establishes a connection between metabolite data and each specific 286 category (Cubero-Leon et al., 2014; Pavlidies et al., 2019).

287

288 **3.4. Potential volatile markers**

289 To identify volatile compounds suitable as markers, correlation coefficients, and VIP 290 (Variable Importance in Projection) values were extracted from the PLS-DA model (Amalia et 291 al., 2022). Fig. 3 shows the top 15 compounds identified for each type of meat group with the 292 highest VIP value. Compounds with a higher VIP score are important for the meat samples' 293 discrimination (Li et al., 2021a; Pranata et al., 2021). The top 15 compounds were nonanal, 294 benzaldehyde, pentadecanal, hexadecanal, hexanoic acid, 1-octanol, 2-nonenal (E), 1-octen-3-295 ol, 2-ethyl-1-hexanol, octanal, hexanal, octanoic acid, 2-acetylpyrrole, 2-decenal (E) and 296 heptanoic acid. The aldehyde, nonanal comes with the highest VIP value of 4.0 and is 297 considered to have the highest influence in discriminating between the groups. Nonanal was 298 present at a very high concentration in all the samples with the highest in beef. Previous studies 299 also found nonanal contributes the highest to beef flavour (Ahamed et al., 2023; Vilar et al., 300 2022). In a study by Wu (2022), nonanal was identified as a significant aroma compound in 301 cooked pork, imparting a citrus and green-like aroma. Among the fifteen compounds identified, 302 fourteen were derived from lipid degradation and categorized as aldehydes, alcohols, and acids.

This observation aligns with findings from a review that summarized 332 compounds from various cooked meat species, highlighting the substantial contribution of lipid degradation compounds to the flavor of cooked meat (Sohail et al., 2022). In Fig. 3, the color legend on the right side, transitioning from blue to red, represents the increasing frequency values of the significant compounds in each category.

308 For further confirmation of the most significant compounds for discrimination, a Random 309 forest test was performed. Fig. 4 shows the 15 important volatiles that achieved higher 310 significance in the random forest analysis than the other compounds. In beef, 1-octanol, benzaldehyde, hexanoic acid, nonanal, octanoic acid, 2-acetylpyrrole, heptanoic acid, 311 312 hexadecanal, 2-ethylhexyl acrylate, octanal were the most important volatiles, in the pork, 313 hexanal, 1-octen-3-ol, 2-pentyl furan, 1-dodecanol. Previous studies have identified 314 benzaldehyde as a predominant and one of the most abundant aldehydes in grilled meat, and 315 confirmed 2-acetylpyrrole as a highly predictive compound for beef, consistent with our 316 findings (Wei et al., 2022). Nonanal, derived from the beta-oxidation of oleic acid, is a key 317 compound in cooked beef and is positively correlated with cooked beef flavor (Li et al., 2021b; 318 Wu et al., 2022). However, one research reported that nonanal was a strong marker and 319 positively correlated with meatballs made of beef and wild boar mixture (Amalia et al., 2022). 320 This may occur due to the different volatile profiles of wild boar. In one study, octanal and 1-321 octanol were found to be positively correlated with beef (Pavlidis et al., 2019), and many 322 previous studies observed this aldehyde and alcohol as a major volatile compound in cooked 323 beef (Sohail et al., 2022). The hexanal and 1-octen-3-ol are the major contributing volatile 324 compounds in cooked pork but sometimes produce undesirable odor at higher concentrations 325 (Han et al., 2020; Li et al., 2022; Wu et al., 2022). The 2-pentyl furan is important in pork 326 flavour and is derived from linoleic acid oxidation (Wang et al., 2016). Tetradecanal is found 327 to be an important metabolite of the 60:40 mixed sample. From the PLS-DA and Random 328 Forest test, 11 compounds were identified as common in both models and are pretended to be 329 the important compounds for the discrimination between the samples. The common 330 compounds were hexanal, nonanal, octanal, hexadecanal, benzaldehyde, 1-octanol, 1-octen-3-331 ol, hexanoic acid, heptanoic acid, octanoic acid and 2- acetylpyrrole.

