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Quality characteristics of meat analogs through the 9 

incorporation of textured vegetable protein and Tenebrio 10 

molitor larvae in the presence of transglutaminase 11 

Abstract 12 

Alternative protein sources with greater nutritional value and a lower environmental footprint have 13 

recently attracted interest in the production of meat substitutes. However, it is required that these 14 

alternatives mimic the texture and structure of meat. This study investigated varying ratios of textured 15 

vegetable proteins (TVP) to Tenebrio molitor larvae (brown mealworm; TM) with the addition of 16 

transglutaminase (TG) to determine the quality characteristics of these emulsions. The results 17 

demonstrated low protein solubility of the emulsions as TVP content increased. Furthermore, when 18 

the proportion of TM was high, the TG-treated emulsion had a low pH. Additionally, when there was 19 

a high TM ratio to TVP in the TG treatment, the emulsions demonstrated better thermal stability and 20 

water holding capacity. Regarding the rheological properties of the emulsion, both the frequency-21 

dependent storage modulus (G') and loss modulus (G’’) increased as the proportion of TVP in the 22 

emulsion increased with and without the addition of TG. Differential scanning calorimetry (DSC) 23 

analyses demonstrated two protein denaturation peaks in all treatments, with high peak temperatures 24 

for both treatments with a high proportion of TM. The hardness and chewiness of the emulsion were 25 

highest in the treatment (T6 and T8) with TG, and the gumminess of the emulsion was greatest when 26 

TM only or when equal ratios of TVP and TM were treated with TG, respectively. In conclusion, the 27 

addition of TM to TVP with TG improves the overall texture of the protein mixture, making it a 28 

suitable meat alternative. 29 

Keywords: transglutaminase, textured vegetable protein, edible insect, structure, emulsion  30 
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1. Introduction 31 

Alternative proteins are emerging to address environmental concerns regarding the 32 

production of livestock products and resolve global food security issues (Kim et al., 2022c). 33 

The major alternative protein materials include plant-based proteins, edible insects, and cell-34 

based cultured meat, all of which are being developed into food technologies (Lee et al., 35 

2020; 2023; 2024). Recently, there has been a rapid growth in the demand for plant-based 36 

proteins, with the main consumers being vegetarians; however, additional research is ongoing 37 

to mimic the texture, flavor, and nutritional value of meat (Wood and Tavan, 2022). Plant-38 

based proteins can mimic the structure and texture of meat proteins using textured vegetable 39 

proteins (TVP), which are produced via extrusion molding by applying heat and pressure 40 

(Abilmazhinov et al., 2023). Textured vegetable proteins are largely divided into two types, 41 

depending on the moisture content at the time of extrusion. Although high-moisture TVP 42 

better mimics the fibers of meat, its commercial viability is lower owing to limitations in 43 

distribution due to its high moisture content (Baune et al., 2022). In contrast, low-moisture 44 

TVP is actively used in industry and research to simulate the texture of meat; however, 45 

because it cannot form a cohesive structure on its own, it requires a binder (Kyriakopoulou et 46 

al., 2021; Lyu et al., 2023). 47 

Edible insects, another alternative protein source, are attracting considerable attention 48 

because of their high protein content, between 40–70%, in addition to their high nutritional 49 

benefits (Pan et al., 2022). Tenebrio molitor larvae (brown mealworms; TM) were the first 50 

insects recognized as edible in the European Union and according to previous studies are 51 

considered to be the most promising insect food material (Choi et al., 2017a; Gkinali et al., 52 

2022; Lee et al., 2020). The quality characteristics of various foods containing TM, such as 53 
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bread, biscuits, pasta, and emulsified sausages, have also been studied (Gkinali et al., 2022). 54 

Another study was conducted to simulate reconstituted plant-based protein jerky by mixing 55 

TVP and TM (Kim et al., 2022b). However, the content, structure, and physicochemical 56 

properties of TM proteins can be altered during production and processing (Hong et al., 57 

2020). In addition, there is a lack of in-depth research on the interaction between plant 58 

proteins and TM proteins in a combined emulsion system.  59 

Transglutaminase (TG) catalyzes the covalent cross-linking between lysine and glutamine 60 

residues in proteins. It is used to form stable structures and improve the physical properties of 61 

various protein-based foods (Choi et al., 2017b; Kim et al., 2022a). In particular, TG can 62 

improve the gel strength of emulsified meat products by forming a stable protein network 63 