Figure 5 displays a heatmap depicting compounds that significantly influence the discrimination process, determined through Pearson correlation. The color chart on the right side illustrates the correlation strength. Notably, the heatmap reveals clear differentiation between pork and beef samples. Moreover, the mixed sample containing 80% beef and 20% 336 pork exhibits a closer resemblance to beef's volatile profile compared to the sample containing 337 60% beef and 40% pork, evident from the discernible color variation. Some compounds showed a higher correlation with beef and followed a trend of lowering in the mixed sample. 338 339 Benzeneacetaldehyde, octanal, octanoic acid, 2-ethyl-1-hexanol, 2-undecenal, 1-heptanol, 2-340 ethylhexyl acrylate, 1-octanol, hexanoic acid, 2- decenal (E) are highly positively correlated 341 with beef samples and in the sample of (80% beef and 20% pork) their concentration becomes 342 a little lower than the pure beef, and again it becomes lower in (60% beef and 40% pork) 343 samples. Nonanal, benzaldehyde, heptanoic acid, hexadecanal, 2-nonenal (E), heptanal, 2-344 acetylpyrrole, and acetophenone also positively correlated with beef samples. Previous studies 345 also found octanal, heptanal, nonanal, 1-hexanol, 1-octanol, and benzaldehyde were positively 346 correlated with beef (Pavlidies et al., 2019). Hexanal, 1-octen-3-ol, 3-ethyl-2,5-dimethyl 347 pyrazine, and 1-dodecanol were highly positively correlated with pork samples. Hexanal, one 348 of the major volatile in pork, comes from the degradation of a major polyunsaturated fatty acid, 349 found at a very high concentration and has a strong correlation with pork (Li et al., 2022; Pavlidis et al., 2019). 1-Octen-3-ol was also previously identified as a positively correlated 350 351 biomarker for pork (Pavlidis et al., 2019; Shi et al., 2019; Vilar et al., 2022). However, one 352 study indicates heptanal as a major discriminatory compound for pork which is different from 353 our findings (Nurjuliana et al., 2011). Pentadecanal, tetradecanal, and 1-formylpyrrolidine 354 showed a positive correlation with (60:40) mixed samples. Sometimes during the cooking of 355 adulterated meat, compound-compound interaction can happen and some compound 356 concentrations are increased greatly rather than presented in the pure sample (Pavlidis et al., 357 2019). And, this effect may happen with the above-mentioned three compounds in the mixed 358 sample (60:40 ratio). The heatmap showed that beef and pork have a different volatile profile, 359 which may be due to their eating habit. Beef are mainly herbivores and pigs are omnivores 360 (Sohail et al., 2022). Moreover, pigs possess a more complex digestive system, which can be 361 evident in their ability to absorb carbon and nitrogen-containing compounds, a significant 362 portion of which originate from microorganisms (Trivedi et al., 2016).

Fig. 6 shows the correlation matrix of 38 compounds between the pure beef, pork, and mixed samples. Using the statistical module of Metaboanalyst, we identified groups of normalized metabolites that exhibit either positive or negative correlations, regardless of the specific samples they come from. Color-coding represents these correlations visually: positive correlations are shown in brown, while negative correlations are displayed in blue. The intensity of the colors corresponds to the strength of the correlation. A big cluster of positively 369 correlated compounds accompanied by three minor ones was found. 2-nonenal, heptanal, 2-370 decenal (E), 2-undecenal, nonanal, 1-octanol, decanal, octanal, 1-heptanol, dodecanal, 2,4-371 decadienal (E,E) and 2-pentyl furan created the big cluster and had the highest positive 372 correlation among them irrespective of their origin (meat type). Most of these positively 373 correlated compounds also belong to the aldehydes, alcohols, and acids, which are compounds 374 derived from lipid oxidation.

375 376

377 4. Conclusions

378 In conclusion, this study demonstrates the potential of HS-SPME-GC-MS as a reliable and 379 efficient method for analyzing volatile compounds in cooked meat, enabling the classification 380 of meat types and detection of adulteration. Both PCA and PLS-DA analyses revealed distinct 381 separation among pure beef, pure pork, and mixed samples, with the position of adulterated 382 samples influenced by the percentage of added pork. Some key compounds, including aldehydes, alcohols, and acids exhibited higher discriminatory power. This study underscores 383 384 the potential of volatilomics-based techniques with chemometrics analysis in addressing meat 385 and meat product adulteration and fraud labeling, though further research is essential to account 386 for various factors affecting volatile compounds and establish a universal model and detecting 387 at a very low level of adulteration.

388

389

390 **5. Acknowledgments**

391

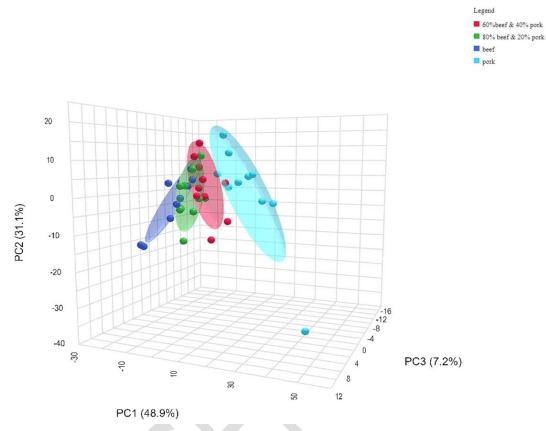
The research was funded by the Ministry of Education, Science, and Technology through the Basic Science Research Program, administered by the National Research Foundation of Korea (Project no. 2022RIA2C10130131161382116530101).

- 395
- **6. Conflicts of interest**
- 397

398 The authors have no conflicts of interest to report.

399 **References**

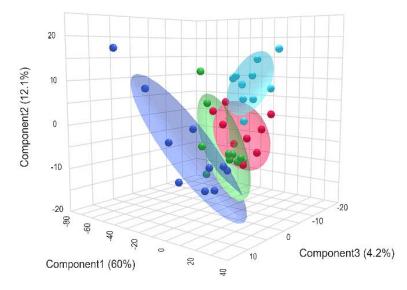
400 Aaslyng, M. D., & Meinert, L. (2017). Meat flavour in pork and beef-From animal to meal. Meat Sci

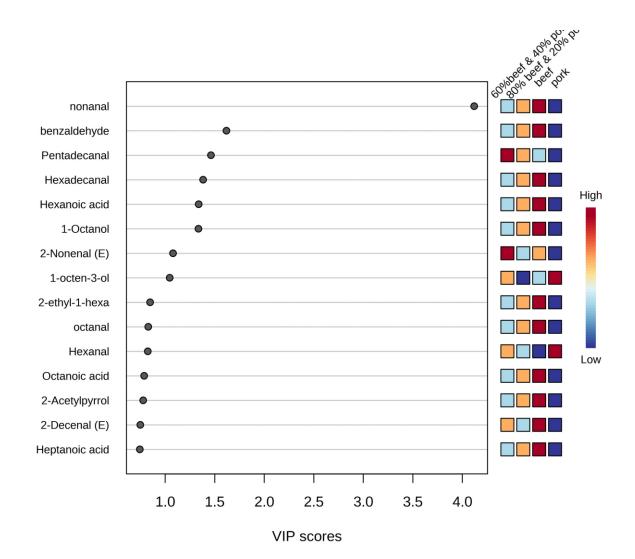

401 132: 112-117.

- Ahamed, Z., Seo, J. K., Eom, J. U., & Yang, H. S. (2023). Optimization of volatile compound extraction
 on cooked meat using HS-SPME-GC-MS, and evaluation of diagnosis to meat species using
 volatile compound by multivariate data analysis. LWT Food Sci Technol 188: 115374.
- Al-Dalali, S., Li, C., & Xu, B. (2022). Effect of frozen storage on the lipid oxidation, protein oxidation,
 and flavor profile of marinated raw beef meat. Food Chem 376: 131881.
- 407 Amalia, L., Yuliana, N. D., Sugita, P., Arofah, D., Syafitri, U. D., Windarsih, A., ... & Kusnandar, F.
- 408 (2022). Volatile compounds, texture, and color characterization of meatballs made from beef, rat,
 409 wild boar, and their mixtures. Heliyon, 8(10).
- Beldarrain, L. R., Morán, L., Sentandreu, M. Á., Barron, L. J. R., & Aldai, N. (2022). Effect of ageing
 time on the volatile compounds from cooked horse meat. Meat Sci 184: 108692.
- Bleicher, J., Ebner, E. E., & Bak, K. H. (2022). Formation and analysis of volatile and odor compounds
 in meat: A review. Molecules 27(19): 6703.
- Bueno, M., Resconi, V. C., Campo, M. M., Ferreira, V., & Escudero, A. (2019). Development of a
 robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile
 compounds in fresh raw beef of differing lipid oxidation degrees. *Food Chemistry*, 281, 49-56.
- 417 Cubero-Leon, E., Peñalver, R., & Maquet, A. (2014). Review on metabolomics for food authentication.
 418 Food Res Int 60: 95-107.
- 419 Dahimi, O., Rahim, A. A., Abdulkarim, S. M., Hassan, M. S., Hashari, S. B. Z., Mashitoh, A. S., &
- 420 Saadi, S. (2014). Multivariate statistical analysis treatment of DSC thermal properties for animal
 421 fat adulteration. Food Chem 158: 132-138.
- 422 Eriksson, L., Trygg, J., & Wold, S. (2008). CV-ANOVA for significance testing of PLS and OPLS®
 423 models. J Chemometrics 22(11-12): 594-600.
- Ghovvati, S., Nassiri, M. R., Mirhoseini, S. Z., Moussavi, A. H., & Javadmanesh, A. (2009). Fraud
 identification in industrial meat products by multiplex PCR assay. Food Cont 20(8): 696-699.
- Han, D., Zhang, C. H., Fauconnier, M. L., & Mi, S. (2020). Characterization and differentiation of
 boiled pork from Tibetan, Sanmenxia and Duroc × (Landrac× Yorkshire) pigs by volatiles profiling
 and chemometrics analysis. Int Food Res J 130: 108910.
- Jakes, W., Gerdova, A., Defernez, M., Watson, A. D., McCallum, C., Limer, E., ... & Kemsley, E. K.
 (2015). Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy. Food
 Chem 175: 1-9.
- Koutsidis, G., Elmore, J. S., Oruna-Concha, M. J., Campo, M. M., Wood, J. D., & Mottram, D. S.
 (2008). Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat
 Sci 79(2): 270-277.
- Li, H., Geng, W., Haruna, S. A., Zhou, C., Wang, Y., Ouyang, Q., & Chen, Q. (2022). Identification of
 characteristic volatiles and metabolomic pathway during pork storage using HS-SPME-GC/MS