(Yong et al., 2020). Insufficient protein-protein interactions can result in a weak protein gel 64 

structure that is prone to collapse. In a previous study, TG was used to strengthen the 65 

interaction of edible insect proteins in yogurt (Gharibzahedi and Altintas, 2024). The effects 66 

of TG on the structural stability and strength of protein-based emulsion-type foods may be 67 

influenced by the amino acid composition or structure of the sample (Choi et al., 2016).  68 

Therefore, in this study, the ratio of TM to TVP was varied, and TG was added to the 69 

mixture. The physicochemical properties and structural stability of the prepared emulsions 70 

were determined to identify the optimal mixing ratio and effect of TG treatment. 71 

 72 

  73 
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2. Materials and methods 74 

2.1. Materials and treatments 75 

Textured vegetable protein (Solbar, Ningbo, China) was hydrated at room temperature for 2 76 

h before use. Frozen TM were purchased from a local market and thawed at 4°C for 24 h. 77 

Once thawed, the mealworm larvae were then blended (VH7230, Bomann, Korea). 78 

Mealworms to TVP were then mixed at ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 to 79 

produce a homogenate. To each homogenate, 1%, of the optimal ratio of TG (ACTIVA TG-B, 80 

ES Food Co. Ltd., Kunpo, Korea) was added. These ratios were determined in a previous 81 

experiment. The homogenate with the addition of TG was then reacted at 25°C for 1 h (Table 82 

1). Then TG was inactivated by heating it to 90°C for 30 s, as per the manufacturer 83 

guidelines. Consequently, treatments were formulated as follows: T1, Emulsion prepared with 84 

proteins of TVP0:TM100; T2, Emulsion prepared with proteins of TVP25:TM75; T3, 85 

Emulsion prepared with proteins of TVP50:TM50; T4, Emulsion prepared with proteins of 86 

TVP75:TM25; T5, Emulsion prepared with proteins of TVP100:TM0; T6, Emulsion prepared 87 

with proteins of TVP0:TM100 reacted by TG; T7, Emulsion prepared with proteins of 88 

TVP25:TM75 reacted by TG; T8, Emulsion prepared with proteins of TVP50:TM50 reacted 89 

by TG; T9, Emulsion prepared with proteins of TVP75:TM25 reacted by TG; T10, Emulsion 90 

prepared with proteins of TVP100:TM0 reacted by TG. 91 

 92 

  93 



 

7 

 

2.2. Protein solubility  94 

The prepared homogenate was mixed with distilled water at a ratio of 1:3, dissolved at 4°C 95 

for 12 h, and then centrifuged at 12,000 × g for 30 min. The protein concentration in the 96 

supernatant separated after centrifugation was measured using the BCA assay. 97 

 98 

2.3. Tertiary structure  99 

Changes in tertiary structure were confirmed by measuring the fluorescence intensity of the 100 

proteins. Fluorescence measurements were performed using excitation at 280 nm and 101 

fluorescence emission at 310–400 nm. The soluble protein from the homogenate was diluted 102 

equally to a concentration of 0.3 mg/mL to be used as a sample. 103 

 104 

2.4. Emulsion manufacturing 105 

To utilize this protein mixture as a meat alternative, pork fat was used as the fat source in 106 

emulsions stabilized by protein mixtures. An emulsion was prepared by homogenizing TVP 107 

and TM mixtures with pork back fat at a ratio of 8:2 (Table 1). Emulsions were filled into 108 

conical tubes at 25 g each, centrifuged at 1,000 × g for 5 min to remove internal air, and 109 

heated at 80°C for 30 min. 110 

 111 

2.5. pH and color 112 

Five grams of the emulsion was homogenized with 20 mL of distilled water at 8,000 rpm 113 

for 30 s and then measured at 20°C using a pH meter (Accumet Model AB15+, Thermofisher 114 
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Scientific, Waltham, MA, USA). Colorimetry was performed using a colorimeter (CR-410, 115 

Minolta, Japan), which was calibrated using a white plate (L* +97.83, a* -0.43, b* +1.98). 116 

 117 

2.6. Rheological properties 118 

The rheological properties of the emulsions were examined for storage and loss modulus in 119 

the angular frequency range of 1–100 rad/s using a rheometer (MCR102, Anton Parr GmbH, 120 