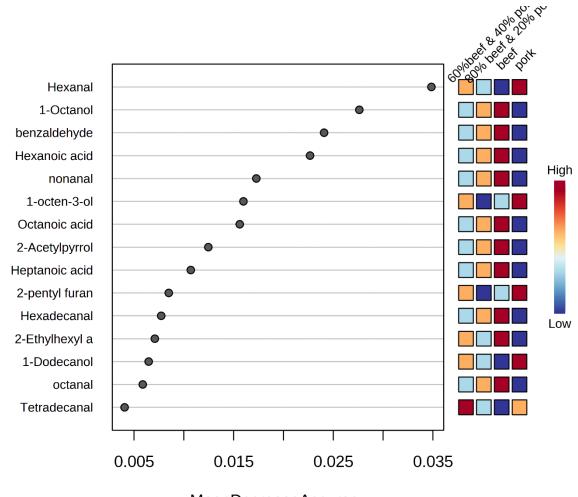
- 437 coupled with multivariate analysis. Food Chem 373: 131431.
- Li, J., Zhang, J., Yang, Y., Zhu, J., He, W., Zhao, Q., ... & Zhang, J. (2021). Comparative
 characterization of lipids and volatile compounds of Beijing Heiliu and Laiwu Chinese black pork
 as markers. Int Food Res J 146: 110433.
- Li, Y., Ou, J., Huang, C., Liu, F., Ou, S., & Zheng, J. (2023). Chemistry of formation and elimination
 of formaldehyde in foods. Trends Food Sci Technol 139: 104134.
- Li, Z., Ha, M., Frank, D., McGilchrist, P., & Warner, R. D. (2021). Volatile profile of dry and wet aged
 beef loin and its relationship with consumer flavour liking. Foods 10(12): 3113.
- Lo, Y. T., & Shaw, P. C. (2018). DNA-based techniques for authentication of processed food and food
 supplements. Food Chem 240: 767-774.
- Madruga, M. S., Elmore, J. S., Dodson, A. T., & Mottram, D. S. (2009). Volatile flavour profile of goat
 meat extracted by three widely used techniques. Food Chem 115(3): 1081-1087.
- Mandli, J., Fatimi, I. E., Seddaoui, N., & Amine, A. (2018). Enzyme immunoassay
 (ELISA/immunosensor) for a sensitive detection of pork adulteration in meat. Food Chem 255:
 380-389.
- 452 Mannaa, M. T. (2020). Halal food in the tourist destination and its importance for Muslim travellers.
 453 Curr. Issues Tourism, 23(17): 2195-2206.
- Moran, L., Vivanco, C., Lorenzo, J. M., Barron, L. J. R., & Aldai, N. (2022). Characterization of volatile
 compounds of cooked wild Iberian red deer meat extracted with solid phase microextraction and
 analysed by capillary gas chromatography-mass spectrometry. LWT- Food Sci Technol 163:
 113472.
- 458 Nakyinsige, K., Man, Y. B. C., & Sazili, A. Q. (2012). Halal authenticity issues in meat and meat
 459 products. Meat Sci 91(3): 207-214.
- 460 Nurjuliana, M., Man, Y. C., Hashim, D. M., & Mohamed, A. K. S. (2011). Rapid identification of pork
 461 for halal authentication using the electronic nose and gas chromatography mass spectrometer with
 462 headspace analyzer. Meat Sci 88(4): 638-644.
- Pavlidis, D. E., Mallouchos, A., Ercolini, D., Panagou, E. Z., & Nychas, G. J. E. (2019). A volatilomics
 approach for off-line discrimination of minced beef and pork meat and their admixture using HSSPME GC/MS in tandem with multivariate data analysis. Meat Sci 151: 43-53.
- Pranata, A. W., Yuliana, N. D., Amalia, L., & Darmawan, N. (2021). Volatilomics for halal and nonhalal meatball authentication using solid-phase microextraction–gas chromatography–mass
 spectrometry. Arab J Chem 14(5): 103146.
- 469 Ruiz Orduna, A., Husby, E., Yang, C. T., Ghosh, D., & Beaudry, F. (2017). Detection of meat species
- 470 adulteration using high-resolution mass spectrometry and a proteogenomics strategy. Food Addit
 471 Contam: Part A, 34(7): 1110-1120.
- 472 Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012). Fragrance material review on 2-phenyl-

- 473 2-propanol. Food Chem Toxicol 50: S130-S133.
- Shi, Y., Li, X., & Huang, A. (2019). A metabolomics-based approach investigates volatile flavor
 formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Sci 158:
 107904.
- Sohail, A., Al-Dalali, S., Wang, J., Xie, J., Shakoor, A., Asimi, S., ... & Patil, P. (2022). Aroma
 compounds identified in cooked meat: A review. Food Res Int 157: 111385.
- Song, X., Canellas, E., & Nerin, C. (2021). Screening of volatile decay markers of minced pork by
 headspace-solid phase microextraction-gas chromatography-mass spectrometry and
 chemometrics. Food Chem 342: 128341.
- Trivedi, D. K., Hollywood, K. A., Rattray, N. J., Ward, H., Trivedi, D. K., Greenwood, J., ... &
 Goodacre, R. (2016). Meat, the metabolites: An integrated metabolite profiling and lipidomics
 approach for the detection of the adulteration of beef with pork. Analyst 141(7): 2155-2164.
- Vilar, E. G., O'Sullivan, M. G., Kerry, J. P., & Kilcawley, K. N. (2022). Volatile organic compounds in
 beef and pork by gas chromatography-mass spectrometry: A review. Sep Sci Plus 5(9): 482-512.
- Wang, Y., Song, H., Zhang, Y., Tang, J., & Yu, D. (2016). Determination of aroma compounds in pork
 broth produced by different processing methods. Flavour Fragr J 31(4): 319-328.
- Wei, M., Liu, X., Xie, P., Lei, Y., Yu, H., Han, A., ... & Zhang, S. (2022). Characterization of Volatile
 Profiles and Correlated Contributing Compounds in Pan-Fried Steaks from Different Chinese
 Yellow Cattle Breeds through GC-Q-Orbitrap, E-Nose, and Sensory Evaluation. *Molecules 27(11):*3593.
- Wu, W., Zhan, J., Tang, X., Li, T., & Duan, S. (2022). Characterization and identification of pork flavor
 compounds and their precursors in Chinese indigenous pig breeds by volatile profiling and
 multivariate analysis. Food Chem 385: 132543.
- Yang, L., Wu, T., Liu, Y., Zou, J., Huang, Y., Babu V, S., & Lin, L. (2018). Rapid identification of
 pork adulterated in the beef and mutton by infrared spectroscopy. J Spectrosc 2018: 1-10.
- Zhang, J., Kilmartin, P. A., Peng, Y., Chen, X., & Quek, S. Y. (2020). Identification of key aroma
 compounds in cranberry juices as influenced by vinification. J Agric Food Chem 68(1): 279-291.
- Zhao, J., Wang, M., Xie, J., Zhao, M., Hou, L., Liang, J., ... & Cheng, J. (2017). Volatile flavor
 constituents in the pork broth of black pig. Food Chem 226: 51-60.