Austria) and a plate with a diameter of 25 mm. The shear strain was set to 0.1% using an 121 

amplitude sweep. 122 

 123 

2.7. Differential Scanning Calorimetry (DSC)  124 

Approximately 30 mg of the emulsion was placed in a DSC sample pan and heated to 25–125 

95°C at a rate of 10°C/min using the DSC4000 (PerkinElmer, MA, USA). The denaturation 126 

point and heat capacity changes during emulsion heating were measured. 127 

 128 

2.8. Cooking loss, water holding capacity (WHC), and emulsion stability 129 

The cooking loss of the emulsion was calculated as the rate of sample loss due to heating 130 

by comparing the weight of the sample in the conical tube before and after heating. The water 131 

holding capacities of the emulsions were measured using the centrifugal force method. One 132 

gram of the emulsion was placed in a conical tube containing Whatman paper no. 1 133 

(Whatman, Kent, UK) and centrifuged at 500 × g for 10 min. The weights before and after 134 

centrifugation were compared to calculate the ratio of separated water. For emulsion stability, 135 

20 g of emulsion was placed in a glass tube divided by wire mesh and heated at 80°C for 30 136 
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min. The volumes of water and oil separated from the sample were checked, and the ratio of 137 

the separated liquid (v/w) was measured (Shin et al., 2022).  138 

 139 

2.9. Texture profile analysis 140 

The textural properties of the cooked emulsions were confirmed by a textural property-141 

measuring device (TA-XTplus; Stable Micro System Ltd., England) and a probe with a 142 

diameter of 40 mm. The sample was prepared to have a diameter and height of 25 mm, with a 143 

measurement speed of 5 mm/s, strain of 50%, and trigger force of 5 g (Shin et al., 2022). 144 

 145 

2.10. Statistical analysis 146 

Statistical analysis showed a significant difference (p<0.05) through one-way analysis of 147 

variance (ANOVA) and Duncan’s multiple range test using SPSS Statistics (version 20.0; 148 

SPSS Inc., USA). All experiments were repeated at least three times, and the results were 149 

expressed as the mean and standard deviation. 150 

 151 

3. Results and Discussion 152 

3.1. Protein solubility  153 

Protein solubility was determined when TVP and TM were treated with TG. As shown in 154 

Fig.1, the mixing ratio under TG treatment significantly affected protein solubility (p<0.05). 155 

Protein solubility decreased substantially as TVP was increased. There was no significant 156 

difference in protein solubility with the addition of TG, except in the T1 treatment group, in 157 

which a large amount of TM was added (p>0.05). It is believed that high-temperature 158 
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extrusion during the manufacturing process of TVP induces denaturation of the protein, 159 

resulting in low solubility, which improves the texture, but may deteriorate the functional 160 

properties of the protein (Samard and Ryu, 2019). However, even after the heat-induced 161 

denaturation and protein network formation, some proteins still can be solubilized (Li et al., 162 

2013). Meanwhile, treatment with TG may increase the protein particle size by inducing the 163 

formation of covalent bonds between amino acids, thereby reducing its solubility (Ahammed 164 

et al., 2021). In that case, samples with low protein solubility due to TG were predicted to 165 

have good physical properties. 166 

 167 

3.2. Tertiary structure 168 

Hydrophobic amino acids such as tryptophan are located inside proteins and change their 169 

fluorescence intensity when exposed to protein denaturation (Zhang et al., 2023). Changes in 170 

fluorescence intensity due to the addition of TG to the TVP and TM homogenate are shown 171 

in Fig. 2. Treatment groups (T1, T2, T3, and T4) without the addition of TG showed little to 172 

no change in the fluorescent intensities. However, the increase in fluorescence intensity was 173 

observed between T5 (TVP only) and T10 (TVP with TG). In addition, the maximum 174 

absorption wavelength of T5 was 350 nm, which shifted to 340 nm due to TG in T10. This 175 

indicates that although the amount of protein that can be dissolved in TVP is small, the 176 

dissolved proteins are greatly affected by TG. Thus, considerable characteristic changes 177 

owing to TG can be expected in the TVP. 178 

 179 

3.3. pH and color 180 
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Changes in protein pH influence the type and degree of bonding involved in gel formation 181 

by heating, which can affect the physical properties and stability of the gel after heating 182 