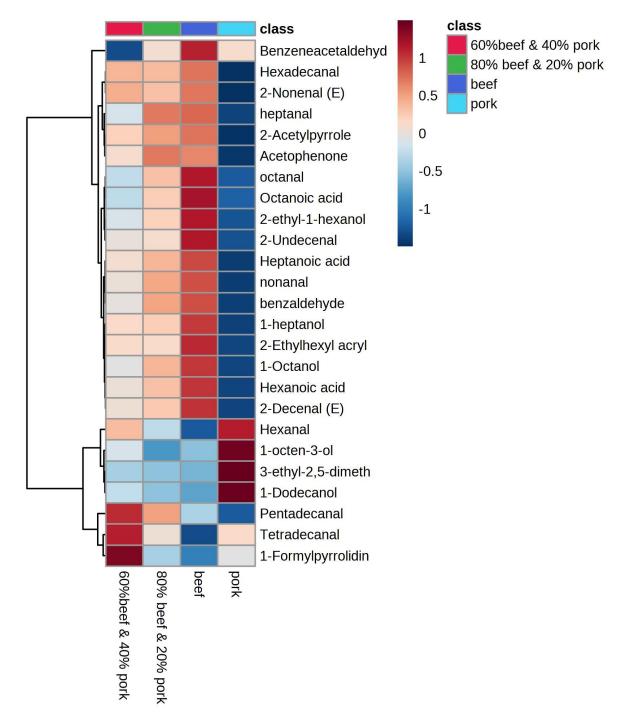

502 Figure legends


504 Figure 1. PCA score plot of the compound identified from cooked beef, pork, and mixed samples.

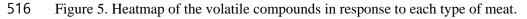
505

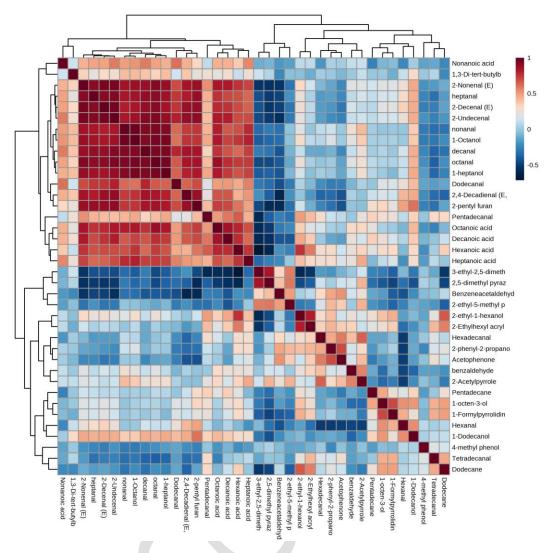


507 Figure 2. PLS-DA score plot of the compound identified from cooked beef, pork, and mixed samples.



510 Figure 3. Significant compounds screened by VIP (variable importance in projection) value.




MeanDecreaseAccuracy

513 Figure 4. Important compounds identified by Random forest test.

- 519 Figure 6. Correlation map of the compounds identified.

Compound Name	RT(min)	Calculated	Referenced	(m/z)	Beef	80%B +20%P	60%B	Pork	Identification
		LRI	LRI				+40%P		method
Aldehydes		Average concentration (µg/kg)							
Hexanal	5.44	1018	1036	56	89.19±9.19 ^b	103.24±13.24 ^{ab}	124.26 ± 8.49^{ab}	144.77 ± 10.53^{a}	Lri, ms
Heptanal	9.82	1154	1156	70	44.59 ± 7.99^{a}	41.24 ± 6.88^{a}	31.04 ± 8.46^{a}	11.66 ± 2.64^{b}	Lri, ms
Octanal	13.83	1273	1273	43	97.56±10.74 ^a	76.47 ± 7.78^{a}	63.29 ± 8.77^{ab}	35.35 ± 3.58^{b}	Lri, ms
Nonanal	17.56	1384	1384	57	527.87±79.25 ^a	464.87 ± 68.83^{a}	414.84 ± 49.30^{a}	176.44 ± 16.40^{b}	Lri, ms
Decanal	21.01	1491	1491	57	18.45 ± 4.44^{a}	15.38 ± 3.70^{a}	16.10 ± 2.67^{a}	11.64 ± 2.27^{a}	Lri, ms
Benzaldehyde	21.78	1514	1514	106	97.81 ± 4.94^{a}	88.33±4.21 ^{ab}	78.58 ± 4.53^{b}	47.93±3.64 ^c	Lri, ms
2-Nonenal (E)	22.11	1526	1526	55	43.77 ± 6.13^{a}	32.42 ± 8.73^{a}	24.32 ± 4.00^{a}	15.79 ± 1.48^{a}	Lri, ms
2-Decenal (E)	25.71	1640	1640	41	61.50±9.15 ^a	48.18 ± 7.11^{ab}	40.66 ± 8.29^{ab}	20.69 ± 4.22^{b}	Lri, ms
2,4-Nonadienal (E,E)	27.42	1695	1695	81	15.29 ± 0.94^{a}	10.52 ± 1.30^{b}	$4.08 \pm 0.10^{\circ}$	n.d.	Lri, ms
2-Undecenal	28.64	1748	1750	57	62.64 ± 7.87^{a}	37.65 ± 6.50^{a}	32.46 ± 6.84^{a}	19.43 ± 6.14^{a}	Lri, ms
2,4-Decadienal (E,E)	29.9	1805	1805	81	$16.94{\pm}4.02^{a}$	11.07 ± 3.01^{a}	10.02 ± 1.17^{a}	10.15 ± 1.20^{a}	Lri, ms
Tetradecanal	31.91	1919	1919	57	$9.87{\pm}2.06^{a}$	$10.39 {\pm} 1.88^{a}$	$13.24{\pm}1.95^{a}$	12.68 ± 1.76^{a}	Lri, ms
Pentadecanal	33.53	2026	2024	82	18.80 ± 2.36^{ab}	21.61 ± 2.52^{a}	23.62 ± 1.92^{a}	12.93 ± 2.04^{b}	Lri, ms
Hexadecanal	34.98	2134	2135	57	31.18 ± 2.82^{a}	$32.94{\pm}2.73^{a}$	29.44 ± 2.53^{a}	13.32±3.75 ^b	Lri, ms
Dodecanal	27.67	1704	1704	57	23.35 ± 2.10^{a}	23.75±0.51 ^a	$13.24{\pm}2.49^{a}$	12.61 ± 3.54^{a}	Lri, ms
Benzeneacetaldehyde	25.81	1644	1635	91	$18.85{\pm}1.30^{a}$	16.89 ± 2.32^{a}	16.42 ± 1.80^{a}	19.38 ± 2.38^{a}	Lri, ms
Alcohols									
1-octen-3-ol	19.54	1445	1445	57	38.96 ± 6.37^{a}	43.20 ± 5.03^{a}	46.46 ± 1.76^{a}	$54.14{\pm}6.71^{a}$	Lri, ms
1-heptanol	19.67	1449	1449	56	55.33 ± 8.79^{a}	54.02±8.17a	39.69 ± 4.96^{a}	n.d.	Lri, ms
2-ethyl-1-hexanol	20.80	1485	1485	57	77.22 ± 8.92^{a}	63.02 ± 7.54^{ab}	52.04 ± 4.99^{bc}	31.21±3.29 ^c	Lri, ms
1-Octanol	22.91	1552	1552	56	$78.15 {\pm} 8.88^{a}$	68.19 ± 6.54^{a}	56.86 ± 6.69^{a}	24.33 ± 2.48^{b}	Lri, ms
2-octen-1-ol(E)	24.88	1614	1613	57	$13.80{\pm}2.40^{a}$	14.51 ± 2.44^{a}	14.79 ± 0.25^{a}	n.d.	Lri, ms
1-Dodecanol	32.61	1965	1964	55	10.63 ± 1.16^{a}	13.87 ± 2.44^{a}	$10.78 {\pm} 0.28^{a}$	14.68 ± 1.40^{a}	Lri, ms
2-phenyl-2-propanol	28.94	1761	1759	43	8.70 ± 1.60^{a}	8.06 ± 1.50^{a}	5.70 ± 1.38^{a}	n.d.	Lri, ms
4-methyl phenol	34.42	2091	2094	60	$2.37{\pm}0.80^{a}$	$2.99 {\pm} 0.07^{a}$	3.29 ± 0.49^{a}	$6.34{\pm}1.69^{a}$	Lri, ms
Pyrazines		Ÿ							·
3-ethyl-2,5-dimethyl pyrazine	19.13	1432	1433	135	18.57 ± 2.05^{b}	19.29±2.04 ^{ab}	19.64±1.90 ^{ab}	$24.78{\pm}1.94^{a}$	Lri, ms