(Klost et al, 2022). Table 2 presents the results for both pH and color of the emulsion before 183 

and after heating. The pH of the emulsion before heating tended to increase as the mixing 184 

ratio of TVP increased, thereby, it decreased significantly in TM only treatment (T1), 185 

compared to the emulsion prepared with mixed proteins or only TVP (p<0.05). In addition, 186 

T10 (TVP with TG) after heat-treatment, exhibited the highest pH value. This finding could 187 

be due to the higher pH of TVP (6.98 ± 0.03) compared to the pH of TM (6.35 ± 0.04). Kim 188 

et al. (2022b) reported that the pH of restructured jerky analogs with different ratios of TVP 189 

and edible insects decreased significantly with an increase in edible insects. Kim et al. (2020) 190 

reported that edible insect proteins treated with TG have a significantly higher pH than those 191 

treated without TG. In addition, Park et al. (2017) reported that the pH of emulsions 192 

containing TG was higher than that of the control without TG. Thereby indicating that TG 193 

influences the pH. 194 

Lightness and yellowness intensities were highest (p<0.05) in the TVP only treatments (T5 195 

and T10) for both raw and heated emulsions (T5 and T10), indicating no significant 196 

difference on the addition of TG. Whereas, redness was the lowest (p<0.05) in the emulsions 197 

(T5 and T10) manufactured only with TVP. The color also appeared to be influenced by the 198 

ratio of the protein source used rather than the addition of TG. Kim et al. (2022b) showed 199 

similar results in the amount of TM added to the restructured jerky analog increased, 200 

lightness decreased, and redness increased. This is because the unique dark color of TM can 201 

negatively affect appearance preference when used as a substitute for meat in processed meat 202 

products (Choi et al., 2017a). Therefore, the influence of color can be reduced by using the 203 
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TVP, and edible insect proteins should be appropriately mixed when used as alternative 204 

protein sources. 205 

 206 

3.4. Rheological properties 207 

The mixing ratio of TVP to TM and rheological properties of the emulsion after TG 208 

treatment are shown in Fig. 3. Both the frequency-dependent storage modulus (G') and loss 209 

modulus (G’’) increased as the proportion of TVP in the emulsion increased, this was also 210 

apparent with the TG treatment. It is known that protein-protein interactions caused by TG 211 

treatment can affect the increase in G′ and G″ (Ruzengwe et al., 2020). Although TVP has a 212 

relatively low concentration of dissolved proteins, it is believed that an increase in G' and G" 213 

could be caused by significant changes in the protein structure due to TG treatment, as 214 

confirmed by the tertiary structure results. The internal structure organized during the high-215 

temperature extrusion process of TVP was also considered to have influenced the 216 

improvement in viscoelasticity before heating (Kim et al., 2022b). 217 

 218 

3.5. DSC  219 

The thermal properties of the emulsion were significantly altered by the mixing ratio of 220 

TVP to TM, with or without TG (Table 3). As confirmed by DSC, the protein denaturation 221 

peak appeared twice for all treatments. The peak temperatures for both denaturation reactions 222 

were high in treatments with a high proportion of TM. T6 showed the highest peak 223 

temperature in peak 1 and peak 2 (p<0.05). The thermal capacity for denaturation was highest 224 

in T5 and T10, in the first peak, but T6 was the highest in the second peak. A pH close to the 225 

isoelectric point of a protein may delay protein unfolding upon heating because the structural 226 
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stability of the protein is high (Klost et al, 2022). In addition, TVP is a protein that is already 227 

denatured during the production process; denaturation is not induced during the heating 228 

process of the emulsion, which can lower the peak temperature (Kim et al., 2022b). Because 229 

a high denaturation temperature is correlated with the thermal stability of proteins, T6 is 230 

considered to have high thermal stability. 231 

 232 

3.6. Cooking loss, WHC, and emulsion stability 233 

Cooking loss, WHC, and emulsion stability are factors that indicate structural stability 234 

through the degree to which the moisture and oil present in the protein structure are separated 235 

by heating and external stimulation. The mixing ratio of TVP to TM, with or without TG 236 

significantly affected cooking loss, WHC, and emulsion stability characteristics (Table 4). 237 