522 Table 1. Volatile compounds identified in cooked beef, pork, and their admixture.

2,5-dimethyl pyrazine	14.9	1304	1306	108	$8.14{\pm}0.67^{a}$	7.69 ± 0.73^{a}	7.17 ± 0.64^{a}	$7.54{\pm}0.78^{a}$	Lri, ms
2-ethyl-5-methyl pyrazine	17.35	1378	1378	121	$6.57 {\pm} 1.56^{ab}$	$3.93{\pm}0.38^{b}$	4.12 ± 0.72^{b}	7.56 ± 0.79^{a}	Lri, ms
2-Acetylpyrrole	32.82	1977	1977	94	12.78 ± 0.47^{a}	12.65±0.51 ^a	11.48 ± 0.42^{a}	$8.92{\pm}0.84^{b}$	Lri, ms
Trimethyl pyrazine	17.71	1388	1388	122	62.52 ± 6.32^{a}	n.d.	n.d.	33.61±4.82 ^b	Lri, ms
2-methyl 5H-6,7-	27.59	1701	1703	134	12.28 ± 2.64^{a}	5.61 ± 1.09^{b}	4.09 ± 1.23^{b}	5.42 ± 1.56^{b}	Lri, ms
dihydrocyclopentapyrazine									
Acids									
Hexanoic acid	30.73	1852	1862	60	68.24 ± 10.32^{a}	56.69 ± 7.56^{a}	50.55 ± 9.12^{a}	33.62 ± 6.46^{b}	Lri, ms
Heptanoic acid	32.50	1958	1950	60	15.47 ± 2.67^{a}	12.54 ± 1.93^{a}	$12.04{\pm}2.40^{a}$	11.77 ± 1.02^{a}	Lri, ms
Octanoic acid	34.04	2063	2063	60	78.04 ± 9.56^{a}	57.59±7.95 ^{ab}	49.59 ± 4.32^{b}	23.03±2.18 ^c	Lri, ms
Nonanoic acid	35.43	2171	2171	60	65.75±8.91 ^a	47.12±4.37 ^b	41.40 ± 2.17^{b}	32.67 ± 3.21^{b}	Lri, ms
Decanoic acid	36.72	2277	2287	60	22.07 ± 7.98^{b}	58.32 ± 8.56^{a}	$44.94{\pm}6.01^{a}$	20.56 ± 3.09^{b}	Lri, ms
Hydrocarbons									
2-pentyl furan	11.70	1210	1210	81	16.47 ± 5.60^{a}	16.50 ± 3.87^{a}	15.78 ± 2.13^{a}	15.61 ± 2.20^{a}	Lri, ms
1,3-Di-tert-butylbenzene	18.69	1418	1420	175	21.88±3.11 ^a	16.09 ± 4.88^{a}	15.80 ± 3.06^{a}	15.86 ± 1.54^{a}	Lri, ms
Dodecane	10.58	1177		57	25.48 ± 0.40^{a}	18.02 ± 1.94^{b}	12.72±1.13 ^{bc}	$9.14 \pm 1.56^{\circ}$	Lri, ms, std
Tridecane	14.41	1290	1300	57	5.07 ± 0.89^{a}	1.85 ± 0.32^{b}	4.52 ± 1.19^{a}	$3.25{\pm}1.02^{a}$	Lri, ms, std
Tetradecane	17.91	1394	1400	57	33.71 ± 3.78^{a}	30.93 ± 4.32^{a}	27.37 ± 5.19^{a}	13.11 ± 2.54^{b}	Lri, ms, std
Pentadecane	21.22	1498	1500	57	10.77 ± 1.76^{a}	$4.97 {\pm} 1.07^{b}$	7.40 ± 2.31^{b}	6.44 ± 1.45^{b}	Lri, ms, std
Heptadecane	27.53	1699	1700	67	11.72 ± 2.81^{a}	n.d.	15.65 ± 3.42^{a}	12.95 ± 3.76^{a}	Lri, ms, std
Azulene	28.32	1733	1736	128	15.03 ± 2.84^{a}	n.d.	n.d.	n.d.	Lri, ms
Miscellaneous									
1-Formylpyrrolidine	15.27	1315	-	43	23.31±4.61 ^b	17.12 ± 3.08^{b}	19.39 ± 2.89^{b}	36.14 ± 5.60^{a}	ms
2-Ethylhexyl acrylate	20.57	1480	1494	139	16.47 ± 2.38^{a}	15.21 ± 3.14^{a}	15.13 ± 1.60^{a}	19.37 ± 4.25^{a}	Lri, ms

⁵²³

524 Identification method: LRI, linear retention index compared with previous literature, PubChem, and NIST Chemistry WebBook; ms, mass spectrum, and

525 mass quality comparison using NIST libraries; std, same retention time with the standard compound. m/z: target ion used for quantification.

526 ^{a-c}Means with a different letter within a row are significantly different (p < 0.05, Duncan test). Data are presented as mean \pm SE.

527