Cooking loss showed a low separation amount of approximately 1% overall but tended to 238 

decrease with TG treatment. The WHC in response to centrifugal force showed no significant 239 

effect on TG treatments and tended to decrease as the TVP mixing ratio increased. There was 240 

no significant difference in the emulsion stability of the total exudate, but the fat exudate 241 

increased from 0.67% to 2.00% as the amount of added TVP increased in non TG-added 242 

group. This is because the formation of protein structures during heating was mainly caused 243 

by the denaturation of the larvae protein rather than by TVP. In addition, similar to the results 244 

confirming thermal properties through DSC, T6, which produced an emulsion by treating TM 245 

homogenate with TG, showed significantly higher WHC, emulsion stability, and lower 246 

cooking loss. Yong et al. (2020) reported that cooking loss and emulsion stability of reduced 247 

fat emulsions with konjac gel and TG were lower than those observed for reduced fat samples 248 
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with konjac gel. Therefore, a stable gel was formed with minimal separation of moisture and 249 

fat during the thermal process owing to the high thermal stability of T6. 250 

 251 

3.7. Texture profile analysis 252 

As shown in Table 5, the textural properties of the gel formed upon heating of the emulsion 253 

were significantly affected by the mixing ratio and TG treatment. Hardness was relatively 254 

high in the TG-treated group, with significantly higher values at T6, T8, and T10 (p<0.05). 255 

There was no significant difference in cohesiveness among the treatment groups (p>0.05); 256 

however, gumminess and chewiness were significantly higher at T6 and T8. In the case of T6, 257 

as previously confirmed in Tables 3 and 4, the denaturation of TM during the heating process 258 

improved the structural stability, and hardness, gumminess, and chewiness are thought to 259 

increase. Kim et al. (2022b) reported that the shear force decreased as the amount of TM 260 

increased in a restructured jerky analog containing TVP and edible insect protein. This is 261 

probably due to the low strength of protein-protein interactions in insect proteins (Bessa et 262 

al., 2019). Park et al. (2017) reported that the hardness, gumminess, and chewiness of meat 263 

emulsions increased with increasing silkworm pupae levels, and that the incorporation of 264 

silkworm pupae and TG into the emulsion significantly improved its hardness, gumminess, 265 

and chewiness. Choi et al. (2016) showed that a combination of TG improved and maintained 266 

the textural properties of foods by cross-linking with proteins. Thus, it was confirmed that T6 267 

and T8 showed the most improved properties in terms of textural properties, which can be 268 

attributed to the thermal stability of TM, high textural properties of the TVP raw material, 269 

and promotion of bond formation between proteins by TG treatment. 270 

 271 
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4. Conclusion 272 

 The mixing ratio of TVP and TM and the quality characteristics of the proteins and 273 

emulsions after TG treatment were analyzed. As the TVP content increased, the solubility of 274 

the protein decreased; however, a strong TG bond was formed in the dissolved protein. 275 

Emulsions with a high proportion of TM treated with TG showed low pH and improved 276 

thermal stability, WHC, and emulsion stability. The physical properties of the emulsion after 277 

heating were significantly higher in T6, which was an emulsion prepared by the TG treatment 278 

of a homogeneous substance composed only of TM. Owing to the excellent physical 279 

properties of the TVP raw material and the influence of new bond formation between the two 280 

protein sources, T8 also exhibited significantly higher physical property values. Therefore, to 281 

improve stability, it is considered most appropriate to treat TM protein with TG, but 282 

considering color and physical properties, additional research on the use of a mixture of the 283 

two protein sources in equal proportions is necessary. 284 
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Figure captions 384 

Figure 1. Effect of TG on protein solubility based on the mixing ratio of TVP to TM. T1, 385 

TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, 386 

TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with TG; T8, 387 

TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG. 388 

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: 389 

Transglutaminase. a–f Different letter in superscript meant significant difference 390 

(p<0.05). 391 

Figure 2. Effect of TG on tertiary structure based on the mixing ratio of TVP to TM. 392 

T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, 393 

TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with TG; T8, 394 

TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG. 395 

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: 396 

Transglutaminase. 397 

Figure 3. Effect of TG on rheological properties based on the mixing ratio of TVP to 398 

TM. T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; 399 

T5, TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with TG; T8, 400 

TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG. 401 

TVP, textured vegetable proteins; TM: Tenebrio molitor larvae; TG: 402 

transglutaminase. 403 

  404 
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Table 1. Formulation of protein mixture and emulsion prepared with TVP and TM 

 T11) T2 T3 T4 T5 T6 T7 T8 T9 T10 

Protein mixture (%) 

TVP 0 25 50 75 100 0 25 50 75 100 

TM 100 75 50 25 0 100 75 50 25 0 

TG 0 0 0 0 0 1 1 1 1 1 

Emulsion (%) 

Protein 

mixture 
80 80 80 80 80 80 80 80 80 80 

pork backfat 20 20 20 20 20 20 20 20 20 20 

1)T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with TG; 

T8, TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG. 

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: Transglutaminase.   
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Table 2. Effect of TG on pH and color based on the mixing ratio of TVP and TM 

Traits T11) T2 T3 T4 T5 T6 T7 T8 T9 T10 

pH 
Raw 6.39±0.02d 6.37±0.01de 6.45±0.02c 6.53±0.01b 6.90±0.02a 6.29±0.01f 6.35±0.01e 6.46±0.01c 6.54±0.02b 6.93±0.04a 

Cooked 6.30±0.03h 6.42±0.01f 6.57±0.02e 6.66±0.03c 6.96±0.01b 6.38±0.02g 6.45±0.01f 6.60±0.02de 6.62±0.01d 7.05±0.02a 

Color of 

raw 

emulsion 

L* 28.40±1.98e 31.57±2.54cd 31.53±1.09cd 34.01±1.36b 77.48±1.42a 30.19±1.44de 30.95±3.41cd 32.79±0.87bc 34.64±1.36b 78.32±0.95a 

a* 4.63±0.26d 5.11±0.16c 5.35±0.18ab 5.14±0.11bc 0.56±0.08f 4.24±0.17e 5.41±0.48a 5.20±0.14abc 5.05±0.13c -0.63±0.09f 

b* 7.25±1.01c 9.04±0.93b 9.01±0.61b 8.92±0.37b 16.17±0.21a 7.29±0.36c 9.27±1.49b 8.99±0.38b 9.43±0.19b 16.78±0.46a 

Color of 

heated 

emulsion 

L* 38.94±0.76b 33.99±0.84d 33.76±1.12d 39.25±0.98b 83.35±0.88a 35.63±1.18c 33.74±0.64d 34.12±0.80d 36.04±0.89c 84.10±1.61a 

a* 5.23±0.19c 5.41±0.20b 5.74±0.24a 5.72±0.17a 0.45±0.06d 5.19±0.18c 5.43±0.21b 5.74±0.19a 5.65±0.18a 0.50±0.10d 

b* 10.74±0.49b 9.47±0.65d 10.01±0.70cd 11.10±0.33b 14.99±0.30a 9.88±0.54cd 9.62±0.40d 10.18±0.41c 9.98±0.31cd 14.75±0.55a 

1) T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with 

TG; T8, TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG.  

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: Transglutaminase.  

a–h Different letter in superscript meant significant difference (p<0.05). All values are mean ± standard deviation of three replicates (n=3). 
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Table 3. Effect of TG on thermal properties based on the mixing ratio of TVP and TM
 

Traits T11 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Peak 1 

Onset 

temperature 

(°C) 
40.55±1.37a 40.27±0.70a 38.52±1.04bc 36.88±0.72d 34.13±0.59e 39.67±0.74ab 39.28±1.26ab 38.96±0.50ab 37.22±0.51cd 34.72±0.70e 

Peak 

temperature 

(°C) 
43.55±0.62b 43.54±0.34b 43.24±0.50b 43.18±0.72b 36.68±0.85c 46.34±0.50a 43.00±1.01b 43.40±0.35b 43.71±0.24b 38.10±2.80c 

End 

temperature 

(°C) 
47.82±0.67fg 47.54±0.10g 49.07±0.56ef 51.37±1.19cd 51.99±0.65bc 53.32±0.32a 48.17±0.60fg 50.25±0.37de 51.68±0.16c 53.00±1.38ab 

ΔH (mJ/g) 0.19±0.09cd 0.05±0.02f 0.11±0.02ef 0.24±0.02c 0.60±0.05a 0.45±0.05b 0.15±0.04de 0.18±0.02cde 0.23±0.04c 0.54±0.00a 

Peak 2 

Onset 

temperature 

(°C) 
67.23±1.56ab 66.31±0.63abc 66.54±0.42abc 66.82±0.58ab 61.39±1.21e 67.70±3.14a 66.89±1.59ab 64.71±0.95bcd 64.12±0.33cd 63.54±0.51de 

Peak 

temperature 

(°C) 
78.92±0.98a 74.31±3.90bc 75.63±0.56ab 69.05±0.43de 67.68±1.69e 78.56±0.78a 71.67±4.05cd 69.17±0.89de 67.99±0.76e 67.78±0.54e 

End 

temperature 

(°C) 
83.03±1.24ab 81.32±4.07ab 81.81±0.25ab 72.96±1.14c 71.75±1.81c 85.06±1.61a 80.56±3.13b 75.27±0.33c 75.21±3.85c 72.33±1.65c 

ΔH (mJ/g) 0.06±0.01c 0.10±0.02b 0.05±0.01cde 0.06±0.01cd 0.03±0.00de 0.16±0.03a 0.12±0.04b 0.02±0.01e 0.03±0.01de 0.04±0.02cde 

1) T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with 

TG; T8, TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG.  

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: Transglutaminase. 

 a–g Different letter in superscript meant significant difference (p<0.05). All values are mean ± standard deviation of three replicates (n=3). 
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Table 4. Effect of TG on cooking loss, water holding capacity (WHC), and emulsion stability based on the mixing ratio of TVP and 

TM 

Traits T11) T2 T3 T4 T5 T6 T7 T8 T9 T10 

Cooking 

loss (%) 1.15±0.08abc 1.18±0.15abc 1.23±0.18ab 1.29±0.05a 1.12±0.05abc 0.92±0.07c 1.09±0.05bcd 1.02±0.01bc 1.16±0.28cd 1.12±0.14abc 

WHC (%) 33.05±1.42a 16.14±6.42b 13.19±4.58bc 16.99±3.09b 14.33±9.55bc 31.73±1.97a 19.19±4.39b 19.21±0.70b 7.90±2.82c 18.38±0.75b 

Total  
exudate (%) 5.33±1.15 6.67±0.58 6.67±0.58 7.00±0.00 8.00±4.27 7.17±1.61 7.67±1.53 6.50±0.87 6.83±0.76 7.00±1.00 

Fat  
exudate (%) 0.17±0.29d 0.67±0.29cd 0.33±0.29d 1.50±0.50abc 2.00±1.32ab 0.83±0.29cd 2.00±0.00ab 1.17±0.76bcd 2.50±0.50a 1.67±0.58abc 

1) T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with 

TG; T8, TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG.  

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: Transglutaminase.  

a–d Different letter in superscript meant significant difference (p<0.05). All values are mean ± standard deviation of three replicates (n=3). 

  



 

27 

 

Table 5. Effect of TG on texture profile analysis based on the mixing ratio of TVP to TM 

Traits T11) T2 T3 T4 T5 T6 T7 T8 T9 T10 

Hardness (g) 206.18±25.59bc 169.16±6.43e 199.23±14.25cd 179.96±11.76de 200.26±12.65cd 241.97±19.72a 206.14±18.92bc 243.56±18.81a 190.25±10.73cde 229.83±29.50ab 

Springiness 0.32±0.03abc 0.33±0.02ab 0.36±0.02a 0.34±0.03ab 0.29±0.03c 0.35±0.02ab 0.31±0.03bc 0.34±0.02ab 0.32±0.02abc 0.29±0.05c 

Cohesiveness 0.27±0.01 0.28±0.01 0.28±0.01 0.28±0.01 0.27±0.02 0.27±0.00 0.26±0.02 0.27±0.02 0.28±0.02 0.27±0.04 

Gumminess 

(g) 
54.24±5.89bc 49.97±3.59c 52.63±5.11c 49.05±6.49c 52.83±4.10c 65.25±4.93a 49.74±6.46c 61.09±8.69ab 49.26±4.57c 55.55±3.52bc 

Chewiness 

(g) 15.29±3.58bc 15.30±2.91bc 16.93±3.07bc 18.92±3.25ab 15.74±3.19bc 21.65±2.50a 17.10±4.11bc 22.21±3.02a 13.90±1.39c 16.20±3.14bc 

1) T1, TVP0:TM100; T2, TVP25:TM75; T3, TVP50:TM50; T4, TVP75:TM25; T5, TVP100:TM0; T6, TVP0:TM100 with TG; T7, TVP25:TM75 with 

TG; T8, TVP50:TM50 with TG; T9, TVP75:TM25 with TG; T10, TVP100:TM0 with TG.  

TVP, Textured vegetable proteins; TM: Tenebrio molitor larvae; TG: Transglutaminase.  

a–e Different letter in superscript meant significant difference (p<0.05). All values are mean ± standard deviation of three replicates (n=3). 

 

 


